Théorie des groupes

Correction feuille 1

Exercice 1 1. Oui, \mathbb{R} est non-vide, Associativité facile, neutre : 1, inverse : 2 - x.

- 2. Non, $x \mapsto 0$ n'a pas d'inverse.
- 3. Non car 2Id n'a pas d'inverse.
- 4. Oui. Notons E l'ensemble. Sous-groupe de $\operatorname{GL}_n(\mathbb{R})$: Pour $A_1A_2 \in E$, $\exists B_1, B_2 \in M_n$, (\mathbb{Z}) tels que $A_1B_1 = B_1A_1 = A_2B_2 = B_2A_2 = I$. Donc B_2 est inversible dans $M_n(\mathbb{Z})$. $(A_1A_2^{-1})(B_2^{-1}B_1) = I$ et donc $A_1A_2^{-1} \in E$.

Exercice 2 Reste uniquement à vérifier que l'inverse est unique. h = hgh' = h'. Donc c'est bien un groupe.

Exercice 3 1. Non, 1 + 1 = 2.

- 2. Non, la loi n'est pas interne $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix}$.
- 3. Oui. Notons G l'ensemble. Non-vide car Id est dedans. Si $g,h\in G$, alors $((gh^{-1})^t)^{-1}=((h^{-1})^tg^t)^{-1}=(hg^t)^{-1}=(g^t)^{-1}h^{-1}$. Donc $gh^{-1}\in G$, qui donc bien un groupe.
- 4. Non, $\{e, (12), (13), (23)\}$ n'est pas un sous-groupe de S_3 .

Exercice 4 1. Soient $g, h \in G$. ghgh = e, donc hgh = g et gh = hg.

- 2. Soient $g, h \in G$. Appliquer l'égalité à g^{-1} et h^{-1} .
- 3. $ghgh = g^2h^2$, d'où hg = gh.
- 4. On pose G l'ensemble des matrices triangulaires supérieures à diagonale unitaire de $\mathbb{Z}/3\mathbb{Z}$. Soit $g \in G$. Alors :

$$g = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}, \quad g^3 = \begin{pmatrix} 1 & 3a & 3b + 3ac \\ 0 & 1 & 3c \\ 0 & 0 & 1 \end{pmatrix} = Id_3$$

Donc tous les éléments de G sont de cube trivial ce qui assure a fortiori de vérifier la relation demandée.

De plus:

$$\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Donc G est bien non-abélien.

Exercice 5 Si pas fini : Non, contre-exemple : $(\mathbb{N},+)$ Si fini : Oui, pour $g\in H$, l'ensemble $\{g^n,n\in\mathbb{N}\subset H\text{ est fini donc il existe }n< m\text{ tel que }g^n=g^m\text{. donc }e=g^{m-n}\in H\text{ et }g^{-1}=g^{m-n-1}\in H\text{.}$

Exercice 6 Il suffit de vérifier.

Exercice 7 Par l'absurde. Si aucun n'est inclus dans l'autre, il existe $x_1 \in H_1 \setminus H_2$ et $x_2 \in H_2 \setminus H_1$. Si $x_1x_2 \in H_1$, alors $x_2 \in H_1$. Absurde Si $x_1x_2 \in H_2$, alors $x_1 \in H_2$. Absurde. D'où le résultat. Exemple : $(\mathbb{Z}/6\mathbb{Z}, +)$ avec $\{0, 3\}$ et $\{0, 2, 4\}$.

Exercice 8 Soit $\phi: a \mapsto ga$. $\phi \circ \phi = Id$.

 $g \neq e$, donc pour tout $x \in G$, $\phi(x) \neq x$.

On peut donc partitionner G en couples $x, \phi(x)$, d'où un cardinal pair.

Exercice 9 On partitionne G en ensembles $\{x, x^{-1}\}$. Ces ensembles sont tous de cardinal 2, sauf $\{e\}$ et ceux pour tous les x d'ordre 2. Comme le cardinal de G est pair, il y a au moins un deuxième ensemble de cardinal 1, c'est à dire un élément d'ordre 2.

Exercice 10 La CNS est $H_1H_2 = H_2H_1$.

Nécessaire : H_1H_2 groupe $\Rightarrow \forall a, a^{-1} \in H_1H_2$.

 $a^{-1} = xy$, donc $a = (xy)^{-1}$ et $a = y^{-1}x^{-1}$. Donc $a \in H_2H_1$.

Suffisante : C'est bien non-vide (contient e).

Soient $a, b \in H_1H_2$. $a = a_1a_2$ et $b = b_1b_2$ avec $a_1, b_1 \in H_1$ et $a_2, b_2 \in H_2$. $ab^{-1} = a_1a_2b_2^{-1}b_1^{-1}$. En notant $y = a_2b_2^{-1}$ et $x = b_1^{-1}$, il existe $x' \in H_1$ et $y' \in H_2$ tels que yx = x'y'.

D'où $ab^{-1} = (a_1x')(y') \in H_1H_2$. La condition est bien suffisante.

Exercice 11

- 1. Non : Inverses à gauche et à droite différents.
- 2. Non: -1 n'a pas d'inverse.

Exercice 12 On montre que c'est un sous-groupe de (\mathbb{C}, \times) :

 $1 \in \Gamma$

Soient $a,b\in\Gamma$. Ce sont des racines de l'unité donc elles s'écrivent $a=e^{\frac{2i\pi k}{n}}$ et $b=e^{\frac{2i\pi k'}{n'}}$. D'où $ab^{-1}=e^{\frac{2i\pi k}{n}+\frac{2i\pi k'}{n'}}=e^{2i\pi\frac{kn'+k'n}{nn'}}\in\Gamma$. Donc Γ groupe.

Exercice 13

- 1. $x,y\in C_G(S)$. Alors $y^{-1}\in C_G(S)$. On en tire $g=yx^{-1}gxy^{-1}=(xy^{-1})^{-1}g(xy^{-1})$. et donc $xy^{-1}\in C_G(S)$.
- 2. $g \in Z(G) \Leftrightarrow \forall x \in G, \ gx = xg \Leftrightarrow \forall x \in G, \ g \in C_G(\{x\}).$
- 3. $Z(H) = C_H(H) = \{ y \in H, \forall a \in H, ya = ay \}.$

 $a \in H \Leftrightarrow xa = ax$

Donc $\forall a \in H, xa = ax \text{ et donc } x \in Z(H).$

Exercice 14 Groupe:

neutre : fct cste égale à e (et donc non-vide).

Associativité par associativité de la loi de G.

Inverse de $g, h: x \mapsto (g(x))^{-1}$

 G^E abélien \Rightarrow les fonctions constantes commutent \Rightarrow G abélien.

G abélien $\Rightarrow \forall fg \in G^E \ \forall x \in X, \ f(x)g(x) = g(x)f(x) \Rightarrow \forall fg \in G^E, \ fg = gf \Rightarrow G^E$ abélien