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Introduction

Considérons, dans l’espace affine R2, les deux courbes γ1 et γ2, décrites par leurs équations carté-
siennes respectives x3−3xy2+y3−1 = 0 et x2+2y2+x−8 = 0. Les courbes γ1 et γ2 s’intersectent-elles ?
le cas échéant, combien y a-t-il de points d’intersection, et quelles sont leurs coordonnées ? La figure
ci-dessous, réalisée avec le logiciel GeoGebra, met en évidence les 6 points d’intersection de γ1 et γ2 :

Figure 1 – Intersection des courbes γ1 (en bleu) et γ2 (en rouge)

Pouvait-on prévoir le nombre de points d’intersection de γ1 et γ2, ou, à défaut, en donner une
borne ? Toutes ces questions s’inscrivent dans une problématique plus vaste : celle de la résolution des
systèmes d’équations polynomiales. Si l’on définit les deux polynômes P = X3 − 3XY 2 + Y 3 − 1 et
Q = X2+2Y 2+X−8 de R[X,Y ], déterminer les points d’intersection de γ1 et γ2 revient à déterminer
les racines communes de P et Q, c’est-à-dire les couples (α, β) ∈ R2 tels que P (α, β) = Q(α, β) = 0.

De manière plus générale, si k désigne un corps quelconque, et P1, . . . , Pr des polynômes de
k[X1, . . . , Xd], on s’intéresse au système d’équations polynomiales

P1(x1, . . . , xd) = 0
...

Pr(x1, . . . , xd) = 0

,

d’inconnue (x1, . . . , xd) ∈ kd. L’objectif de cette leçon est de développer la méthode dite d’élimina-
tion, via l’introduction de la notion de résultant de deux polynômes. Le principe de la méthode est de
transformer le précédent système en un nouveau système, faisant intervenir moins d’inconnues, et po-
tentiellement plus simple à traiter ; les informations obtenues à partir du nouveau système permettent
alors d’apporter une solution partielle au système initial.

La première partie sera consacrée à la définition et aux propriétés fondamentales des résultants,
ainsi qu’aux aspects élémentaires de la théorie de l’élimination ; nous détaillerons notamment la
méthode d’élimination que l’on vient d’évoquer. Dans une deuxième partie, nous expliciterons une
méthode effective de calcul de résultants, qui s’appuie sur l’algorithme d’Euclide, et les conséquences
directes de cet algorithme sur le lien entre le résultant de deux polynômes et leurs racines, et sur
le discriminant d’un polynôme. Enfin, au cours d’une troisième partie, nous développerons quelques
applications pratiques des résultants. Les démonstrations proposées en développement figureront en
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annexe, et viendront compléter la leçon : il s’agit des démonstrations des théorèmes de la borne de
Bézout, de Kronecker, et de Rothstein-Trager, qui seront énoncés au cours de la leçon, et rappelés en
annexe.

Dans toute cette leçon, A désigne un anneau unitaire, commutatif, et intègre : on pourra ainsi
parler librement de son corps des fractions Frac(A), de la clôture algébrique Frac(A) de ce corps, et
donc, étant donné un polynôme de A[X], de ses racines dans Frac(A). On désignera également par P
et Q deux polynômes de A[X], avec les notations de la définition 1.1 à venir.
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1 Théorie de l’élimination

1.1 Résultant de deux polynômes

Définition 1.1. Soient P,Q ∈ A[X], de degrés respectifs n et m, avec n+m > 0 :

P =

n∑
i=0

aiX
i, Q =

m∑
i=0

biX
i.

La matrice de Sylvester de P et Q, notée Syl(P,Q), est la matrice carrée de taille n+m, à coefficients
dans A, définie par :

Syl(P,Q) =



an an−1 . . . a1 a0 0 . . . 0
0 an . . . a2 a1 a0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . an an−1 an−2 . . . a0
bm bm−1 . . . b1 b0 0 . . . 0
0 bm . . . b2 b1 b0 . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . bm bm−1 bm−2 . . . b0


∈Mn+m(A).

Le résultant de P et Q, noté Res(P,Q), est le déterminant de la matrice de Sylvester de P et Q :

Res(P,Q) = det(Syl(P,Q)) ∈ A.

Remarques 1.2.
• Pour N ≥ 0, notons AN [X] le sous-A-module de A[X] constitué de l’ensemble des polynômes

de A[X] de degré au plus N , muni de sa base canonique (XN , XN−1, . . . , X, 1). Le résultant
de P et Q est alors le déterminant de l’application linéaire

ΦP,Q :

{
Am−1[X]×An−1[X] −→ An+m−1[X]

(U, V ) 7−→ UP + V Q

Plus précisément, la matrice de ΦP,Q, relativement aux bases ((Xm−i, 0)1≤i≤m,
(0, Xn−j)1≤j≤n) de Am−1[X]×An−1[X] et (Xm+n−i)1≤i≤m+n de An+m−1[X], n’est autre que
la transposée de la matrice de Sylvester de P et de Q.
• En identifiant un polynôme F =

∑n+m−1
i=0 fiX

i ∈ An+m−1[X] avec le vecteur ligne
(fn+m−1, fn+m−2, . . . , f1, f0) ∈ An+m de ses coefficients, alors les m premières lignes de
Syl(P,Q) sont respectivement les vecteurs lignes associés à Xm−1P,Xm−2P, . . . ,XP, P ,
tandis que les n dernières lignes sont respectivement les vecteurs lignes associés à
Xn−1Q,Xn−2Q, . . . ,XQ,Q.
• Si P,Q ∈ A[X1, . . . , Xd], on notera ResXi(P,Q) le résultant de P et
Q, vus comme polynômes en la variable Xi. Il s’agit d’un élément de
A[X1, . . . , Xi−1, Xi+1, . . . , Xd] : la variable Xi est ainsi “éliminée” ! L’objectif des pro-
chains paragraphes sera de préciser le sens que nous donnons à cette élimination.

Exemple 1.3. Soient P = X + 3 et Q = 2X2 −X + 1 deux polynômes de Z[X].

Res(P,Q) =

∣∣∣∣∣∣
1 3 0
0 1 3
2 −1 1

∣∣∣∣∣∣ = 22.
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Insistons une dernière fois sur le fait que dans toute la suite, P et Q désignent deux polynômes de
A[X] tels qu’introduits dans la définition 1.1. Nous donnons à présent quelques résultats élémentaires
concernant le calcul de résultants :

Proposition 1.4. On suppose que deg(Q) > 0. Soit α ∈ A.
a) Res(α,Q) = αm.
b) Res(Q,Q) = 0.
c) Res(αP,Q) = αm Res(P,Q).
d) Res(P,Q) = (−1)mn Res(Q,P ).
e) Pour tout k ≥ 0, Res(XkP,Q) = bk0 Res(P,Q).

Les différentes assertions se vérifient aisément en utilisant les propriétés élémentaires du détermi-
nant.

1.2 Résultant et pgcd de deux polynômes

Nous allons expliciter le lien entre le résultant et le pgcd de deux polynômes. Commençons par
énoncer le théorème au coeur de la théorie de l’élimination :

Théorème 1.5. Il existe un couple (U, V ) ∈ Am−1[X]×An−1[X] tel que UP + V Q = Res(P,Q).

Remarque 1.6. Concrètement, le théorème précédent signifie que le résultant de P et Q appartient à
l’idéal de A[X] engendré par P et Q. En particulier, si P et Q sont deux polynômes de A[X1, . . . , Xd],
alors ResXi(P,Q) appartient à l’idéal (P,Q)∩A[X1, . . . , Xi−1, Xi+1, . . . , Xd], qu’on appelle idéal d’éli-
mination. C’est en ce sens qu’on peut parler d’élimination de la variable Xi.

Démonstration. Nous allons effectuer des transvections dans la dernière colonne de la matrice de
Sylvester de P etQ, ce qui laisse invariant le déterminant, puis développer le déterminant par rapport à
la dernière colonne, afin d’obtenir le résultat attendu. Notons C1, . . . , Cn+m les colonnes de Syl(P,Q).
Pour tout j ∈ {1, . . . , n+m− 1}, effectuons la transvection

Cn+m ← Cn+m +Xn+m−jCj .

La dernière colonne de Syl(P,Q) devient alors

Xm−1P
Xm−2P

...
P

Xn−1Q
Xn−2Q

...
Q


.

En développant le déterminant par rapport à la dernière colonne, on obtient donc

Res(P,Q) = (um−1X
m−1 + um−2X

m−2 + . . .+ u0)︸ ︷︷ ︸
U

P

+ (vn−1X
n−1 + vn−2X

n−2 + . . .+ v0)︸ ︷︷ ︸
V

Q,

avec ui, vj ∈ A, ce qui conclut la démonstration. �

5



Le théorème suivant donne une condition nécessaire et suffisante pour que le résultant de deux
polynômes soit nul :

Théorème 1.7. On suppose que A est factoriel. Alors Res(P,Q) = 0 si et seulement si P et Q ont
un facteur commun non constant dans A[X].

Démonstration.
(⇒) Supposons que Res(P,Q) = 0. L’application linéaire ΦP,Q, introduite aux remarques 1.2, est

alors non injective (son déterminant est nul). Il existe donc un couple (U, V ) ∈ Am−1[X] ×
An−1[X] non nul tel que ΦP,Q(U, V ) = UP +V Q = 0 (le précédent théorème ne s’applique pas
directement, puisqu’il ne garantit pas que les deux polynômes U et V sont non tous deux nuls
dans ce cas de figure). Ainsi, UP = −V Q. Comme A est factoriel, alors A[X] l’est également ;
si aucun des facteurs irréductibles non constants de P ne divise Q, alors ils divisent tous V , ce
qui implique que deg(V ) ≥ deg(P ) (car V est non nul), et contredit le fait que V ∈ An−1[X].
On en déduit que P et Q ont un facteur commun non constant dans A[X].

(⇐) Réciproquement, supposons que P et Q ont un facteur commun non constant dans A[X]. Soit
D le pgcd de P et Q dans A[X], qui est alors non constant. P et Q se factorisent respectivement
en P = DP̃ etQ = DQ̃. En vertu du précédent théorème, il existe (U, V ) ∈ Am−1[X]×An−1[X]
tel que UP + V Q = Res(P,Q) = D(UP̃ + V Q̃). Il s’ensuit que deg(Res(P,Q)) = deg(D) +
deg(UP̃ + V Q̃) ; or, si UP̃ + V Q̃ 6= 0, alors deg(Res(P,Q)) ≥ deg(D) ≥ 1, ce qui est exclu
puisque Res(P,Q) ∈ A. Par conséquent, UP̃ + V Q̃ = 0, et Res(P,Q) = 0. �

Le corollaire essentiel qui servira de fil directeur à la méthode d’élimination décrite ci-après est le
suivant :

Corollaire 1.8. Res(P,Q) = 0 si et seulement si P et Q ont une racine commune dans Frac(A).

Démonstration.
(⇒) Si Res(P,Q) = 0, alors P et Q ont un facteur commun non constant D dans Frac(A)[X]. D

possède une racine dans Frac(A), qui est alors racine commune à P et Q.
(⇐) Si P et Q ont une racine commune α ∈ Frac(A), alors X − α est un facteur commun

non constant à P et Q dans Frac(A)[X]. Le résultant de P et Q, vus comme polynômes de
Frac(A)[X], est alors nul ; toutefois, Res(P,Q) se calcule de la même manière dans A[X] et
dans Frac(A)[X], donc Res(P,Q) = 0. �

Dans toute la suite, les anneaux seront toujours supposés factoriels.

1.3 Méthode d’élimination

Afin d’illustrer le principe de la méthode d’élimination, considérons dans un premier temps deux
polynômes P et Q de C[X,Y ], premiers entre eux dans C[X,Y ], dont on cherche les racines communes,
c’est-à-dire, d’un point de vue géométrique, les points d’intersection des courbes γP = {(x, y) ∈
C2 |P (x, y) = 0} et γQ = {(x, y) ∈ C2 |Q(x, y) = 0}. Soit (α, β) ∈ γP ∩γQ. Les polynômes P (α, Y ) et
Q(α, Y ) de C[Y ] admettent β comme racine commune, ce qui se traduit par Res(P (α, Y ), Q(α, Y )) =
0, en vertu du corollaire 1.8. Considérons à présent le polynôme R(X) = ResY (P (X,Y ), Q(X,Y )) ∈
C[X]. Nous venons exactement d’observer que α est racine de R(X).

À la lumière de cette analyse, nous pouvons désormais mettre en oeuvre la méthode d’élimina-
tion, afin de rechercher les points d’intersection des courbes γP et γQ. La méthode se décompose
essentiellement en trois étapes :

1. Calculer R(X) = ResY (P (X,Y ), Q(X,Y )) ∈ C[X]. Nous détaillerons dans la prochaine partie
les méthodes effectives de calcul de résultants. Le fait que P et Q soient premiers entre eux
dans C[X,Y ] permet d’écarter le cas où R(X) = 0.
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2. Déterminer les racines de R(X) dans C.
3. Pour chaque racine α ∈ C de R(X), déterminer les racines de P (α, Y ) et Q(α, Y ) dans C.

Chaque racine commune β ∈ C à ces deux polynômes fournit alors un point d’intersection
(α, β) des courbes γP et γQ.

Cette méthode garantit de trouver tous les points d’intersection de γP et γQ. La principale difficulté
repose bien évidemment sur la recherche des racines complexes des polynômes qui entrent en jeu.
L’étape 3 peut être légèrement améliorée en calculant plutôt le pgcd de P (α, Y ) et Q(α, Y ) dans
C[Y ] par l’algorithme d’Euclide, puis en déterminant les racines de ce pgcd.

Les étapes décrites ci-dessus se transposent immédiatement dans le cas de deux polynômes à
coefficients dans un quelconque anneau A unitaire, commutatif, intègre, et factoriel, auquel cas les
points d’intersection obtenus sont uniquement les points d’intersection dans A, mais il est bien entendu
possible d’appliquer la méthode dans Frac(A). Par exemple, dans le cas particulier où A = Z, on sait
déterminer aisément les racines entières d’un polynôme à coefficients entiers : il suffit de tester les
diviseurs de son coefficient constant, ce qui peut se révéler intéressant pour déterminer les racines
communes entières de deux polynômes à coefficients entiers.

Exemple 1.9. Soient P,Q ∈ Q[X], définis par{
P = X2 + 2X −XY + 2Y − 6,
Q = 3X2 − 5X + 5 +XY − 2Y.

Le calcul du résultant de P et Q par rapport à l’indéterminée X donne R(Y ) = ResX(P,Q) =
(36Y − 103)(Y − 3). Les racines de R(Y ) sont donc 3 et 103

36 .
• Pour β = 3, P (X, 3) = X2 −X = X(X − 1), et Q(X, 3) = 3X2 − 2X − 1, dont la seule racine

commune est α = 1.
• De même, pour β = 103

36 , la seule racine commune obtenue est α = −1
4 .

Par conséquent, les courbes γP et γQ possèdent deux points d’intersection : (1, 3) et
(
−1

4 ,
103
36

)
.

Remarque 1.10. Il est également possible de procéder de la manière suivante :

1. Calculer d’une part R(X) = ResY (P,Q), d’autre part S(Y ) = ResX(P,Q).

2. Déterminer les racines de R(X) et S(Y ).

3. Pour chaque racine α de R(X) et chaque racine β de S(Y ), tester si P (α, β) = Q(α, β) = 0.

Il est aisé de s’assurer comme précédemment que cette méthode fournit toutes les racines communes
de P et Q.

1.4 Théorème de la borne de Bézout

Nous nous intéressons désormais au nombre de racines communes que possèdent deux polynômes
P et Q de A[X,Y ]. Dans le cas général, il n’est pas possible d’estimer de manière exacte le nombre de
racines communes. Toutefois, il est possible d’en donner une borne : c’est l’objet du théorème de la
borne de Bézout. On rappelle que le degré total d’un monôme de la forme XaY b ∈ A[X,Y ] est a+ b,
et que le degré total d’un polynôme P ∈ A[X,Y ] est le maximum des degrés totaux de ses monômes.

Théorème 1.11 (Borne de Bézout). Soient k un corps infini, et P,Q ∈ k[X,Y ] deux polynômes de
degrés totaux respectifs d et d′. On suppose que P et Q sont premiers entre eux. Alors les courbes γP =
{(x, y) ∈ k2 |P (x, y) = 0} et γQ = {(x, y) ∈ k2 |Q(x, y) = 0} ont au plus dd′ points d’intersection.

Remarque 1.12. Il n’est pas nécessaire de supposer que k est infini, ni même que k est un corps. Le
théorème reste vrai dans un anneau A quelconque, puisqu’il suffit alors d’appliquer l’énoncé précédent
dans Frac(A), qui est bien un corps infini.
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La démonstration du théorème de la borne de Bézout fait l’objet de l’annexe A.
Donnons une application immédiate de ce théorème :

Application 1.13. Deux coniques distinctes du plan ont au plus 4 points d’intersection. En effet,
une conique du plan peut être interprétée comme l’ensemble des points d’annulation d’un polynôme
P ∈ R[X,Y ] de degré total 2, et le théorème fournit directement la borne. En conséquence, par 5
points distincts du plan ne peut passer au plus qu’une seule conique.

Remarque 1.14. La borne du théorème de la borne de Bézout est optimale. Par exemple, avec les
deux polynômes P,Q ∈ R[X,Y ] de l’introduction, de degrés totaux respectifs 3 et 2, les courbes
s’intersectent bien en exactement 6 = 3× 2 points.

1.5 Théorème d’extension

Pour simplifier, considérons un corps k algébriquement clos (il est toujours possible de se ramener
à ce cas en considérant Frac(A)), et P,Q ∈ k[X,Y ]. Rappelons que si (α, β) ∈ k2 est une racine
commune de P et Q, alors α est racine de R(X) = ResY (P,Q) ∈ k[X]. Si α ∈ k est une racine de
R(X), il est alors naturel de se demander s’il est possible de “remonter” α en une racine commune
de P et Q, c’est-à-dire, en termes plus mathématiques, s’il existe β ∈ k tel que (α, β) soit une racine
commune de P et Q. Le théorème d’extension donne une condition suffisante d’existence d’un tel β.

Avant d’y parvenir, nous allons commencer par démontrer le théorème suivant :

Théorème 1.15. Soit φ : A −→ B un morphisme d’anneaux intègres, étendu à φ : A[X] −→ B[X]
(φ(X) = X). On suppose que deg φ(P ) = degP , et que deg φ(Q) = degQ− s, avec s ≥ 0. Alors

φ(Res(P,Q)) = φ(an)s Res(φ(P ), φ(Q)).

Démonstration. Puisque le déterminant d’une matrice M est une application polynomiale en les
coefficients de M , on a

φ(Res(P,Q)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ(an) φ(an−1) . . . φ(a1) φ(a0) 0 . . . 0
0 φ(an) . . . φ(a2) φ(a1) φ(a0) . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . φ(an) φ(an−1) φ(an−2) . . . φ(a0)

φ(bm) φ(bm−1) . . . φ(b1) φ(b0) 0 . . . 0
0 φ(bm) . . . φ(b2) φ(b1) φ(b0) . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . φ(bm) φ(bm−1) φ(bm−2) . . . φ(b0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Or, par hypothèse, φ(an) 6= 0, φ(bm) = φ(bm−1) = · · · = φ(bm−s+1) = 0, et φ(bm−s) 6= 0. Le résultat
s’en déduit immédiatement, en développant le déterminant. �

Muni de cette relation, nous pouvons désormais démontrer le théorème d’extension :

Théorème 1.16 (d’extension). Soient P,Q ∈ k[X1, . . . , Xd], que l’on écrit

P =

n∑
i=0

aiX
i
d, Q =

m∑
i=0

biX
i
d,

avec ai, bj ∈ k[X1, . . . , Xd−1].

a) Si (α1, . . . , αd) ∈ kd est une racine commune de P et Q, alors (α1, . . . , αd−1) est racine de
ResXd(P,Q).
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b) Réciproquement, si ResXd(P,Q)(α1, . . . , αd−1) = 0, et si (α1, . . . , αd−1) n’est pas racine commune
de an et bm, alors il existe αd ∈ k tel que (α1, . . . , αd) soit une racine commune de P et Q.

Démonstration. Le a) résulte de l’analyse menée au début du paragraphe 1.3. Pour le b), on applique
le théorème précédent, avec le morphisme φ : k[X1, . . . , Xd−1] −→ k défini par φ(t) = t, pour
tout t ∈ k, et φ(Xi) = αi, pour tout i ∈ {1, . . . , d − 1}, étendu à φ : k[X1, . . . , Xd] −→ k[Xd]
(φ(Xd) = Xd). Par hypothèse, (α1, . . . , αd−1) n’est pas racine commune de an et bm ; sans perte
de généralité, supposons que (α1, . . . , αd−1) n’est pas racine de an, de sorte que deg φ(P ) = degP
(φ(an) = an(α1, . . . , αd−1) 6= 0), et deg φ(Q) = degQ− s, avec s ≥ 0. D’où finalement :

φ(ResXd(P,Q)) = φ(an)s Res(φ(P ), φ(Q)).

Or φ(ResXd(P,Q)) = ResXd(P,Q)(α1, . . . , αd−1) = 0, donc Res(φ(P ), φ(Q)) = 0, ce qui signifie que
φ(P ) = P (α1, . . . , αd−1, Xd) et φ(Q) = Q(α1, . . . , αd−1, Xd) possèdent une racine commune αd ∈ k :
c’est exactement le résultat recherché. �

Exemple 1.17. Reprenons l’exemple 1.9 avec les polynômes P,Q ∈ Q[X] définis par{
P = X2 + 2X −XY + 2Y − 6,
Q = 3X2 − 5X + 5 +XY − 2Y.

Nous avons établi que les racines de R(Y ) = ResX(P,Q) sont 3 et 103
36 . Le terme de tête en X de P est

1, et celui de Q est 3, qui n’ont bien entendu aucune racine commune. Ainsi, le théorème d’extension
garantit l’existence de α1, α2 ∈ Q tels que (α1, 3) et

(
α2,

103
36

)
soient racines communes de P et Q. En

l’occurrence, α1 = 1 et α2 = −1
4 .

2 Calcul effectif de résultants et conséquences

Dans cette partie, nous portons un intérêt particulier à la méthode de calcul de résultants liée à
l’algorithme d’Euclide, que nous allons dans un premier développer, puis exploiter afin d’expliciter
davantage le lien entre le résultant de deux polynômes et leurs racines.

En préliminaire, rappelons que le résultant n’est autre qu’un déterminant, et qu’en conséquence,
les méthodes de calcul de déterminants peuvent être mises à profit. Ainsi, par exemple, si P,Q ∈ A[X]
sont deux polynômes de degrés respectifs n et m, l’algorithme du pivot de Gauss permet de calculer
Res(P,Q) avec une complexité en O((n+m)3) opérations sur A. Néanmoins, l’algorithme d’Euclide
est en pratique beaucoup plus efficace, et doit donc être privilégié pour les calculs.

2.1 Algorithme d’Euclide

La méthode repose sur la proposition suivante :

Proposition 2.1. Soient P,Q ∈ A[X]. On suppose que le coefficient dominant de Q est inversible.
Soit R ∈ A[X] le reste de la division euclidienne de P par Q. Si R = 0, alors Res(P,Q) = 0 ; sinon,
en notant r = degR, on a

Res(P,Q) = (−1)nmbn−rm Res(Q,R).

L’égalité s’obtient en procédant à des opérations élémentaires sur la matrice de Sylvester de P
et Q. L’algorithme qui découle de cette proposition est donc identique à l’algorithme d’Euclide, au
coefficient multiplicatif près qui apparaît lors de chaque division. L’algorithme s’interrompt dès lors
que deg(R) = 0 ou R = 0, la proposition 1.4 permettant alors d’expliciter immédiatement le résultant
de Q et R.
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Toutefois, cet algorithme est confronté à la difficulté suivante (que l’on rencontre également pour
le calcul du pgcd de deux polynômes) : l’anneau A[X] n’est en général pas euclidien, et il est donc
nécessaire que le coefficient dominant de Q soit inversible afin de procéder à la division euclidienne
de P par Q dans A[X], ce qui n’est bien entendu pas toujours garanti au cours de l’algorithme. Deux
solutions permettent de contourner cet obstacle :

• la première consiste à effectuer les calculs dans Frac(A)[X], qui est bien un anneau euclidien
puisque Frac(A) est un corps ;
• la seconde s’appuie sur le principe de la pseudo-division dans A[X], que l’on ne développe pas

ici.

Exemple 2.2. Reprenons de nouveau l’exemple 1.9, avec les polynômes P,Q ∈ Q[X] définis par{
P = X2 + 2X −XY + 2Y − 6,
Q = 3X2 − 5X + 5 +XY − 2Y,

et appliquons la première solution afin de calculer ResX(P,Q) :
• le reste de la division euclidienne de P par Q est R1 =

(
11
3 −

4
3Y
)
X − 23

3 + 8
3Y ;

• le reste de la division euclidienne de Q par R1 est R2 = 3
309− 211Y + 36Y 2

(4Y − 11)2
;

• le degré de R2 en X est égal à 0, donc l’algorithme s’interrompt.
On en déduit que

ResX(P,Q) = 3 ResX(Q,R1) =
1

3
(4Y − 11)2 ResX(R1, R2) = 309− 211Y + Y 2.

2.2 Lien résultant-racines

Le théorème suivant fournit une nouvelle expression du résultant de deux polynômes en fonction
de leurs racines :

Théorème 2.3. Soient k un corps, et P,Q ∈ k[X]. Écrivons{
P = an(X − α1) . . . (X − αn),
Q = bm(X − β1) . . . (X − βm),

avec αi, βj ∈ k. Alors

Res(P,Q) = bnma
m
n

n∏
i=1

m∏
j=1

(αi − βj)

= amn

n∏
i=1

Q(αi) = (−1)nmbnm

m∏
j=1

P (βj).

Démonstration. Définissons l’application

θ :


k[X]× k[X] −→ k

(P,Q) 7−→ amn

n∏
i=1

Q(αi)

avec les notations du théorème. On vérifie que
• θ(P,Q) = (−1)nmθ(Q,P ) ;
• θ(α,Q) = αm si α ∈ k ;
• si R est le reste de la division euclidienne de P par Q dans k[X], et si R 6= 0, alors, en notant
r = deg(R), on a θ(P,Q) = (−1)nmbn−rm θ(Q,R) ; si R = 0, alors θ(P,Q) = 0.
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Ainsi, θ(P,Q) et Res(P,Q) se calculent de la même manière via l’algorithme d’Euclide, de sorte que
θ(P,Q) = Res(P,Q). Les autres égalités se vérifient par un calcul direct. �

Cette nouvelle expression du résultant a plusieurs conséquences, parmi lesquelles le théorème de
Kronecker, qui constitue le développement abordé dans l’annexe B :

Théorème 2.4 (Kronecker). Soit P ∈ Z[X] un polynôme unitaire, de degré n ≥ 1. On suppose que
les racines de P dans C sont de module inférieur ou égal à 1, et que 0 n’est pas racine. Alors les
racines de P sont des racines de l’unité.

Enfin, cette expression du résultant permet de relier le discriminant d’un polynôme P avec le
résultant de P et P ′, comme nous allons l’étudier au cours du paragraphe suivant.

2.3 Discriminant d’un polynôme

Rappelons tout d’abord ce qu’est le discriminant d’un polynôme :

Définition 2.5. Soient k un corps, P ∈ k[X], et soient α1, . . . , αn ∈ k ses racines. Le discriminant
de P , noté ∆(P ), est défini par

∆(P ) = a2n−2n

∏
1≤i<j≤n

(αi − αj)2.

Remarques 2.6.
• À partir de la définition, il est immédiat que ∆(P ) = 0 si et seulement si P possède une racine

double.
• A priori, ∆(P ) est un élément de k. Il s’agit en fait d’un élément de k ; la prochaine proposition

va permettre de le vérifier directement.

Proposition 2.7. On a

∆(P ) =
(−1)

n(n−1)
2

an
Res(P, P ′).

Remarque 2.8. Comme annoncé, ∆(P ) ∈ k, puisque Res(P, P ′) ∈ k.

Démonstration. En dérivant P = an

n∏
i=1

(X − αi), on obtient

P ′ = an

n∑
i=1

∏
j 6=i

(X − αj),

d’où, par le théorème 2.3,

Res(P, P ′) = an−1n

n∏
i=1

P ′(αi).

Il suffit alors de remarquer que P ′(αi) = an
∏
j 6=i

(αi − αj) afin de conclure. �

Mentionnons une application de ce dernier résultat afin de conclure cette partie :
Application 2.9. L’ensemble Ωp des matrices deMp(C) à p valeurs propres distinctes forme un ouvert
de Mp(C) (pour la topologie usuelle d’espace vectoriel normé sur Mp(C)). En effet, une matrice
M ∈ Mp(C) possède p valeurs propres distinctes si et seulement si ∆(χM ) 6= 0, où χM désigne
le polynôme caractéristique de M , donc si et seulement si Res(χM , χ

′
M ) 6= 0. Comme l’application

µ : M ∈ Mp(C) 7−→ Res(χM , χ
′
M ) est continue, car polynomiale en les coefficients de M , alors

Ωp = µ−1(C∗) est ouvert dansMp(C).

11



3 Quelques applications des résultants

Au cours de cette dernière partie, nous nous intéressons à divers problèmes de nature tantôt
purement algébrique, tantôt géométrique, observés du point de vue des résultants et de l’élimination.

3.1 Calcul de polynômes annulateurs

Soient k un corps, et α, β ∈ k, de polynômes minimaux distincts sur k. On suppose connu un
polynôme annulateur P ∈ k[X] de α sur k, et un polynôme annulateur Q ∈ k[X] de β sur k. L’objectif
est de déterminer un polynôme annulateur de la somme α+β, ainsi que du produit αβ, sur k. Quitte
à diviser P et Q par leur pgcd, on peut supposer que P et Q sont premiers entre eux. La proposition
suivante répond à la problématique grâce aux résultants :

Proposition 3.1. a) Le polynôme R(X) = ResY (P (Y ), Q(X − Y )) est un polynôme annulateur de
α+ β.

b) Le polynôme S(X) = ResY (P (Y ), XmQ
(
Y
X

)
) est un polynôme annulateur de αβ.

Démonstration. Démontrons l’assertion a), l’assertion b) se traitant de manière similaire. On a R(α+
β) = ResY (P (Y ), Q(α+β−Y )). Or les polynômes P (Y ) et Q(α+β−Y ) admettent α comme racine
commune, si bien que R(α+ β) = 0. �

Remarque 3.2. Ce résultat n’a d’intérêt que si les résultants calculés sont non nuls. Sous l’hypothèse
que P et Q sont premiers entre eux, c’est effectivement le cas : par exemple, si on avait R(X) = 0,
alors P (Y ) et Q(X−Y ) auraient un facteur commun non constant dans k[X][Y ] = k[X,Y ], qui serait
nécessairement dans k[Y ] puisque le degré de P (Y ) en X est nul, et serait alors un facteur commun
non constant à P (Y ) et Q(Y ) dans k[Y ] (en substituant 2Y à X).

Le corollaire immédiat de cette proposition et de la remarque précédente est le suivant :

Corollaire 3.3. L’ensemble des éléments algébriques sur k est un anneau.

Exemple 3.4. Déterminons un polynôme annulateur de
√

2 + 3
√

3 sur Q. Le polynôme minimal de
√

2
sur Q est P = X2−2, tandis que celui de 3

√
3 sur Q est Q = X3−3 (tous deux sont bien irréductibles

par le critère d’Eisenstein). Un polynôme annulateur de
√

2 + 3
√

3 sur Q est alors donné par

R(X) = ResY (Y 2 − 2, (X − Y )3 − 3) = X6 − 6X4 − 6X3 + 12X2 − 36X + 1.

On peut vérifier qu’il s’agit même du polynôme minimal de
√

2 + 3
√

3 sur Q, par exemple en calculant
explicitement le degré de l’extension Q(

√
2 + 3
√

3)/Q.

Remarque 3.5. Dans le cas général, le polynôme annulateur obtenu n’est pas le polynôme minimal,
même si les polynômes annulateurs P et Q choisis sont respectivement les polynômes minimaux de
α et β sur k. Toutefois, si P et Q sont les polynômes minimaux respectifs de α et β sur k, de degrés
respectifs d et d′, et si l’extension k(α+β)/k est de degré dd′, alors le polynôme R(X) est le polynôme
minimal de α + β : en effet, on peut montrer que le degré de R(X) est inférieur à dd′ (voir l’annexe
A) ; comme le polynôme minimal de α + β divise R(X) et est de degré dd′, alors il s’agit de R(X)
(tous deux sont unitaires). Le raisonnement reste valable pour S(X) si l’on suppose cette fois-ci que
l’extension k(αβ)/k est de degré dd′.

3.2 Formule de Héron

Le problème posé est le suivant : étant donné un triangle ABC (non plat) du plan, on désire
exprimer son aire A en fonction des longueurs a = BC, b = AC et c = AB de ses côtés. La formule
de Héron répond à cette problématique :
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Proposition 3.6 (Formule de Héron). En notant p = 1
2(a+ b+ c) le demi-périmètre de ABC, on a

A =
√
p(p− a)(p− b)(p− c).

Ce problème élémentaire de géométrie peut être traité par une méthode d’élimination. Pour ce
faire, nous devons commencer par décrire les contraintes polynomiales associées au problème étudié.
Tout d’abord, fixons un repère affine orthonormé du plan, de sorte que le triangle ABC soit dans la
configuration suivante :

c a

b

y

•

•

•
A(0, 0)

B(x, y)

C(b, 0)

Figure 2 – Formule de Héron

On introduit ainsi deux nouvelles variables, x et y, qui désignent les coordonnées de B dans ce
repère, et on trace la hauteur issue de B, de longueur y. L’aire s’obtient alors par la formule

A− 1

2
by = 0. (1)

Les deux autres contraintes polynomiales sur x et y correspondent au fait que AB est de longueur c,
et que BC est de longueur a, soit respectivement

x2 + y2 − c2 = 0 (2)

et
(b− x)2 + y2 − a2 = 0. (3)

Il faut à présent éliminer les variables x et y des équations polynomiales (1), (2) et (3), afin d’en
déduire A en fonction de a, b et c. En éliminant la variable x des équations (2) et (3), on obtient

a4 − 2a2b2 − 2a2c2 + b4 − 2b2c2 + 4b2y2 + c4 = 0. (4)

Puis, en éliminant la variable y des équations (1) et (4), on obtient

1

4
b4(16A2 − (a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)) = 0, (5)

ce qui fournit deux solutions pour A, la seule positive correspondant bien à la formule de Héron (b 6= 0
pour un triangle non plat).

L’exemple de la formule de Héron illustre bien comment l’élimination permet d’aborder un pro-
blème simple de géométrie, en introduisant de nouvelles variables et en décrivant les contraintes
polynomiales associées.
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3.3 Équation implicite et paramétrisation rationnelle d’une courbe

On considère dans le plan R2 une courbe γ, tantôt définie implicitement par une équation de la
forme P (x, y) = 0, avec P ∈ R[X,Y ], tantôt décrite par une paramétrisation rationnelle, c’est-à-dire
une équation paramétrique de la forme {

x(t) = F (t),
y(t) = G(t),

avec F,G ∈ R(T ) deux fractions rationnelles. Au cours de ce paragraphe, nous nous attachons à
expliciter comment transformer une équation implicite en une équation paramétrique rationnelle, et
vice-versa. Selon la nature du problème posé, l’une ou l’autre de ces descriptions peut se révéler plus
maniable que l’autre. Par exemple, le tracé d’une courbe est beaucoup plus aisé et précis lorsqu’on
en connaît une paramétrisation rationnelle, ce qui n’est pas le cas avec une équation implicite.

Transformation d’une équation implicite en paramétrisation rationnelle
Toutes les courbes définies implicitement ne sont hélas pas descriptibles par une équation para-

métrique rationnelle. Toutefois, dans le cas par exemple des coniques, il est possible de déterminer
une paramétrisation rationnelle grâce à l’élimination. La méthode s’appuie sur le constat suivant :
étant donné un point fixé A d’une conique γ, tout point de γ différent de A peut-être décrit par deux
contraintes polynomiales en tant qu’unique point d’intersection différent de A d’une certaine droite
passant par A avec γ.

En guise d’illustration, donnons une paramétrisation rationnelle du cercle unité C. Fixons donc
un point de C, par exemple le point A(−1, 0). Comme annoncé, on remarque que toute droite du plan
passant par A, excepté la droite verticale d’équation x = −1, intersecte C en un unique pointM autre
que A, et que tout point de C autre que A peut être obtenu ainsi, de manière unique.

•A
•
M(x, y)

Dt

Figure 3 – Paramétrisation rationnelle du cercle unité

Sur la figure ci-dessus, on a noté Dt la droite passant par A de coefficient directeur t ∈ R, ainsi
que (x, y) les coordonnées du point d’intersection M autre que A de Dt avec C. Les deux contraintes
polynomiales proviennent de l’appartenance de M à C d’une part, et à la droite Dt d’autre part, soit
respectivement

x2 + y2 − 1 = 0 (6)

et
y − t(x+ 1) = 0. (7)
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On procède alors en éliminant d’une part la variable x des équations (6) et (7), et d’autre part en
éliminant la variable y, ce qui donne respectivement

y2(1 + t2)− 2yt = 0 (8)

et
x2(t2 + 1) + 2t2x+ t2 − 1 = 0. (9)

Il ne reste plus qu’à exprimer x et y en fonction de t. L’équation (8) fournit deux solutions y1 = 0

et y2 =
2t

1 + t2
, tandis que l’équation (9) fournit deux solutions x1 = −1 et x2 =

1− t2

1 + t2
. Finalement,

une paramétrisation rationnelle du cercle unité est donnée par
x(t) =

1− t2

1 + t2
,

y(t) =
2t

1 + t2
.

avec t ∈ R. Cette paramétrisation décrit tous les points du cercle unité, à l’exception du point A, qui
est cependant obtenu “à la limite”, en faisant tendre t vers l’infini.

Cette paramétrisation rationnelle du cercle unité est très intéressante, puisqu’elle permet par
exemple de déterminer les triplets pythagoriciens, c’est-à-dire les triplets (x, y, z) ∈ Z3 tels que x2 +
y2 = z2.

Transformation d’une paramétrisation rationnelle en équation implicite
La transformation d’une paramétrisation rationnelle en équation implicite est, quant à elle, tou-

jours possible. En effet, considérons une courbe γ décrite par une équation paramétrique rationnelle
de la forme 

x(t) =
P1(t)

Q1(t)
,

y(t) =
P2(t)

Q2(t)
,

avec P1, P2, Q1, Q2 ∈ R[X], et supposons pour simplifier que Q1 et Q2 ne s’annulent pas sur R. Le
système précédent est alors équivalent à{

Q1(t)x(t)− P1(t) = 0,

Q2(t)y(t)− P2(t) = 0.

En d’autres termes, pour tout t ∈ R, le triplet (x(t), y(t), t) est racine commune aux polynômes
Q1(T )X−P1(T ) et Q2(T )Y −P2(T ) de R[X,Y, T ]. Il s’ensuit que (x(t), y(t)) est racine du polynôme
R(X,Y ) = ResT (Q1(T )X − P1(T ), Q2(T )Y − P2(T )), ce qui fournit une équation implicite de γ.
Néanmoins, il se peut que l’équation implicite obtenue ne décrive pas γ, mais une courbe γ′ qui
contienne γ, dans la mesure où il n’est pas toujours possible d’étendre une racine de R(X,Y ) en une
racine commune à Q1(T )X − P1(T ) et Q2(T )Y − P2(T ).

Exemple 3.7. Effectuons la transformation inverse à partir de la paramétrisation rationnelle du cercle
unité privé du point A(−1, 0) obtenue précédemment. Le calcul de R(X,Y ) donne

R(X,Y ) = ResT ((1 + T 2)X − (1− T 2), (1 + T 2)Y − 2T ) = 4X2 + 4Y 2 − 4,

et l’on retrouve ainsi l’équation implicite x2 + y2 − 1 = 0 du cercle unité. La courbe obtenue par ce
procédé contient un point de plus que la courbe initiale, à savoir le point A.
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Exemple 3.8. Soit γ la courbe paramétrée parx(t) = t2 + t+ 1,

y(t) =
t2 − 1

t2 + 1
.

Dans cet exemple, le calcule de R(X,Y ) donne

R(X,Y ) = ResT (X − (T 2 + T + 1), (T 2 + 1)Y − (T 2 − 1)

= X2Y 2 − 2X2Y +X2 + 4XY − 4X + Y 2 + 3.

Figure 4 – Comparaison du tracé avec l’équation paramétrique (en bleu) et l’équation implicite (en
rouge)

Les deux tracés sont rigoureusement identiques, comme le suggère la figure ci-dessus. Vérifions-le :
le terme de tête en T du polynôme X − (T 2 +T + 1) est −1, qui ne s’annule jamais ; en conséquence,
grâce au théorème d’extension, toute racine (x, y) de R(X,Y ) peut être étendue en une racine com-
mune (x, y, t) à X − (T 2 + T + 1) et (T 2 + 1)Y − (T 2 − 1), si bien que les équations paramétriques
et implicites décrivent la même courbe.

3.4 Intégration de fractions rationnelles

Soit PQ ∈ Q(X) une fraction rationnelle, que l’on suppose propre, c’est-à-dire telle que P et Q soient
premiers entre eux, Q ne soit pas réduit à 1 et soit unitaire, et degP < degQ. Il est toujours possible
de se ramener à cette situation, quitte à effectuer la division euclidienne de P par Q afin d’extraire
la partie entière de P

Q . On souhaite expliciter une primitive formelle de P
Q : concrètement, il s’agit

de trouver, dans une extension de Q(X) dans laquelle se prolonge la dérivation usuelle dans Q(X),
un élément F tel que F ′ = P

Q . On ne s’attarde pas trop sur la construction d’une telle extension ;
on sait néanmoins que, par le théorème de décomposition en éléments simples, si α1, . . . , αd sont les
racines de Q dans le corps de décomposition K de Q sur Q (ou plus simplement si K = C), alors P

Q
se décompose sous la forme

P

Q
=

d∑
i=1

ri∑
j=2

mi,j

(X − αi)j
+

d∑
i=1

ci
X − αi

,

avec mi,j , ci ∈ K, de sorte qu’une primitive de P
Q s’écrive sous la forme∫

P

Q
=

d∑
i=1

ri∑
j=2

m′i,j
(X − αi)j−1

+

d∑
i=1

ci log(X − αi),
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avec m′i,j ∈ K, où chaque log(X −αi) désigne un élément d’une extension de K(X) de dérivée 1
X−αi .

La difficulté de cette méthode repose sur la décomposition en éléments simples de la fraction P
Q ,

qui nécessite notamment de connaître les racines de Q dans C. Toutefois, comme le montre l’exemple
suivant, il n’est pas nécessaire de décomposer P

Q en facteurs du premier degré :

Exemple 3.9. On considère la fraction rationnelle X
X2−3 ∈ Q(X) ; elle se décompose en éléments

simples dans C de la manière suivante :

X

X2 − 3
=

1

2(X −
√

3)
+

1

2(X +
√

3)
,

d’où ∫
X

X2 − 3
=

1

2
log(X −

√
3) +

1

2
log(X +

√
3) =

1

2
log(X2 − 3).

Ainsi, l’introduction de
√

3 s’est résorbée au moment d’écrire le résultat final, si bien qu’il est naturel
de se demander si l’on pouvait obtenir ce résultat sans décomposer la fraction en éléments simples.

Le théorème de Rothstein-Trager permet de pallier cette difficulté, en évitant de décomposer P
Q

en éléments simples :

Théorème 3.10 (Rothstein-Trager). Soient P,Q ∈ Q[X] deux polynômes premiers entre eux, avec
degP < degQ et Q sans facteur carré et unitaire. Soit K une extension de Q dans laquelle on puisse
écrire ∫

P

Q
=

r∑
i=1

ci logPi,

où les ci sont des constantes distinctes non nulles de K, et où les Pi sont des polynômes de K[X]
unitaires, non constants, sans facteur carré et deux à deux premiers entre eux. Alors les ci sont les
racines distinctes du polynôme

R(Y ) = ResX(P − Y Q′, Q) ∈ K[Y ],

et, pour chaque i, le polynôme Pi vaut

Pi = pgcd(P − ciQ′, Q).

La démonstration de ce théorème est présentée en développement dans l’annexe C. Ainsi, la
connaissance des racines de R(Y ) suffit à déterminer complètement une primitive de P

Q .

Exemple 3.11. En guise d’illustration, appliquons le théorème de Rothstein-Trager à l’exemple 3.9.
Le résultant R(Y ) du théorème est égal à −3(1 − 2Y )2, d’unique racine c1 = 1

2 . Le polynôme P1

correspondant est égal à X2 − 3. On retrouve bien∫
X

X2 − 3
=

1

2
log(X2 − 3),

sans avoir eu besoin de décomposer la fraction rationnelle en éléments simples.
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Annexe A

Théorème de la borne de Bézout

Théorème (Borne de Bézout). Soient k un corps infini, et P,Q ∈ k[X,Y ] deux polynômes de degrés
totaux respectifs d et d′. On suppose que P et Q sont premiers entre eux. Alors les courbes γP =
{(x, y) ∈ k2 |P (x, y) = 0} et γQ = {(x, y) ∈ k2 |Q(x, y) = 0} ont au plus dd′ points d’intersection.

Démonstration. Définissons R(X) = ResY (P,Q) ∈ k[X], ainsi que S(Y ) = ResX(P,Q) ∈ k[Y ].
• Nous allons tout d’abord établir que γP et γQ ont un nombre fini de points d’intersection. Le

résultat découle directement de la définition des polynômes R(X) et S(Y ) : en effet, si (α, β)
est un point d’intersection de γP et γQ, alors R(α) = 0 et S(β) = 0 ; or, puisque P et Q sont
premiers entre eux, R(X) et S(Y ) ne sont pas nuls, de sorte que chacun possède un nombre
fini de racines, ce qui impose que les courbes s’intersectent en au plus deg(R) deg(S) points.
• Nous allons montrer que le degré de R(X) est inférieur ou égal à dd′ (et, par symétrie du

raisonnement, que le degré de S(Y ) est également inférieur ou égal à dd′). Notons p le degré
en Y de P , et q le degré en Y de Q, de sorte que l’on puisse écrire

P (X,Y ) =

p∑
k=0

Pk(X)Y p−k, Q(X,Y ) =

q∑
k=0

Qk(X)Y q−k,

avec {
deg(Pk) ≤ d− p+ k, 0 ≤ k ≤ p,
deg(Qk) ≤ d′ − q + k, 0 ≤ k ≤ q.

Notons M = (Mi,j)1≤i,j≤p+q la matrice de Sylvester de P et Q comme polynômes en l’indé-
terminée Y . On a alors

M =



P0 P1 . . . Pp−1 Pp 0 . . . 0
0 P0 . . . Pp−2 Pp−1 Pp . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . P0 P1 P2 . . . Pp
Q0 Q1 . . . Qq−1 Qq 0 . . . 0
0 Q0 . . . Qq−2 Qq−1 Qq . . . 0
...

...
. . .

...
...

...
. . .

...
0 0 . . . Q0 Q1 Q2 . . . Qq


.

� Pour 1 ≤ i ≤ q,

Mi,j =

{
Pj−i si 0 ≤ j − i ≤ p,
0 sinon.

Donc pour tout j ∈ {1, . . . , p+ q}, deg(Mi,j) ≤ d− p+ j − i.
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� De même, pour q + 1 ≤ i ≤ p+ q,

Mi,j =

{
Qj−i+q si 0 ≤ j − i+ q ≤ q,
0 sinon.

Donc pour tout j ∈ {1, . . . , p+ q}, deg(Mi,j) ≤ d′ − q + j − i+ q = d′ + j − i.
On applique alors la formule du déterminant :

R =
∑

σ∈Sp+q

ε(σ)

q∏
i=1

Mi,σ(i)

p+q∏
i=q+1

Mi,σ(i)︸ ︷︷ ︸
Rσ

.

Il suffit alors de montrer que pour tout σ ∈ Sp+q, deg(Rσ) ≤ dd′. En effet :

deg(Rσ) ≤
q∑
i=1

(d− p+ σ(i)− i) +

p+q∑
i=q+1

(d′ + σ(i)− i)

= q(d− p) + pd′ +

p+q∑
i=1

(σ(i)− i)︸ ︷︷ ︸
=0

= qd+ pd′ − pq
= (p− d)(d′ − q)︸ ︷︷ ︸

≤0

+dd′

≤ dd′.

Par conséquent, deg(R) ≤ dd′, et de même, deg(S) ≤ dd′.
• À ce stade, on en déduit que les courbes γP et γQ ont au plus (dd′)2 points d’intersection.

Nous allons chercher à affiner cette borne. Notons (α1, β1), . . . , (αr, βr) les différents points
d’intersection de γP et γQ. Choisissons u ∈ k tel que

αi + uβi 6= αj + uβj , ∀i, j ∈ {1, . . . , r}, i 6= j.

Un tel u existe, puisque les droites d’équation y = αi +xβi, x ∈ k, ont deux à deux au plus un
point d’intersection, et que k est supposé infini. Effectuons alors le changement de variables{

X = X ′ − uY ′,
Y = Y ′,

et notons P̃ (X ′, Y ′) = P (X,Y ), Q̃(X ′, Y ′) = Q(X,Y ), ainsi que γ
P̃
et γ

Q̃
les courbes corres-

pondantes. On a alors,

(α, β) ∈ γP ∩ γQ ⇐⇒ P (α, β) = Q(α, β) = 0

⇐⇒ P̃ (α+ uβ, β) = Q̃(α+ uβ, β) = 0

⇐⇒ (α+ uβ, β) ∈ γ
P̃
∩ γ

Q̃
.

On en déduit que pour tout x ∈ k qui est l’abscisse d’un point d’intersection de γ
P̃

et γ
Q̃
, il

existe un unique y ∈ k tel que (x, y) ∈ γ
P̃
∩ γ

Q̃
, et de plus que card(γ

P̃
∩ γ

Q̃
) = card(γP ∩ γQ).

Donc, quitte à effectuer le changement de variables ci-dessus, on peut supposer sans perte de
généralité que les abscisses αi des points d’intersection de γP et γQ sont deux à deux distinctes.
Or, pour tout i ∈ {1, . . . , r}, R(αi) = 0, et R est non nul de degré inférieur ou égal à dd′. Par
conséquent, r ≤ dd′, ce qui achève la démonstration. �
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Annexe B

Théorème de Kronecker

Théorème (Kronecker). Soit P ∈ Z[X] un polynôme unitaire, de degré n ≥ 1. On suppose que les
racines de P dans C sont de module inférieur ou égal à 1, et que 0 n’est pas racine. Alors les racines
de P sont des racines de l’unité.

Démonstration. Notons Ωn l’ensemble des polynômes unitaires de Z[X], de degré n, et dont toutes
les racines dans C sont de module inférieur ou égal à 1, et distinctes de 0. Bien entendu, P ∈ Ωn.
Démontrons que Ωn est un ensemble fini : soit F ∈ Ωn,

F = Xn +

n∑
i=1

fiX
n−i,

et notons β1, . . . , βn les racines de F dans C (non nécessairement distinctes). Par les relations
coefficients-racines, pour tout p ∈ {1, . . . , n},

|fp| =

∣∣∣∣∣∣
∑

1≤i1<···<ip≤n

p∏
j=1

βij

∣∣∣∣∣∣ ≤
∑

1≤i1<···<ip≤n

p∏
j=1

|βij |︸ ︷︷ ︸
≤1

≤
(
n

p

)
.

Comme les coefficients de F sont entiers, alors chacun d’entre eux ne peut prendre qu’un nombre fini
de valeurs (indépendamment de F ), ce qui impose à l’ensemble Ωn d’être fini, le degré des éléments
de Ωn étant fixé égal à n.

À présent, notons α1, . . . , αn les racines de P dans C, et définissons, pour tout k ≥ 1, Pk =∏n
i=1(X − αki ) ∈ C[X], ainsi que Qk = Xk − Y ∈ Z[X,Y ]. Commençons par montrer que Pk ∈ Z[X],

puis que Pk ∈ Ωn. Pour ce faire, posons Rk(Y ) = ResX(P (X), Qk(X,Y )) ; Rk est un polynôme de
Z[Y ], puisque P (Y ) et Qk(X,Y ) sont tous les deux des polynômes de Z[X,Y ]. De plus,

Rk(Y ) =

n∏
i=1

Qk(αi, Y ) =

n∏
i=1

(αki − Y ) = (−1)nPk(Y ),

ce qui prouve que Pk ∈ Z[X]. On vérifie immédiatement que Pk est unitaire, et que ses racines sont
toutes de module inférieur ou égal à 1, et distinctes de 0, autrement dit que Pk ∈ Ωn.

Remarquons que, puisque Ωn est un ensemble fini, l’ensemble Zn de toutes les racines des poly-
nômes de Ωn est également un ensemble fini. Soit α une racine de P = P1. Pour tout k ≥ 1, αk est
une racine de Pk, de sorte que l’application k 7−→ αk définit bien une application de N∗ dans Zn.
Cette application est nécessairement non injective, d’où l’existence de deux entiers 1 ≤ r < s tels que
αr = αs. Finalement, αs−r = 1, et donc α est bien une racine de l’unité. �
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Annexe C

Théorème de Rothstein-Trager

Théorème (Rothstein-Trager). Soient P,Q ∈ Q[X] deux polynômes premiers entre eux, avec degP <
degQ et Q sans facteur carré et unitaire. Soit K une extension de Q dans laquelle on puisse écrire∫

P

Q
=

r∑
i=1

ci logPi,

où les ci sont des constantes distinctes non nulles de K, et où les Pi sont des polynômes de K[X]
unitaires, non constants, sans facteur carré et deux à deux premiers entre eux. Alors les ci sont les
racines distinctes du polynôme

R(Y ) = ResX(P − Y Q′, Q) ∈ K[Y ],

et, pour chaque i, le polynôme Pi vaut

Pi = pgcd(P − ciQ′, Q). (C.1)

Démonstration. Pour tout i ∈ {1, . . . , r}, définissons Ui =
∏
j 6=i Pj ∈ K[X]. Par hypothèse,

P

Q
=

r∑
i=1

ci
P ′i
Pi

=

∑r
i=1 ciP

′
iUi∏r

i=1 Pi
,

en réduisant au même dénominateur, soit

P
r∏
i=1

Pi = Q
r∑
i=1

ciP
′
iUi.

Ainsi, d’une part, Q divise
∏r
i=1 Pi, car P et Q sont premiers entre eux ; d’autre part, pour tout

i ∈ {1, . . . , r}, Pi divise Q
∑r

j=1 cjP
′
jUj . Comme Pi divise Uj , pour tout j 6= i, et comme ci 6= 0,

alors Pi divise QP ′iUi ; or Pi est premier avec chacun des Pj , j 6= i, donc avec Ui ; de plus, Pi est
premier avec P ′i , car Pi est sans facteur carré. Il s’ensuit que Pi|Q, pour tout i ∈ {1, . . . , r}, et de
nouveau, comme les Pi sont deux à deux premiers entre eux, que

∏r
i=1 Pi divise Q. Par conséquent,

Q et
∏r
i=1 Pi sont associés, et finalement égaux, car tous deux unitaires :

Q =

r∏
i=1

Pi,

d’où

P =

r∑
i=1

ciP
′
iUi.
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À présent, démontrons que pour tout i ∈ {1, . . . , r}, Pi divise P − ciQ′. On a

Q′ =

r∑
j=1

P ′jUj ,

d’où

P − ciQ′ =
r∑
j=1

(cj − ci)P ′jUj ,

le terme en j = i étant nul, de sorte que Pi divise bien P − ciQ′. Reste à prouver que Pi = pgcd(P −
ciQ
′, Q). En effet,

pgcd(P − ciQ′, Q) = pgcd

P − ciQ′, r∏
j=1

Pj

 =
r∏
j=1

pgcd(P − ciQ′, Pj),

puisque les Pj sont deux à deux premiers entre eux. Néanmoins, pour j 6= i,

pgcd(P − ciQ′, Pj) = pgcd

(
r∑

k=1

(ck − ci)P ′kUk, Pj

)
= pgcd((cj − ci)P ′jUj , Pj)
= 1,

car cj − ci 6= 0 par hypothèse, et que Pj est premier avec P ′j et Uj . En conséquence, sachant que nous
avons montré que Pi divise P − ciQ′,

pgcd(P − ciQ′, Q) = pgcd(P − ciQ′, Pi) = Pi,

ce qui vérifie l’égalité (C.1).
Désormais, démontrons que les racines de R(Y ) = ResX(P −Y Q′, Q) sont exactement les ci. Nous

venons de montrer que pour tout i ∈ {1, . . . , r}, P − ciQ′ et Q ont un facteur commun non constant
dans K[X], à savoir leur pgcd Pi, si bien que R(ci) = 0.

Il s’agit alors de montrer que si c est une racine de R(Y ) dans le corps de décomposition L de
R(Y ) sur K, alors c est l’un des ci. Dire que c est une racine de R(Y ) signifie que le pgcd de Pi− cQ′
et Q est non constant dans L[X], notons-le S. Considérons un facteur irréductible T de S dans L[X].
D’une part, T divise Q =

∏r
i=1 Pi, et comme les Pi sont deux à deux premiers entre eux, alors T

divise l’un des Pi, disons Pi0 . Par ailleurs, T divise également P − cQ′ =
∑r

i=1(ci − c)P ′iUi, donc T
divise (ci0 − c)P ′i0Ui0 ; mais comme T est premier avec P ′i0 et Ui0 (car Pi0 l’est), alors T divise ci0 − c,
et pour des raisons de degrés, c = ci0 . Le théorème est démontré. �
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