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Introduction

Considérons, dans Iespace affine R?, les deux courbes 7; et s, décrites par leurs équations carté-
siennes respectives 23 —3zy?+y3—1 = 0 et 224+2y%+2—8 = 0. Les courbes 71 et 2 s’intersectent-elles ?
le cas échéant, combien y a-t-il de points d’intersection, et quelles sont leurs coordonnées? La figure
ci-dessous, réalisée avec le logiciel GeoGebra, met en évidence les 6 points d’intersection de 1 et s :

FIGURE 1 — Intersection des courbes 1 (en bleu) et v, (en rouge)

Pouvait-on prévoir le nombre de points d’intersection de 71 et 2, ou, & défaut, en donner une
borne ? Toutes ces questions s’inscrivent dans une problématique plus vaste : celle de la résolution des
systémes d’équations polynomiales. Si ’on définit les deux polynémes P = X3 —3XY2 4+ Y3 — 1 et
Q = X?+2Y?+ X —8 de R[X, Y], déterminer les points d’intersection de y; et 72 revient & déterminer
les racines communes de P et Q, c’est-a-dire les couples (o, 3) € R? tels que P(a, ) = Q(a, 3) = 0.

De maniére plus générale, si k désigne un corps quelconque, et Pi,..., P, des polynémes de
k[X1,...,Xg], on s’intéresse au systéme d’équations polynomiales

Pi(zy,...,2q) =0

P.(z1,...,2q) =0

d’inconnue (1, ...,zq) € k% L’objectif de cette lecon est de développer la méthode dite d’élimina-
tion, via 'introduction de la notion de résultant de deux polynoémes. Le principe de la méthode est de
transformer le précédent systéme en un nouveau systéme, faisant intervenir moins d’inconnues, et po-
tentiellement plus simple & traiter ; les informations obtenues & partir du nouveau systéme permettent
alors d’apporter une solution partielle au systéme initial.

La premiére partie sera consacrée a la définition et aux propriétés fondamentales des résultants,
ainsi qu’aux aspects élémentaires de la théorie de [’élimination ; nous détaillerons notamment la
méthode d’élimination que l'on vient d’évoquer. Dans une deuxiéme partie, nous expliciterons une
méthode effective de calcul de résultants, qui s’appuie sur I'algorithme d’Euclide, et les conséquences
directes de cet algorithme sur le lien entre le résultant de deux polynoémes et leurs racines, et sur
le discriminant d’un polynéme. Enfin, au cours d’une troisiéme partie, nous développerons quelques
applications pratiques des résultants. Les démonstrations proposées en développement figureront en



annexe, et viendront compléter la lecon : il s’agit des démonstrations des théorémes de la borne de
Bézout, de Kronecker, et de Rothstein-Trager, qui seront énoncés au cours de la legon, et rappelés en
annexe.

Dans toute cette lecon, A désigne un anneau unitaire, commutatif, et intégre : on pourra ainsi
parler librement de son corps des fractions Frac(A), de la cloture algébrique Frac(A) de ce corps, et
donc, étant donné un polynome de A[X], de ses racines dans Frac(A). On désignera également par P
et @ deux polynomes de A[X], avec les notations de la définition 1.1 & venir.



1 Théorie de I’élimination

1.1 Reésultant de deux polyndémes

Définition 1.1. Soient P,Q € A[X], de degrés respectifs n et m, avec n+m > 0 :

n m
P=> aX', Q=> bhX'
i=0 =0

La matrice de Sylvester de P et @, notée Syl(P, @), est la matrice carrée de taille n+m, a coefficients
dans A, définie par :

an Gp—1 ... Qi ag 0 ... 0
0 Qp, .. Qg al a e 0
o 0 0 oo QA Qp—-1 AaAp—2 ... Qo
Q) = b 0 ... o | €M)
0 by ... by by bo ... 0
0 0 eer by b1 bm_o ... b

Le résultant de P et @, noté Res(P, Q), est le déterminant de la matrice de Sylvester de P et @ :
Res(P, Q) = det(Syl(P,Q)) € A.

Remarques 1.2.
e Pour N > 0, notons Ayx[X] le sous-A-module de A[X] constitué de ’ensemble des polynomes
de A[X] de degré au plus N, muni de sa base canonique (X, XV~ ... X 1). Le résultant
de P et Q est alors le déterminant de I'application linéaire

oo - Ap [ X] x Ap [ X] — Apym—1[X]
Pe - U, V) — UP+VQ

Plus précisément, la matrice de ®pg, relativement aux bases ((X m—i 0)1<i<ms
(0, X" ) 1<j<pn) de Ap1[X] X Apq[X] et (X ) 1<i<min de Apim—1[X], n'est autre que
la transposée de la matrice de Sylvester de P et de Q.

e En identifiant un polynome F = Z?jomfl [i X" € Apim_1[X] avec le vecteur ligne
(frtm—1, fntm—2,---, f1, fo) € A" de ses coefficients, alors les m premiéres lignes de

Syl(P, Q) sont respectivement les vecteurs lignes associés a X™ 1P, X™2P,....XP,P,
tandis que les n derniéres lignes sont respectivement les vecteurs lignes associés a
X 1Q, X" 2Q,...,XQ,Q.

e Si PQ € AlX1,..., X4, on notera Resx,(P,Q) le résultant de P et
@, vus comme polyndomes en la variable X;. 11 g'agit dun élément de
AXy, ..., Xio1, Xi41,...,Xg] ¢ la variable X; est ainsi “éliminée”! L’objectif des pro-
chains paragraphes sera de préciser le sens que nous donnons a cette élimination.

Ezemple 1.3. Soient P = X + 3 et Q = 2X2 — X + 1 deux polynomes de Z[X].
3
1

Res(P,Q) = = 22.

N O =
— w O

—1



Insistons une derniére fois sur le fait que dans toute la suite, P et () désignent deux polyndémes de
A[X] tels qu'introduits dans la définition 1.1. Nous donnons a présent quelques résultats élémentaires
concernant le calcul de résultants :

Proposition 1.4. On suppose que deg(Q) > 0. Soit « € A.
a) Res(a,Q) =a™

b) Res(Q,Q) = 0.

c) Res(aP,Q) = o™ Res(P, Q).

d) Res(P,Q) = (—1)™ Res(Q, P).

e) Pour tout k > 0, Res(X*P, Q) = bk Res(P, Q).

Les différentes assertions se vérifient aisément en utilisant les propriétés élémentaires du détermi-
nant.

1.2 Reésultant et pged de deux polyndémes

Nous allons expliciter le lien entre le résultant et le pged de deux polynémes. Commengons par
énoncer le théoréme au coeur de la théorie de ’élimination :

Théoréme 1.5. Il existe un couple (U, V) € Ap—1[X]| X Ap—1[X] tel que UP +VQ = Res(P, Q).

Remarque 1.6. Concrétement, le théoréme précédent signifie que le résultant de P et ) appartient a
'idéal de A[X] engendré par P et Q). En particulier, si P et @ sont deux polynomes de A[X1,..., Xy,
alors Resy, (P, Q) appartient a I'idéal (P, Q)NA[X1, ..., Xi—1, Xi+1, ..., X4], qu’on appelle idéal d’éli-
mination. C’est en ce sens qu’on peut parler d’élimination de la variable X;.

Démonstration. Nous allons effectuer des transvections dans la derniére colonne de la matrice de
Sylvester de P et @), ce qui laisse invariant le déterminant, puis développer le déterminant par rapport a
la derniére colonne, afin d’obtenir le résultat attendu. Notons C1, . .., Cp 4y, les colonnes de Syl(P, Q).
Pour tout j € {1,...,n+ m — 1}, effectuons la transvection

Cn+m — Cn+m + XneriJCJ
La derniére colonne de Syl(P, Q)) devient alors

Xm-lp
Xm—2p

P
Xn—lQ
an2Q

Q
En développant le déterminant par rapport & la derniére colonne, on obtient donc

Res(P, Q) = (-1 X™ i o X™ 2+ .. 4 ug) P
U

+ (Unlen_l + Un,QXn_2 + ...+ ’Uo) Q,
\%4

avec u;,v; € A, ce qui conclut la démonstration. |



Le théoréme suivant donne une condition nécessaire et suffisante pour que le résultant de deux
polynémes soit nul :

Théoréme 1.7. On suppose que A est factoriel. Alors Res(P,Q) = 0 si et seulement si P et Q ont
un facteur commun non constant dans A[X].

Démonstration.

(=) Supposons que Res(P, Q) = 0. L’application linéaire ®p g, introduite aux remarques 1.2, est
alors non injective (son déterminant est nul). Il existe donc un couple (U,V) € A,,—1[X] x
Ap_1[X] non nul tel que ®p (U, V) =UP+VQ = 0 (le précédent théoréme ne s’applique pas
directement, puisqu’il ne garantit pas que les deux polynémes U et V sont non tous deux nuls
dans ce cas de figure). Ainsi, UP = =V Q. Comme A est factoriel, alors A[X] l'est également ;
si aucun des facteurs irréductibles non constants de P ne divise ), alors ils divisent tous V', ce
qui implique que deg(V') > deg(P) (car V est non nul), et contredit le fait que V € A,,_1[X].
On en déduit que P et @ ont un facteur commun non constant dans A[X].

(<) Réciproquement, supposons que P et () ont un facteur commun non constant dans A[X]. Soit
D le pged de P et @ dans A[X], qui est alors non constant. P et @ se factorisent respectivement
en P = DP et Q= DQ En vertu du précédent théoréme, il existe (U, V') € Ap—1[X]x Ap_1[X]
tel que UP + V@ = Res(P,Q) = D(UP + VQ). 1l s'ensuit que deg(Res(P,Q)) = deg(D) +
deg(UP +VQ); or, si UP + VQ # 0, alors deg(Res(P,Q)) > deg(D) > 1, ce qui est exclu
puisque Res(P, Q) € A. Par conséquent, UP + VQ = 0, et Res(P,Q) = 0. |

Le corollaire essentiel qui servira de fil directeur a la méthode d’élimination décrite ci-aprés est le
suivant :

Corollaire 1.8. Res(P,Q) = 0 si et seulement si P et ) ont une racine commune dans Frac(A).

Démonstration.
(=) SiRes(P,Q) =0, alors P et @ ont un facteur commun non constant D dans Frac(A)[X]. D
posséde une racine dans Frac(A), qui est alors racine commune a P et Q.
(<) Si P et @ ont une racine commune « € Frac(A), alors X — « est un facteur commun
non constant & P et @) dans Frac(A)[X]. Le résultant de P et @, vus comme polynomes de
Frac(A)[X], est alors nul; toutefois, Res(P, Q) se calcule de la méme maniére dans A[X] et

dans Frac(A4)[X], donc Res(P, Q) = 0. [ |

Dans toute la suite, les anneaux seront toujours supposés factoriels.

1.3 Meéthode d’élimination

Afin d’illustrer le principe de la méthode d’élimination, considérons dans un premier temps deux
polynoémes P et ) de C[X, Y], premiers entre eux dans C[X, Y], dont on cherche les racines communes,

c’est-a-dire, d’un point de vue géométrique, les points d’intersection des courbes vp = {(z,y) €
C?| P(z,y) = 0} et vo = {(z,y) € C*|Q(x,y) = 0}. Soit («, B) € ypN~q. Les polynomes P(a,Y) et
Q(a,Y) de C[Y] admettent S comme racine commune, ce qui se traduit par Res(P(a,Y), Q(a,Y)

) =
0, en vertu du corollaire 1.8. Considérons a présent le polynéme R(X) = Resy (P(X,Y),Q(X,Y)) €
C[X]. Nous venons exactement d’observer que « est racine de R(X).
A la lumiére de cette analyse, nous pouvons désormais mettre en oeuvre la méthode d’élimina-
tion, afin de rechercher les points d’intersection des courbes vp et 7g. La méthode se décompose
essentiellement en trois étapes :

1. Calculer R(X) = Resy (P(X,Y),Q(X,Y)) € C[X]. Nous détaillerons dans la prochaine partie
les méthodes effectives de calcul de résultants. Le fait que P et (Q soient premiers entre eux
dans C[X, Y] permet d’écarter le cas ot R(X) = 0.



2. Déterminer les racines de R(X) dans C.

3. Pour chaque racine a € C de R(X), déterminer les racines de P(a,Y) et Q(«,Y) dans C.
Chaque racine commune 8 € C a ces deux polynoémes fournit alors un point d’intersection
(o, B) des courbes vp et .

Cette méthode garantit de trouver tous les points d’intersection de vp et yg. La principale difficulté
repose bien évidemment sur la recherche des racines complexes des polynémes qui entrent en jeu.
L’étape 3 peut étre légérement améliorée en calculant plutdt le pged de P(a,Y) et Q(a,Y) dans
C[Y] par lalgorithme d’Euclide, puis en déterminant les racines de ce pged.

Les étapes décrites ci-dessus se transposent immédiatement dans le cas de deux polynomes a
coefficients dans un quelconque anneau A unitaire, commutatif, intégre, et factoriel, auquel cas les
points d’intersection obtenus sont uniquement les points d’intersection dans A, mais il est bien entendu
possible d’appliquer la méthode dans Frac(A). Par exemple, dans le cas particulier ot A = Z, on sait
déterminer aisément les racines entiéres d’un polynoéme & coefficients entiers : il suffit de tester les
diviseurs de son coefficient constant, ce qui peut se révéler intéressant pour déterminer les racines

communes entiéres de deux polyndémes a coeflicients entiers.

Ezemple 1.9. Soient P, Q € Q[X], définis par

P=X242X - XY +2Y —6,
Q=3X2-5X+5+ XY —2V.

Le calcul du résultant de P et @ par rapport a l'indéterminée X donne R(Y) = Resx(P,Q) =
(36Y — 103)(Y — 3). Les racines de R(Y') sont donc 3 et 123,
e Pour =3, P(X,3) = X2 - X = X(X — 1), et Q(X,3) =3X2—2X — 1, dont la seule racine
commune est o = 1.
e De méme, pour § = %, la seule racine commune obtenue est o = —i.
Par conséquent, les courbes yp et yg possédent deux points d’intersection : (1,3) et (_Z’ %).

Remarque 1.10. Il est également possible de procéder de la maniére suivante :

1. Calculer d’une part R(X) = Resy (P, Q), d’autre part S(Y) = Resx (P, Q).
2. Déterminer les racines de R(X) et S(Y).
3. Pour chaque racine o de R(X) et chaque racine 8 de S(Y), tester si P(«, 8) = Q(«, 8) = 0.

Il est aisé de s’assurer comme précédemment que cette méthode fournit toutes les racines communes

de P et Q.

1.4 Théoréme de la borne de Bézout

Nous nous intéressons désormais au nombre de racines communes que possédent deux polyndémes
P et @ de A[X,Y]. Dans le cas général, il n’est pas possible d’estimer de maniére exacte le nombre de
racines communes. Toutefois, il est possible d’en donner une borne : c’est 'objet du théoréme de la
borne de Bézout. On rappelle que le degré total d'un monome de la forme XY? € A[X,Y] est a +b,
et que le degré total d’un polynéme P € A[X,Y] est le maximum des degrés totaux de ses monomes.

Théoréme 1.11 (Borne de Bézout). Soient k un corps infini, et P,Q € k[X,Y] deux polynomes de
degrés totauz respectifs d et d'. On suppose que P et QQ sont premiers entre euz. Alors les courbes yp =
{(z,y) € K?| P(z,y) = 0} et vg = {(z,y) € k?| Q(z,y) = 0} ont au plus dd' points d’intersection.

Remarque 1.12. Il n’est pas nécessaire de supposer que k est infini, ni méme que k est un corps. Le
théoréme reste vrai dans un anneau A quelconque, puisqu’il suffit alors d’appliquer 1’énoncé précédent
dans Frac(A), qui est bien un corps infini.



La démonstration du théoréme de la borne de Bézout fait ’objet de 'annexe A.
Donnons une application immédiate de ce théoréme :

Application 1.13. Deux coniques distinctes du plan ont au plus 4 points d’intersection. En effet,
une conique du plan peut étre interprétée comme 1’ensemble des points d’annulation d’un polynéme
P € R[X,Y] de degré total 2, et le théoréme fournit directement la borne. En conséquence, par 5
points distincts du plan ne peut passer au plus qu’une seule conique.

Remarque 1.14. La borne du théoréme de la borne de Bézout est optimale. Par exemple, avec les
deux polynémes P,Q € R[X,Y] de l'introduction, de degrés totaux respectifs 3 et 2, les courbes
s’intersectent bien en exactement 6 = 3 x 2 points.

1.5 Théoréme d’extension

Pour simplifier, considérons un corps k algébriquement clos (il est toujours possible de se ramener
A ce cas en considérant Frac(A)), et P,Q € k[X,Y]. Rappelons que si (a,3) € k? est une racine
commune de P et @), alors « est racine de R(X) = Resy (P, Q) € k[X]. Si o € k est une racine de
R(X), il est alors naturel de se demander §'il est possible de “remonter” « en une racine commune
de P et @, c’est-a-dire, en termes plus mathématiques, s'il existe 8 € k tel que (a, 3) soit une racine
commune de P et ). Le théoréme d’extension donne une condition suffisante d’existence d’un tel 5.
Avant d’y parvenir, nous allons commencer par démontrer le théoréme suivant :

Théoréme 1.15. Soit ¢ : A — B un morphisme d’anneaux intégres, étendu a ¢ : A[X] — B[X]
(¢(X) = X). On suppose que deg ¢p(P) = deg P, et que deg ¢(Q) = deg @ — s, avec s > 0. Alors

¢(Res(P,Q)) = ¢(an)’ Res(¢(P), ¢(Q)).

Démonstration. Puisque le déterminant d’une matrice M est une application polynomiale en les
coefficients de M, on a

Plan) Plan-1) ... #(a1)  ¢(ao) 0 e 0
0 qﬁ(an) e ¢(a2) ¢(a1) qb(ao) e 0
Lo 0 e dan) dlans) .. dlao)
PReS(PR) =150 ) bbmr) ... 6b1)  bo) 0 ... 0
0 ¢(bm) ... @(b2)  d(b1)  d(bo) ... O
0 0 o Obw) Gbuor) lbuoa) .. b(b)
Or, par hypothése, ¢(an) # 0, ¢(bm) = @(bm—1) = -+ = ¢(bm—s+1) = 0, et ¢(bm—s) # 0. Le résultat
s’en déduit immeédiatement, en développant le déterminant. |

Muni de cette relation, nous pouvons désormais démontrer le théoréme d’extension :

Théoréme 1.16 (d’extension). Soient P,Q € k[Xy,..., Xy4], que l'on écrit

n m
P=) aXj Q=) biX}
=0 1=0

avec a;,b; € k[X1,..., Xq-1].

a) Si (ayg,...,aq) € k% est une racine commune de P et Q, alors (ai,...,0q_1) est racine de

Resx, (P, Q).



b) Réciproquement, si Resx,(P,Q)(cu,...,aq—1) =0, et si (ai,...,aq-1) n'est pas racine commune
de ay, et by, alors il existe ag € k tel que (aq,...,aq) soit une racine commune de P et Q.

Démonstration. Le a) résulte de I'analyse menée au début du paragraphe 1.3. Pour le b), on applique
le théoréme précédent, avec le morphisme ¢ : k[X1,...,X4-1] — k défini par ¢(t) = ¢, pour
tout t € k, et ¢(X;) = oy, pour tout i € {1,...,d — 1}, étendu a ¢ : k[Xy,..., X4 — k[X4]
(p(X4) = Xg4). Par hypothése, (aq,...,aq-1) n’est pas racine commune de a, et by, ; sans perte
de généralité, supposons que (aq,...,aq—1) n’est pas racine de a,, de sorte que deg ¢(P) = deg P
(p(an) = ap(ai,...,aq4-1) #0), et degp(Q) = deg Q — s, avec s > 0. D’on finalement :

¢(Resx, (P, Q)) = ¢(an)’ Res(¢(P), 9(Q))-

Or ¢(Resx,(P,Q)) = Resx,(P,Q)(a1,...,aq4-1) = 0, donc Res(¢(P), ¢(Q)) = 0, ce qui signifie que
¢(P) = P(ai,...,aq-1,Xq) et ¢(Q) = Q(au,...,aq-1,Xq) possédent une racine commune oy € k :
c’est exactement le résultat recherché. [ |

Ezemple 1.17. Reprenons I'exemple 1.9 avec les polynomes P, Q € Q[X] définis par

P=X?24+2X—-XY +2Y —6,
Q=3X2-5X+5+XY —2V.

Nous avons établi que les racines de R(Y) = Resx (P, Q) sont 3 et 202, Le terme de téte en X de P est
1, et celui de @ est 3, qui n’ont bien entendu aucune racine commune. Ainsi, le théoréme d’extension

garantit 'existence de a1, ag € Q tels que (a1, 3) et (a2, %) soient racines communes de P et (). En
loccurrence, a; =1 et ag = _i_

2 Calcul effectif de résultants et conséquences

Dans cette partie, nous portons un intérét particulier & la méthode de calcul de résultants liée a
I’algorithme d’Euclide, que nous allons dans un premier développer, puis exploiter afin d’expliciter
davantage le lien entre le résultant de deux polynémes et leurs racines.

En préliminaire, rappelons que le résultant n’est autre qu’un déterminant, et qu’en conséquence,
les méthodes de calcul de déterminants peuvent étre mises a profit. Ainsi, par exemple, si P, Q € A[X]
sont deux polynomes de degrés respectifs n et m, I'algorithme du pivot de Gauss permet de calculer
Res(P, Q) avec une complexité en O((n + m)?) opérations sur A. Néanmoins, 1’algorithme d’Euclide
est en pratique beaucoup plus efficace, et doit donc étre privilégié pour les calculs.

2.1 Algorithme d’Euclide

La méthode repose sur la proposition suivante :

Proposition 2.1. Soient P,Q € A[X]. On suppose que le coefficient dominant de @ est inversible.
Soit R € A[X] le reste de la division euclidienne de P par Q. Si R =0, alors Res(P,Q) = 0; sinon,
en notant r =deg R, on a

Res(P,Q) = (—1)""b;, " Res(Q, R).

L’égalité s’obtient en procédant a des opérations élémentaires sur la matrice de Sylvester de P
et Q. L’algorithme qui découle de cette proposition est donc identique a 'algorithme d’Euclide, au
coefficient multiplicatif prés qui apparait lors de chaque division. L’algorithme s’interrompt dés lors
que deg(R) = 0 ou R = 0, la proposition 1.4 permettant alors d’expliciter immédiatement le résultant
de Q et R.



Toutefois, cet algorithme est confronté a la difficulté suivante (que ’on rencontre également pour
le calcul du pged de deux polynomes) : anneau A[X] n’est en général pas euclidien, et il est donc
nécessaire que le coefficient dominant de @ soit inversible afin de procéder & la division euclidienne
de P par @ dans A[X], ce qui n’est bien entendu pas toujours garanti au cours de I’algorithme. Deux
solutions permettent de contourner cet obstacle :

e la premicére consiste a effectuer les calculs dans Frac(A)[X], qui est bien un anneau euclidien
puisque Frac(A) est un corps;

e la seconde s’appuie sur le principe de la pseudo-division dans A[X], que I'on ne développe pas
ici.

Ezemple 2.2. Reprenons de nouveau l'exemple 1.9, avec les polynoémes P, Q) € Q[X] définis par

P=X?24+2X - XY +2Y —6,
Q=3X2-5X+5+XY —2Y,

et appliquons la premiére solution afin de calculer Resx (P, Q) :
e le reste de la division euclidienne de P par ) est R = (— - ,y) X — % + %Y;
309 — 211Y + 36Y2
(4Y —11)? ’
e le degré de Ry en X est égal a 0, donc I'algorithme s’interrompt.
On en déduit que

e le reste de la division euclidienne de @ par Rj est Rp = 3

1
Resx (P, Q) = 3Resx(Q, Ry) = g(4Y —11)*Resx (R1, Re) = 309 — 211Y + Y2,

2.2 Lien résultant-racines

Le théoréme suivant fournit une nouvelle expression du résultant de deux polynémes en fonction
de leurs racines :

Théoréme 2.3. Soient k un corps, et P,Q € k[X]. Ecrivons

{ P=ap(X —aj)...(X —ayp),
Q:bm(X_ﬁl)“'(X_/Bm)y

avec o, B35 € k. Alors

Res(P,Q) = b, HH

1=1j5=1
=ﬁHQ@P+—WWHP@
i=1

Démonstration. Définissons I'application
E[X] x k[X] — k
P.Q)  — ay ][ Q)

avec les notations du théoréme. On vérifie que
e 6(P,Q) = (~1)"™9(Q, P);
o (a,Q)=a"siack;
e si R est le reste de la division euclidienne de P par @) dans k[X], et si R # 0, alors, en notant
r =deg(R), on a §(P,Q) = (—1)""b"0(Q, R); si R =0, alors §(P,Q) = 0.
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Ainsi, (P, Q) et Res(P, Q) se calculent de la méme maniére via l'algorithme d’Euclide, de sorte que
0(P,Q) = Res(P, Q). Les autres égalités se vérifient par un calcul direct. [ |

Cette nouvelle expression du résultant a plusieurs conséquences, parmi lesquelles le théoréme de
Kronecker, qui constitue le développement abordé dans I'annexe B :

Théoréme 2.4 (Kronecker). Soit P € Z[X] un polynéme unitaire, de degré n > 1. On suppose que
les racines de P dans C sont de module inférieur ou égal a 1, et que 0 n’est pas racine. Alors les
racines de P sont des racines de ['unité.

Enfin, cette expression du résultant permet de relier le discriminant d’un polynéme P avec le
résultant de P et P/, comme nous allons I’étudier au cours du paragraphe suivant.

2.3 Discriminant d’un polynéme
Rappelons tout d’abord ce qu’est le discriminant d’un polynéme :

Définition 2.5. Soient k un corps, P € k[X], et soient a,...,q, € k ses racines. Le discriminant
de P, noté A(P), est défini par

AP)=ai*? ] (ei—ay)”
1<i<j<n
Remarques 2.6.
e A partir de la définition, il est immédiat que A(P) = 0 si et seulement si P posséde une racine
double.
e A priori, A(P) est un élément de k. Il s’agit en fait d’un élément de k ; la prochaine proposition
va permettre de le vérifier directement.

Proposition 2.7. On a

n(n—1)

A=Y 7 pep P,

anp,
Remarque 2.8. Comme annoncé, A(P) € k, puisque Res(P, P') € k.

n

Démonstration. En dérivant P = ay, H(X — «;), on obtient
i=1

P = anZH(X — ),

i=1 j#i
d’oti, par le théoréme 2.3,

Res(P, P') = a"™! H P'(a).
i=1

Il suffit alors de remarquer que P'(o;) = a, H(Ozi — ;) afin de conclure. [ |
J#i
Mentionnons une application de ce dernier résultat afin de conclure cette partie :

Application 2.9. L'ensemble €2, des matrices de M, (C) a p valeurs propres distinctes forme un ouvert
de M,(C) (pour la topologie usuelle d’espace vectoriel normé sur M,(C)). En effet, une matrice
M € M,(C) posséde p valeurs propres distinctes si et seulement si A(xar) # 0, ot xar désigne
le polynéme caractéristique de M, donc si et seulement si Res(xar, x3,) # 0. Comme l'application
p M e Mp(C) — Res(xm, Xxy,) est continue, car polynomiale en les coefficients de M, alors
Q, = p~1(C*) est ouvert dans M,(C).
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3 Quelques applications des résultants

Au cours de cette derniére partie, nous nous intéressons & divers problémes de nature tantot
purement algébrique, tantét géométrique, observés du point de vue des résultants et de 1’élimination.

3.1 Calcul de polynémes annulateurs

Soient k un corps, et a, 8 € k, de polynémes minimaux distincts sur k. On suppose connu un
polynéme annulateur P € k[X] de a sur k, et un polynéme annulateur @ € k[X] de g sur k. L’objectif
est de déterminer un polynéome annulateur de la somme o+ 3, ainsi que du produit a3, sur k. Quitte
a diviser P et () par leur pged, on peut supposer que P et () sont premiers entre eux. La proposition
suivante répond a la problématique grace aux résultants :

Proposition 3.1. a) Le polynéme R(X) = Resy (P(Y),Q(X —Y)) est un polynéme annulateur de
a+ B.
b) Le polynéme S(X) = Resy (P(Y), X™Q (%)) est un polynoéme annulateur de of3.

Démonstration. Démontrons I'assertion a), 'assertion b) se traitant de maniére similaire. On a R(a+
B) =Resy (P(Y),Q(a+F—-Y)). Or les polynémes P(Y) et Q(a+ 5 —Y) admettent o comme racine
commune, si bien que R(a + 3) = 0. [ |

Remarque 3.2. Ce résultat n’a d’intérét que si les résultants calculés sont non nuls. Sous 'hypothése
que P et @) sont premiers entre eux, c’est effectivement le cas : par exemple, si on avait R(X) = 0,
alors P(Y') et Q(X —Y') auraient un facteur commun non constant dans k[X|[Y] = k[X, Y], qui serait
nécessairement dans k[Y] puisque le degré de P(Y') en X est nul, et serait alors un facteur commun
non constant & P(Y) et Q(Y') dans k[Y] (en substituant 2Y a X).

Le corollaire immédiat de cette proposition et de la remarque précédente est le suivant :
Corollaire 3.3. L’ensemble des éléments algébriques sur k est un anneau.

Ezemple 3.4. Déterminons un polynéme annulateur de v/2 + ¢/3 sur Q. Le polynéme minimal de v/2
sur Q est P = X2 —2, tandis que celui de /3 sur Q est Q = X> — 3 (tous deux sont bien irréductibles
par le critére d’Eisenstein). Un polynome annulateur de v/2 + /3 sur Q est alors donné par

R(X)=Resy(Y?—2,(X —Y)? —3) = X0 —6X* —6X> +12X2 — 36X +1.

On peut vérifier qu'il s’agit méme du polynoéme minimal de v/2 4 /3 sur Q, par exemple en calculant
explicitement le degré de 'extension Q(v/2 + v/3)/Q.

Remarque 3.5. Dans le cas général, le polynéme annulateur obtenu n’est pas le polynéme minimal,
méme si les polynémes annulateurs P et () choisis sont respectivement les polynémes minimaux de
« et B sur k. Toutefois, si P et ) sont les polyndémes minimaux respectifs de « et 5 sur k, de degrés
respectifs d et d', et si I'extension k(a+ () /k est de degré dd’, alors le polynome R(X) est le polynéme
minimal de a4+ 3 : en effet, on peut montrer que le degré de R(X) est inférieur & dd' (voir 'annexe
A); comme le polynoéme minimal de « + § divise R(X) et est de degré dd’, alors il s’agit de R(X)
(tous deux sont unitaires). Le raisonnement reste valable pour S(X) si I'on suppose cette fois-ci que
I'extension k(af)/k est de degré dd'.

3.2 Formule de Héron

Le probléme posé est le suivant : étant donné un triangle ABC (non plat) du plan, on désire
exprimer son aire A en fonction des longueurs a = BC, b = AC et ¢ = AB de ses cotés. La formule
de Héron répond & cette problématique :
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Proposition 3.6 (Formule de Héron). En notant p = %(a + b+ ¢) le demi-périmetre de ABC, on a

A=+/pp—a)(p-b)(p - o).

Ce probléme élémentaire de géométrie peut étre traité par une méthode d’élimination. Pour ce
faire, nous devons commencer par décrire les contraintes polynomiales associées au probléme étudié.
Tout d’abord, fixons un repére affine orthonormé du plan, de sorte que le triangle ABC soit dans la
configuration suivante :

A(0,0) b C(b,0)

FiGURE 2 — Formule de Héron

On introduit ainsi deux nouvelles variables, x et y, qui désignent les coordonnées de B dans ce
repére, et on trace la hauteur issue de B, de longueur y. L’aire s’obtient alors par la formule

A— %by =0. (1)

Les deux autres contraintes polynomiales sur = et y correspondent au fait que AB est de longueur ¢,
et que BC est de longueur a, soit respectivement

2?4yt —c*=0 (2)

et
b—x)2+y*—a*=0. (3)

Il faut & présent éliminer les variables x et y des équations polynomiales (1), (2) et (3), afin d’en
déduire A en fonction de a, b et ¢. En éliminant la variable x des équations (2) et (3), on obtient

a* — 2a%0% — 242 + b* — 2022 + 42 4+ =0. (4)

Puis, en éliminant la variable y des équations (1) et (4), on obtient
1
Zb‘l(lﬁfl2 —(a+b+e)la+b—c)la—b+c)(—a+b+c)) =0, (5)

ce qui fournit deux solutions pour A4, la seule positive correspondant bien a la formule de Héron (b # 0
pour un triangle non plat).

L’exemple de la formule de Héron illustre bien comment I’élimination permet d’aborder un pro-
bléme simple de géométrie, en introduisant de nouvelles variables et en décrivant les contraintes
polynomiales associées.
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3.3 Equation implicite et paramétrisation rationnelle d’une courbe

On considére dans le plan R? une courbe v, tantét définie implicitement par une équation de la
forme P(x,y) =0, avec P € R[X,Y], tantot décrite par une paramétrisation rationnelle, c’est-a-dire
une équation paramétrique de la forme

avec F,G € R(T) deux fractions rationnelles. Au cours de ce paragraphe, nous nous attachons a
expliciter comment transformer une équation implicite en une équation paramétrique rationnelle, et
vice-versa. Selon la nature du probléme posé, I'une ou 'autre de ces descriptions peut se révéler plus
maniable que I'autre. Par exemple, le tracé d’'une courbe est beaucoup plus aisé et précis lorsqu’on
en connait une paramétrisation rationnelle, ce qui n’est pas le cas avec une équation implicite.

Transformation d’une équation implicite en paramétrisation rationnelle

Toutes les courbes définies implicitement ne sont hélas pas descriptibles par une équation para-
métrique rationnelle. Toutefois, dans le cas par exemple des coniques, il est possible de déterminer
une paramétrisation rationnelle grace a 1’élimination. La méthode s’appuie sur le constat suivant :
étant donné un point fixé A d’une conique 7, tout point de  différent de A peut-étre décrit par deux
contraintes polynomiales en tant qu'unique point d’intersection différent de A d’une certaine droite
passant par A avec 7.

En guise d’illustration, donnons une paramétrisation rationnelle du cercle unité C. Fixons donc
un point de C, par exemple le point A(—1,0). Comme annoncé, on remarque que toute droite du plan
passant par A, excepté la droite verticale d’équation x = —1, intersecte C en un unique point M autre
que A, et que tout point de C autre que A peut étre obtenu ainsi, de maniére unique.

Dy
M(x,y)

FIGURE 3 — Paramétrisation rationnelle du cercle unité

Sur la figure ci-dessus, on a noté D; la droite passant par A de coefficient directeur ¢ € R, ainsi
que (z,y) les coordonnées du point d’intersection M autre que A de D; avec C. Les deux contraintes
polynomiales proviennent de ’appartenance de M & C d’une part, et & la droite D; d’autre part, soit

respectivement
24y’ —1=0 (6)

et
y—tx+1)=0. (7)
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On procéde alors en éliminant d’une part la variable x des équations (6) et (7), et d’autre part en
éliminant la variable y, ce qui donne respectivement

y(1+%) — 2yt =0 (8)

et
222+ 1)+ 2%c + 2 — 1 =0. (9)

I ne reste plus qu’a exprimer x et y en fonction de t. L’équation (8) fournit deux solutions y; = 0
2

2
et y9 = ——, tandis que I’équation (9) fournit deux solutions 1 = —1 et o = ——. Finalement,
Y2 112 q q 9) 1 2= 7 T
une paramétrisation rationnelle du cercle unité est donnée par
1—¢t2
t)=—,
2t
)= ——0.
y(t) 1+ t2

avec t € R. Cette paramétrisation décrit tous les points du cercle unité, & I’exception du point A, qui
est cependant obtenu “a la limite”, en faisant tendre ¢ vers l'infini.
Cette paramétrisation rationnelle du cercle unité est trés intéressante, puisqu’elle permet par

exemple de déterminer les triplets pythagoriciens, c’est-a-dire les triplets (z,y, z) € Z? tels que z2 +

g2 = 22,

Transformation d’une paramétrisation rationnelle en équation implicite

La transformation d’une paramétrisation rationnelle en équation implicite est, quant a elle, tou-
jours possible. En effet, considérons une courbe v décrite par une équation paramétrique rationnelle
de la forme

_ Pi(t)
xlt) = Q1(t)’
_ B(1)
y(t) = 2a(0)’

avec Pp, Py, Q1,Q2 € R[X], et supposons pour simplifier que @1 et Q2 ne s’annulent pas sur R. Le
systéme précédent est alors équivalent a

{Qlwx(w — Pi(t)
Q2(t)y(t) — Pa(t)

)

0
0.

En d’autres termes, pour tout ¢t € R, le triplet (xz(¢),y(t),t) est racine commune aux polyndmes
Q1(T)X —Pi(T) et Q2(T)Y — P(T) de R[X, Y, T]. Il s’ensuit que (z(t),y(t)) est racine du polyndéme
R(X,Y) = Resp(Q1(T)X — Pi(T),Q2(T)Y — P»(T)), ce qui fournit une équation implicite de .
Néanmoins, il se peut que I’équation implicite obtenue ne décrive pas <, mais une courbe +' qui
contienne v, dans la mesure oul il n’est pas toujours possible d’étendre une racine de R(X,Y’) en une

racine commune a Q1(T)X — Pi(T) et Q2(T)Y — Py(T).

Ezemple 3.7. Effectuons la transformation inverse a partir de la paramétrisation rationnelle du cercle
unité privé du point A(—1,0) obtenue précédemment. Le calcul de R(X,Y’) donne

R(X,Y)=Resp(1+T%)X — (1 —=T?),1+T*Y —2T) = 4X? +4Y? — 4,
et I'on retrouve ainsi ’équation implicite 22 4+ y? — 1 = 0 du cercle unité. La courbe obtenue par ce

procédé contient un point de plus que la courbe initiale, & savoir le point A.
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Ezxemple 3.8. Soit v la courbe paramétrée par
o(t) =2+t +1,

2 -1
t) = )
y(®) 2+1

Dans cet exemple, le calcule de R(X,Y’) donne

R(X,Y) =Resp(X — (T?*+ T +1),(T* +1)Y — (T* - 1)
= X%Y? _2X?%Y + X? +4XY —4X +Y? + 3.

o
C/ T H G 7 & 3 i Ei ) Y o C/
2

FIGURE 4 — Comparaison du tracé avec I’équation paramétrique (en bleu) et ’équation implicite (en
rouge)

Les deux tracés sont rigoureusement identiques, comme le suggére la figure ci-dessus. Vérifions-le :
le terme de téte en 7' du polynéme X — (T2 +T 4+ 1) est —1, qui ne s’annule jamais ; en conséquence,
grace au théoréme d’extension, toute racine (z,y) de R(X,Y’) peut étre étendue en une racine com-
mune (z,y,t) & X — (T2 +T + 1) et (T? +1)Y — (T? — 1), si bien que les équations paramétriques
et implicites décrivent la méme courbe.

3.4 Intégration de fractions rationnelles

Soit g € Q(X) une fraction rationnelle, que ’on suppose propre, c’est-a-dire telle que P et @ soient
premiers entre eux, ) ne soit pas réduit a 1 et soit unitaire, et deg P < deg Q. Il est toujours possible
de se ramener a Cette situation, quitte & effectuer la division euclidienne de P par @ afin d’extraire
la partie entiére de £ ok On souhaite expliciter une primitive formelle de £ o concrétement, il s’agit
de trouver, dans une extension de Q(X) dans laquelle se prolonge la dérivation usuelle dans Q(X),
un élément F tel que F/ = £. On ne s’attarde pas trop sur la construction d’une telle extension ;
on sait néanmoins que, par le théoréme de décomposition en éléments simples, si aq, ..., aq sont les
racines de ) dans le corps de décomposition K de @ sur Q (ou plus simplement si K = C), alors g
se décompose sous la forme

Mg

mi j
B

X — oy
21]2 i=1 Z

avec m; j,c¢; € K, de sorte qu'une primitive de g s’écrive sous la forme

m' d
2,
/Q X_af)j_l + ) cilog(X — o),
v i=1

=1 j=2
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avec m; ; € K, ou chaque log(X — «;) désigne un élément d’une extension de K (X) de dérivée ﬁ
La difficulté de cette méthode repose sur la décomposition en éléments simples de la fraction 5,

qui nécessite notamment de connaitre les racines de @) dans C. Toutefois, comme le montre ’exemple

suivant, il n’est pas nécessaire de décomposer g en facteurs du premier degré :

Exemple 3.9. On considére la fraction rationnelle XQL_:i € Q(X); elle se décompose en éléments
simples dans C de la maniére suivante :
X 1 n 1
X2-3 2(X —v3) 20X +V3)

X 1 1 1 )

Ainsi, introduction de v/3 s’est résorbée au moment d’écrire le résultat final, si bien qu’il est naturel
de se demander si I’on pouvait obtenir ce résultat sans décomposer la fraction en éléments simples.

Le théoréme de Rothstein-Trager permet de pallier cette difficulté, en évitant de décomposer g

en éléments simples :

Théoréme 3.10 (Rothstein-Trager). Soient P,Q € Q[X] deux polyndémes premiers entre euz, avec
deg P < deg @ et Q) sans facteur carré et unitaire. Soit K une extension de Q dans laquelle on puisse

écrire ;
P
[ 5= alsr.
i=1
ou les ¢; sont des constantes distinctes non nulles de K, et ou les P; sont des polynomes de K[X]

unitaires, non constants, sans facteur carré et deur o deux premiers entre eux. Alors les ¢; sont les
racines distinctes du polynome

R(Y)=Resx(P-YQ', Q) € K[Y],
et, pour chaque i, le polynome P; vaut
P; = pged(P — ¢iQ', Q).

La démonstration de ce théoréme est présentée en développement dans l'annexe C. Ainsi, la
connaissance des racines de R(Y) suffit & déterminer complétement une primitive de g.

Ezemple 3.11. En guise d’illustration, appliquons le théoréme de Rothstein-Trager & 1’exemple 3.9.
Le résultant R(Y) du théoréme est égal & —3(1 — 2Y)?, d’unique racine ¢; = 3. Le polynome Py
correspondant est égal & X2 — 3. On retrouve bien

X 1

sans avoir eu besoin de décomposer la fraction rationnelle en éléments simples.
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Annexe A

Théoréme de la borne de Bézout

Théoréme (Borne de Bézout). Soient k un corps infini, et P,Q € k[X,Y] deuzx polynomes de degrés
totauz respectifs d et d'. On suppose que P et Q sont premiers entre eux. Alors les courbes vp =
{(z,y) € K*| P(x,y) =0} et vg = {(z,y) € k* | Q(x,y) = 0} ont au plus dd' points d’intersection.

Démonstration. Définissons R(X) = Resy (P, Q) € k[X], ainsi que S(Y) = Resx (P, Q) € k[Y].

e Nous allons tout d’abord établir que vp et yg ont un nombre fini de points d’intersection. Le
résultat découle directement de la définition des polynémes R(X) et S(Y) : en effet, si (a, f)
est un point d’intersection de yp et vg, alors R(a) = 0 et S(5) = 0; or, puisque P et () sont
premiers entre eux, R(X) et S(Y) ne sont pas nuls, de sorte que chacun posséde un nombre
fini de racines, ce qui impose que les courbes s’intersectent en au plus deg(R) deg(S) points.

e Nous allons montrer que le degré de R(X) est inférieur ou égal a dd’ (et, par symétrie du
raisonnement, que le degré de S(Y) est également inférieur ou égal & dd’). Notons p le degré
en Y de P, et ¢ le degré en Y de @, de sorte que I'on puisse écrire

P(X,Y) =) P(X)Y"™" QX,)Y)=) QuX)Y™",

k=0 k=0
avec

deg(Py) <d—p+k, 0<Ek<p,

deg(Qr) <d —q+k, 0<Ek<gq.

Notons M = (M; ;)i<i j<p+q la matrice de Sylvester de P et ) comme polynomes en l'indé-
terminée Y. On a alors

Ph P ... Pby P 0 ... 0
0 Py ... Pry Ppy Py ... 0
Qo Q1 ... Qg1 Q O 0
0 Qo ... Qg2 Q1 Qq 0
0 0 ... Qo Q1 Qo ... Q

0 Pour 1 <i<gq,

Pi_; si0<j—i<p
M : — Jj—i = =b
b {0 sinon.

Donc pour tout j € {1,...,p+ ¢}, deg(M; ;) <d—p+j—i.
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[0 De méme, pour ¢+ 1 <17 < p+q,

v = Qimitg 810<j—itq<q,
J 0 sinon.

Donc pour tout j € {1,...,p+q}, deg(M; ;) <d —q+j—i+qg=d +j—1i.
On applique alors la formule du déterminant :

p+q
R= ) « H oty 1T M
0€6p1q i=q+1
Rs

11 suffit alors de montrer que pour tout o € 6,4, deg(Ry) < dd’. En effet :

q p+q
deg(R Zd p+o(i)—i)+ > (d+o(i)—i)
i=1 1=q+1
p+q '
=q(d—p)+pd + ) (o(i) i)
=1

=0
= qd +pd' — pq
= (p—d)(d' — q) +dd’
<0
<dd'.
Par conséquent, deg(R) < dd’, et de méme, deg(S) < dd'.
e A ce stade, on en déduit que les courbes vp et vg ont au plus (dd’ 2 points d’intersection.

)
Nous allons chercher & affiner cette borne. Notons (a1, 1),..., (o, Br) les différents points
d’intersection de yp et vyg. Choisissons u € k tel que

az+u627éaj+u/8]7 \V/’L,jE{l,,T},Z?éj

Un tel u existe, puisque les droites d’équation y = «; + x5;, « € k, ont deux & deux au plus un
point d’intersection, et que k est supposé infini. Effectuons alors le changement de variables

X =X —uY’,
Y =Y,

et notons ﬁ(X’, Y') = P(X,Y), Q(X', Y') = Q(X,Y), ainsi que 75 et 75 les courbes corres-
pondantes. On a alors,
(a,8) €PNy <= Pla,f) =Qa, ) =0

= Pla+up,p)=Qa+up,p)=0

= (a+uf,B) €vp NG
On en déduit que pour tout = € k qui est 'abscisse d’un point d’intersection de 75 et 5 il
existe un unique y € k tel que (z,y) € 73 N7, et de plus que card(vp ﬂ’y@) = card(ypN7Q).
Donc, quitte a effectuer le changement de variables ci-dessus, on peut supposer sans perte de
généralité que les abscisses a; des points d’intersection de yp et ¢ sont deux a deux distinctes.

Or, pour tout i € {1,...,r}, R(a;) =0, et R est non nul de degré inférieur ou égal a dd’. Par
conséquent, r < dd’, ce qui achéve la démonstration. |
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Annexe B

Théoréme de Kronecker

Théoréme (Kronecker). Soit P € Z[X] un polynéome unitaire, de degré n > 1. On suppose que les
racines de P dans C sont de module inférieur ou égal a 1, et que 0 n’est pas racine. Alors les racines
de P sont des racines de 'unité.

Démonstration. Notons €, I'ensemble des polynémes unitaires de Z[X], de degré n, et dont toutes
les racines dans C sont de module inférieur ou égal & 1, et distinctes de 0. Bien entendu, P € €Q,,.
Démontrons que €2, est un ensemble fini : soit F' € ,,

n
F=X" 4 Zfan_ia

i=1
et notons fi,...,0, les racines de F dans C (non nécessairement distinctes). Par les relations
coefficients-racines, pour tout p € {1,...,n},
P P n
L=l S II6< Y 16 < ( )
1<iy < <ip<n j=1 1<iy < <ip<n j=1 p
——
<1

Comme les coefficients de F' sont entiers, alors chacun d’entre eux ne peut prendre qu'un nombre fini
de valeurs (indépendamment de F'), ce qui impose a l’ensemble 2, d’étre fini, le degré des éléments
de 2, étant fixé égal a n.

A présent, notons ai,...,a, les racines de P dans C, et définissons, pour tout k > 1, P, =
[T (X - aF) € C[X], ainsi que Q = X* — Y € Z[X,Y]. Commencons par montrer que P; € Z[X],
puis que P € Q,,. Pour ce faire, posons Ry(Y) = Resx (P(X), Qx(X,Y)); R est un polynéme de
Z[Y], puisque P(Y) et Qx(X,Y) sont tous les deux des polynémes de Z[X,Y]. De plus,

n

Re(Y) = [[ Qulai, V) = [J(ef = V) = (=1)"Pu(Y),
i=1

i=1

ce qui prouve que Py € Z[X]. On vérifie immédiatement que P est unitaire, et que ses racines sont
toutes de module inférieur ou égal & 1, et distinctes de 0, autrement dit que Py € €),,.

Remarquons que, puisque €2,, est un ensemble fini, I’ensemble Z,, de toutes les racines des poly-
némes de €2, est également un ensemble fini. Soit o une racine de P = P;. Pour tout k£ > 1, aF est
une racine de Py, de sorte que Papplication k — o définit bien une application de N* dans Z,.
Cette application est nécessairement non injective, d’otl 'existence de deux entiers 1 < r < s tels que

r 57" =1, et donc « est bien une racine de l'unité. a

a” = o°. Finalement, «
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Annexe C

Théoréme de Rothstein-Trager

Théoréme (Rothstein-Trager). Soient P, Q € Q[X] deux polyndmes premiers entre eux, avec deg P <
deg @Q et Q sans facteur carré et unitaire. Soit K une extension de Q dans laquelle on puisse écrire

/g = ici IOgPia
=1

ot les ¢; sont des constantes distinctes non nulles de K, et ou les P; sont des polynomes de K[X]
unitaires, non constants, sans facteur carré et deur o deux premiers entre eux. Alors les ¢; sont les
racines distinctes du polyndome

R(Y) = Resx(P - YQ',Q) € K[Y],
et, pour chaque i, le polynome P; vaut
Py = pged(P — i@, Q). (1)
Démonstration. Pour tout i € {1,...,r}, définissons U; = H#i P; € K[X]. Par hypothése,
r

L Zcﬂ _ 2 aBU
- (2 - 9
0~ 2%~ Lk

en réduisant au méme dénominateur, soit

T T
PI[P=Q> «PU.
=1 =1

Ainsi, d'une part, @ divise [[;_; P;, car P et @ sont premiers entre eux; d’autre part, pour tout
ie{l,...,r}, P; divise QZ;:1 chJ(Uj. Comme P; divise Uj, pour tout j # 4, et comme ¢; # 0,
alors P; divise QP/U;; or P; est premier avec chacun des Pj, j # i, donc avec U;; de plus, P; est
premier avec P/, car P; est sans facteur carré. Il s’ensuit que P;|Q, pour tout i € {1,...,r}, et de

nouveau, comme les P; sont deux a deux premiers entre eux, que [[;_, P; divise Q. Par conséquent,
Q et [[;_; P, sont associés, et finalement égaux, car tous deux unitaires :

Q=1[~:
1=1
d’ou

.
P=> ¢PU;
=1
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A présent, démontrons que pour tout i € {1,...,r}, P; divise P — ¢;Q’. On a

Ql = ZP]{Ujv
j=1

d’ou

P— CZ‘Q/ = Z(Cj - Ci)PJ{Uj,
Jj=1

le terme en j = i étant nul, de sorte que P; divise bien P — ¢;’. Reste a prouver que P; = pged(P —
¢, Q). En effet,

T T
pged(P — ¢:Q',Q) = pged | P— @, [[ P | = [ peed(P — @', Py),
j=1 j=1
puisque les P; sont deux & deux premiers entre eux. Néanmoins, pour j # 1,

pged(P — ¢;Q', P;) = pged <Z(Ck — ¢;) PLU, Pj)
k=1
= pged((¢j — ¢) PjU;, Pj)

=1,

car ¢j — ¢; # 0 par hypothese, et que P; est premier avec P; et Uj. En conséquence, sachant que nous
avons montré que P; divise P — ¢;@Q’,

pged(P — ¢,Q', Q) = pged(P — ¢;Q', P;) = P,

ce qui vérifie I'égalité (C.1).

Désormais, démontrons que les racines de R(Y) = Resx (P —YQ’, Q) sont exactement les ¢;. Nous
venons de montrer que pour tout i € {1, e, r}, P — ¢;Q' et @ ont un facteur commun non constant
dans K[X], a savoir leur pged P;, si bien que R(¢;) = 0.

Il s’agit alors de montrer que si ¢ est une racine de R(Y') dans le corps de décomposition L de
R(Y) sur K, alors c est I'un des ¢;. Dire que ¢ est une racine de R(Y) signifie que le pged de P; — Q'
et @ est non constant dans L[X], notons-le S. Considérons un facteur irréductible 7" de S dans L[X].
D’une part, T' divise @ = [[;_; P;, et comme les P; sont deux & deux premiers entre eux, alors 7T
divise 'un des P;, disons Pj,. Par ailleurs, T' divise également P — c¢Q’' = >, (¢; — ¢)P/U;, donc T
divise (c;, — )Py Ui, ; mais comme T' est premier avec Pj et Uj, (car P, 'est), alors T' divise ¢;, — ¢,
et pour des raisons de degrés, c = ¢;,. Le théoréeme est démontré. |
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