Programme de colle n°5 : Sommes

$$17/10 \rightarrow 21/10$$

Sommes, produits, binôme de Newton

- \bullet Notation \sum , factorisation dans une somme. Scission d'une somme d'additions en deux sommes.
- Sommes classiques : $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n} k^2$, $\sum_{k=0}^{n} a^k$.
- Sommes télescopiques. Découpage de somme sur une partition de l'ensemble des indices.
- Décalages d'indices.
- \bullet Notation \prod et propriétés du produit.
- Conventions sur les sommes vides et les produits vides.
- Regroupement de facteurs dans un produit, découpage sur une partition des indices, produit télescopique.
- Définition de la factorielle et des coefficients binomiaux.
- Symétrie des coefficients binomiaux, formule de Pascal, triangle de Pascal.
- Binôme de Newton. Factorisation de $x^n y^n$.
- Transformation de cos(nx) et sin(nx) en polynôme de cos(x) et sin(x).
- Linéarisation de polynômes trigonométriques.
- Sommes de fonctions circulaires $\sum_{k=0}^{n} \cos(kx)$ et $\sum_{k=0}^{n} \sin(kx)$ par exponentielle et somme géométrique.
- Sommes doubles : Sommes sur un rectangle $\sum_{1\leqslant i,j\leqslant a_{i,j}}$ ou un triangle $\sum_{1\leqslant i\leqslant j\leqslant a_{i,j}}$ et $\sum_{1\leqslant i< j\leqslant a_{i,j}}$ de \mathbb{N} . Découpage selon les lignes ou les colonnes de ces sommes.

Questions de cours

- Calcul de $\sum_{k=0}^{n} k^2$ et $\sum_{k=0}^{n} a^k$.
- Citer le théorème du binôme de Newton, le théorème de factorisation de $x^n y^n$ et démontrer ce dernier théorème.
- Formule de Pascal + démonstration du cas $1 \le p \le n$.
- Calcul de $\sum_{k=0}^{n} \cos(kx)$ pour $n \in \mathbb{N}$ et $x \in \mathbb{R} \setminus \{2k\pi \mid k \in \mathbb{Z}\}.$
- Linéariser $\cos^3(\theta)\sin^2(2\theta)$.
- Calcul de la somme double $\sum_{1 \leqslant i,j \leqslant n} i + j$.