Théorie des groupes

corrigé feuille 12

Exercice 1 Soient $e_1 = (1, -1, 0)$ et $e_2 = (1, 0, -1)$ dans H.

 e_1 et e_2 sont bien indépendants.

Si $x = (a, b, c) \in H$, alors $x = -be_1 - ce_2$. Donc $H \subset e_1, e_2 > \text{et } H = e_1, e_2 > .$

 (e_1, e_2) est une \mathbb{Z} -base de H.

Exercice 2 Soit G un groupe abélien d'ordre $360 = 2^3.3^2.5$.

Par théorème de structure des groupes abéliens finis, tout groupe abélien d'ordre 360 est isomorphe à un produit de groupes cycliques de la forme :

$$\mathbb{Z}/d_1\mathbb{Z}\times\cdots\times\mathbb{Z}/d_k\mathbb{Z}$$

Où les d_i sont des entiers ≥ 2 tels que pour tout $i, d_i \mid d_{i+1}$.

Raisonnons sur les valeurs possibles de k.

k=1: Alors $d_1=360$ et $G\simeq \mathbb{Z}/360\mathbb{Z}$.

k=2. Il s'agit de répartir les 6 facteurs premiers de 360 dans d_1 et d_2 de manière à ce que $d_1 \mid d_2$. On doit forcément avoir dans d_2 au moins un exemplaire de chacun des facteurs, et au moins 2 exemplaires de 2. (Sinon, $4 \mid d_1$ et $4 \nmid d_2$, absurde). Les possibilités pour d_2 sont donc :

- $d_2 = 5.3.2^2$ et $d_1 = 3.2$. Alors $G \simeq \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/60\mathbb{Z}$.
- $d_2 = 5.3.2^3$ et $d_1 = 3$.Alors $G \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$.
- $d_2 = 5.3^2.2^2$ et $d_1 = 2$.Alors $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/180\mathbb{Z}$.

k=3. Comme chaque d_1 doit diviser le suivant, tous les facteurs premiers de d_1 doivent être des facteurs premiers de d_2 et d_3 également. Donc $d_1=2$ et $2\mid d_2$. Comme on a toujours que $2.3.5\mid d_3$, les possibilités sont :

- $d_3 = 5.3.2$, $d_2 = 2.3$ et $d_1 = 2$. Alors $G \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$.
- $d_3=5.3^2.2, d_2=2$ et $d_1=2$. Alors $G\simeq \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/90\mathbb{Z}$.

 $k \ge 4$ est impossible car aucun facteurs premiers de la décomposition de 360 n'est à puissance supérieure ou égale à 4.

Donc les groupes abéliens d'ordre 360 sont les groupes isomorphes à un groupe parmi : $\mathbb{Z}/360\mathbb{Z}$; $\mathbb{Z}/6\mathbb{Z}$ × $\mathbb{Z}/60\mathbb{Z}$; $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$; $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/180\mathbb{Z}$; $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z} \times \mathbb{Z}/30\mathbb{Z}$; $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/90\mathbb{Z}$.

Exercice 3 (p-groupes abéliens)

On note \mathcal{G} l'ensemble des groupes abéliens d'ordre p^n et \mathcal{P} l'ensemble des partitions n. Par théorème de structure des groupes abéliens finis,

$$\mathcal{G} = \left\{ \mathbb{Z}/n_1 \mathbb{Z} \times \dots \times \mathbb{Z}/n_k \mathbb{Z} \quad | \quad k \in \mathbb{N}^*; \prod_{i=1}^k n_i = p^n; \forall i \ n_i \mid n_{i+1} \right\}$$

Soit $A \in \mathcal{P}$ une partition de n. $A = (x_1, \dots, x_k)$, et on peut supposer les x_i ordonnés par ordre croissant : $x_1 \le x_1 \le \dots \le x_k$.

On pose $G_A = \mathbb{Z}/p^{x_1}\mathbb{Z} \times \mathbb{Z}/p^{x_2}\mathbb{Z} \times \cdots \times \mathbb{Z}/p^{x_k}\mathbb{Z}$.

On a bien que pour tout $i, p^{x_i} \mid p^{x_{i+1}}$ et que $\prod_{i=1}^k p^{x_i} = p^n$. Donc $G_A \in \mathcal{G}$.

Réciproquement : Soit $G \in \mathcal{G}$. Alors, par théorème de structure, G s'écrit de manière unique comme $\mathbb{Z}/n_1\mathbb{Z} \times \mathbb{Z}$

$$\cdots \times \mathbb{Z}/n_k\mathbb{Z} \quad | \quad k \in \mathbb{N}^*; \prod_{i=1}^k n_i = p^n; \forall i n_i \mid n_{i+1}.$$

$$\prod_{i=1}^{k} n_i = p^n \text{ donc pour tout } i, n_i = p^{x_i} \text{ avec } x_i \in \mathbb{N}^*.$$

$$\prod_{i=1}^{k} n_i = p^{\sum x_i} = p^n, \text{ donc } \sum_{i=1}^{k} x_i = n.$$

Donc $A_G = (x_1, \ldots, x_k) \in \mathcal{P}$.

Ainsi, on a bien défini $\phi: G \mapsto A_G$ et $\psi: A \mapsto G_A$, et il est immédiat que $\phi \circ \psi = Id$ et $\psi \circ \phi = Id$.

D'où la bijection.

Malheureusement, cela reste d'une utilité limitée, le nombre de partitions d'un entier grand étant difficile à obtenir. Cependant, cela donne une idée de l'explosion du nombre de groupes abéliens d'ordre p^n quand n est grand. Par exemple, il y a environ 2.10^8 partitions de 100 et environ 2.10^{31} partitions de 1000.

Exercice 4 (Sous-groupes de *p*-groupes abéliens)

G est un $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel de dimension n. Un sous-espace vectoriel de dimension k est un sous-groupe de dimension p^k de G, et réciproquement, tout sous-groupe de G peut-être muni d'une structure de $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel.

Nous cherchons donc le nombre de sous-espaces-vectoriels de G de dimension k.

Calcul du nombre de familles $\mathbb{Z}/p\mathbb{Z}$ -libres à k éléments dans $G:(p^n-1)(p^n-p)(p^n-p^2)\dots(p^n-p^{k-1})$.

Cependant, un même espace vectoriel peut être engendré par plusieurs bases. Le nombre de bases d'un $\mathbb{Z}/p\mathbb{Z}$ -ev de dimension k est : $(p^k-1)\dots(p^k-p^{k-1})$.

D'où le nombre de sous-groupes de cardinal p^k de G:

$$\begin{split} &\frac{\prod_{i=0}^{k-1}(p^n-p^i)}{\prod_{i=0}^{k-1}(p^k-p^i)} \\ &= \frac{\prod_{i=0}^{k-1}p^i.\prod_{i=0}^{k-1}(p^{n-i}-1)}{\prod_{i=0}^{k-1}p^i.\prod_{i=0}^{k-1}(p^{k-i}-1)} \\ &= \prod_{i=0}^{k-1}\frac{(p^{n-i}-1)}{(p^{k-i}-1)} \end{split}$$

Exercice 5

- 1. Soit (x_1, x_2, \ldots, x_n) une famille finie de générateurs de G. Par le théorème de structure des groupes abéliens de type fini, G est dénombrable. Soit $\varphi \in Aut(G)$. Alors φ est entièrement déterminée par l'image des n générateurs. Pour chaque x_i , il y a au plus une quantité dénombrable d'images possibles, donc une quantité dénombrables d'images possibles pour (x_1, x_2, \ldots, x_n) , donc pour φ .
- 2. Par théorème de structure des groupes abéliens de type fini, G est isomorphe à :

$$\mathbb{Z}^r \times \mathbb{Z}/n_1\mathbb{Z} \times \cdots \times \mathbb{Z}/n_k\mathbb{Z} \quad | \quad k \in \mathbb{N}; r \in \mathbb{N}; \forall i \ n_i \mid n_{i+1}$$

Si r = 0: Alors G est fini et donc $Aut(G) \subset \mathfrak{S}(G)$ qui est fini.

Si r=1: $G\simeq \mathbb{Z}\times H$ avec H abélien fini. Soit $(h_2,\ldots h_t)$ une famille génératrice de H. Alors, en posant $g_1=(1,0)$ et $g_i=(0,h_i)$ pour i de 2 à t, on a que (g_i) est une famille génératrice finie de G.

Soit $\varphi \in Aut(G)$. Alors φ préserve l'ordre des éléments donc tous les g_i (i>2) sont envoyés sur un éléments d'ordre fini. Les éléments d'ordre fini de G sont exactement les éléments de $\{0\} \times H$. Donc il y a un nombre fini d'images possibles pour chaque g_i . $\varphi(g_1)$ doit être d'ordre infini, donc dans $\mathbb{Z}^* \times H$. Si $\varphi(g_1) = (a, h \in H)$, alors $\varphi(G) \subset (a\mathbb{Z} \times H)$. Donc $a = \pm 1$ et $\varphi(g_1) \in \{-1, 1\} \times H$, qui est fini. φ est donc entièrement déterminée par un nombre fini de choix pour un nombre fini d'éléments. Donc $\operatorname{Aut}(G)$ est fini.

On a montré un sens de l'équivalence. Montrons la contraposée de la réciproque :

Si $r \geq 2$: Alors $G \simeq \mathbb{Z}^2 \times H$ avec H abélien de type fini. Pour tout a dans \mathbb{Z} , on pose:

 $\psi_a: \frac{\mathbb{Z}^2}{(x,y)} \xrightarrow{\mapsto} \frac{\mathbb{Z}^2}{(x+ay,y)} \text{ . } \psi_a \text{ est une application linéaire qui envoie la } \mathbb{Z}\text{-base } ((1,0),(0,1)) \text{ sur la } \mathbb{Z}\text{-base } ((1,0)(a,1)), \text{ donc est un automorphisme.}$

On pose alors, pour tout $a \in \mathbb{Z}$, $\phi_a \in \operatorname{Aut}(\mathbb{Z}^2) \times \operatorname{Aut}(H) \subset \operatorname{Aut}(G)$ comme $\phi_a = \psi_a \times Id_H$. $\{\phi_a \mid a \in \mathbb{Z}\}$ est infini et inclus dans $\operatorname{Aut}(G)$, donc $\operatorname{Aut}(G)$ est infini.

Exercice 6 (Groupe libre)

1. Soit $u \in \Sigma$, non-nul.

Si le mot est de la forme $u = g^{\alpha_1} h^{\beta_1} g^{\alpha_2} h^{\beta_2} \dots g^{\alpha_n}$, avec $\alpha_i \neq 0 \neq \beta_j$ pour tout i, j. Pour $x \in E_1, u(x) \in E_2$, donc $u \neq e$.

Symétriquement, si $u = h^{\beta_1} g^{\alpha_2} h^{\beta_2} \dots g^{\alpha_n} h^{\beta_n}$ avec $\alpha_i \neq 0 \neq \beta_j$ pour tout i, j, pour $x \in E_2, u(x) \in E_1$, donc $u \neq e$.

Si $v=g^{\alpha_1}h^{\beta_1}g^{\alpha_2}h^{\beta_2}\dots g^{\alpha_n}h^{\beta_n}$, Alors $u=g^{\alpha_1}vg^{-\alpha_1}$ est de la première forme donc $u\neq e$. Comme u et v sont conjugués, $v\neq e$.

Donc tous les mots non-triviaux ne correspondent pas à e.

$$\text{2. Pour tout } i \in \mathbb{Z}*, A^i = \left(\begin{array}{cc} 1 & sgn(i).2^i \\ 0 & 1 \end{array}\right) \text{ et } B^i = \left(\begin{array}{cc} 1 & 0 \\ sgn(i).2^i & 1 \end{array}\right).$$

On pose
$$E_1 = \{(x, y) \in \mathbb{R}^2; |x| < |y|\}$$
 et $E_2 = \{(x, y) \in \mathbb{R}^2; |x| > |y|\}$.

Pour
$$(x, y) \in E_1$$
, $A^i(x, y) = (x + sgn(i).2^i y, y)$.

On a:
$$|x + sgn(i).2^iy| > |sgn(i).2^iy| - |x| > 2^i|y| - |x| > |y|$$
, donc $A^i(x, y) \in E_2$.

Pour
$$(x, y) \in E_1$$
, $A^i(x, y) = (x, y + sgn(i).2^i x)$.

On a:
$$|y + sgn(i).2^i x| > |sgn(i).2^i x| - |y| > 2^i |x| - |y| > |x|$$
, donc $A^i(x, y) \in E_1$.

Donc Γ est libre par la question 1.

Exercice 7 (Automorphismes de D_n) 1. Soit $\psi \in \operatorname{Aut}(D_n)$. Alors ψ est entièrement déterminée par l'image de r et s (car générateurs).

Si $\psi \in \operatorname{Stab}_{\operatorname{Aut}(D_n)}(s)$, $\psi(s) = s$. r est envoyé sur un élément d'ordre n. Les éléments d'ordre n dans D_n sont les r^i où i est premier avec n (car $n \geq 3$). Cela donne donc au plus $\varphi(n)$ possibilités pour ψ .

Réciproquement, chacune de ces possibilités donne un automorphisme différent. (Et c'est bien un automorphisme).

2. Si $\psi \in \operatorname{Stab}_{\operatorname{Aut}(D_n)}(r)$, $\psi(r) = r$. s est envoyé sur un élément d'ordre 2. Les éléments d'ordre 2 dans D_n sont toutes les symétries $r^i s$ où i est dans [1, n] $(n \ge 3)$ ainsi que $r^{n/2}$ si n est pair.

Si
$$\psi(s) = r^{n/2}$$
, alors $\psi(D_n) \subset \langle r \rangle$, ce qui est absurde.

Cela donne donc au plus n possibilités pour ψ .

Réciproquement, chacune de ces possibilités donne un automorphisme différent. (Et c'est bien un automorphisme).

3. Soit $\psi \in \operatorname{Stab}_{\operatorname{Aut}(D_n)}(r)$ et $\alpha \in \operatorname{Aut}(D_n)$.

 $\alpha^{-1}(r)$ doit être un élément d'ordre n donc est un r^i avec i premier à n.

$$\alpha \circ \psi \circ \alpha^{-1}(r) = \alpha(\psi(r^i)) = \alpha(\psi(r)^i) = \alpha(r^i) = \alpha(\alpha^{-1}(r)) = r.$$

Donc $\alpha \circ \psi \circ \alpha^{-1} \in \operatorname{Stab}_{\operatorname{Aut}(D_n)}(r)$.

On a bien montré que $\operatorname{Stab}_{\operatorname{Aut}(D_n)}(r) \lhd \operatorname{Aut}(D_n)$.

4. On note $R = \operatorname{Stab}_{\operatorname{Aut}(D_n)}(r)$ et $S = \operatorname{Stab}_{\operatorname{Aut}(D_n)}(s)$.

Par la question précédente, $R \lhd \operatorname{Aut}(D_n)$.

Si $\psi \in R \cap S$, alors ψ fixe r et s, c'est à dire fixe tous les générateurs de D_n . Donc $\psi = Id$. D'où $R \cap S = \{Id\}$.

Soit $f \in \operatorname{Aut}(D_n)$. On pose $\beta \in \operatorname{Stab}(r)$ définie par $\beta(r) = r$ et $\beta(s) = f(s)$. On pose $\alpha \in \operatorname{Stab}(s)$ définie par $\alpha(s) = s$ et $\alpha(r) = \beta^{-1}(f(r))$. Il est alors facile de vérifier que $f = \beta \circ \alpha \in RS$. Donc $\operatorname{Aut}(D_n) = RS$.

Par théorème de produit semi-direct : $\operatorname{Aut}(D_n) = \operatorname{Stab}_{\operatorname{Aut}(D_n)}(r) \rtimes \operatorname{Stab}_{\operatorname{Aut}(D_n)}(s)$.

- 5. $Card(Aut(D_n)) = n\varphi(n)$.
- $\text{6. On note } \gamma: \begin{array}{ccc} G & \to & \operatorname{Int}(G) \\ g & \mapsto & \delta_g \end{array} \text{ où } \delta_g: x \mapsto gxg^{-1}.$

 γ est bien un morphisme et est surjectif.

 $\ker \gamma = Z(G)$, donc par théorème d'isomorphisme, $\operatorname{Int}(G) \simeq G/Z(G)$.

7. Cas n=3. $Card(Aut(D_3)) = 3\varphi(3) = 6$.

$$Z(D_3) = \{e\} \text{ donc } \operatorname{Int}(D_3) \simeq D_3 \text{ et } Card(\operatorname{Int}(D_3) = 6.$$

Comme $Int(D_3) \subset Aut(D_3)$, on a que $Aut(D_3) \simeq D_3$.

Exercice 8 1. C'est essentiellement un rappel : On a déjà vu que $\mathfrak{A}_n = \langle (1ij) \rangle$, que les 3-cycles sont tous conjugués dans \mathfrak{A}_n (On l'a vu dans \mathfrak{A}_5 , c'est pareil dans \mathfrak{A}_n pour $n \geq 5$). Donc, si $H \triangleleft \mathfrak{A}_n$ contient un 3-cycle, il les contient tous parce qu'il est stable par conjugaison, et contient donc le groupe engendré par ces 3-cycles, c'est à dire \mathfrak{A}_n .

2. $\tau \sigma \tau^{-1} = (12)(45) \dots$ donc est différent de σ . D'où $\rho_1 \neq Id$.

H stable par conjugaison donc $\tau \sigma \tau^{-1} \in H$ et donc $\rho_1 \in H$.

Calculons les points fixes de ρ_1 et de σ . Soit x un point fixe de σ supérieur ou égal à 6. $\rho_1(x) = x$, car x n'est dans le support d'aucune permutation parmi $\tau, \tau^{-1}, \sigma, \sigma^{-1}$.

 σ ne fixe pas 1,2,3 ou 4, mais fixe éventuellement 5.

 $\rho_1(x)=\tau\sigma\tau^{-1}\sigma^{-1}(1)=\tau\sigma\tau^{-1}(2)=\tau\sigma(2)=\tau(1)=1.$ Donc 1 est un point fixe de ρ_1 . La même chose se produit pour 2.

Donc ρ_1 a au moins un point fixe de plus que σ .

3. $\tau \sigma \tau^{-1} = (124...)\tau \gamma_2 \tau^{-1}...\tau \gamma_k \tau^{-1}$ donc est différent de σ . D'où $\rho_2 \neq Id$.

H stable par conjugaison donc $\tau \sigma \tau^{-1} \in H$ et donc $\rho_2 \in H$.

Calculons les points fixes de ρ_2 et de σ . Soit x un point fixe de σ supérieur ou égal à 6. $\rho_2(x)=x$, car x n'est dans le support d'aucune permutation parmi $\tau,\tau^{-1},\sigma,\sigma^{-1}$.

 σ ne fixe pas 1,2,3,4 ou 5.

$$\rho_2(2) = \tau \sigma \tau^{-1} \sigma^{-1}(2) = \tau \sigma \tau^{-1}(1) = \tau \sigma(1) = \tau(2) = 2$$
. Donc 2 est un point fixe de ρ_2 .

Donc ρ_2 a au moins un point fixe de plus que σ .

4. Si σ n'est pas un trois cycle, σ est d'une des formes étudiées ci-dessus. Or dans les deux cas, on a trouvé un élément non-trivial de H ayant plus de points fixes que σ , ce qui contredit la maximalité de N.

Donc H contient un 3-cycle, donc est \mathfrak{A}_n par la question 1.