Théorie des groupes

Feuille d'exercices 4

10 octobre 2016

Exercice 1 Soit G un groupe fini et n entier premier avec |G|.

Montrer que $\Phi: g \mapsto g^n$ est une permutation de G.

Exercice 2 Pour $n \geq 1$, on note Γ_n l'ensemble des racines $n-i \`{e}mes$ de l'unité dans \mathbb{C} .

- 1. Montrer que pour $n, m \ge 1$, on a $\Gamma_n \cap \Gamma_m = \Gamma_{pqcd(n,m)}$
- 2. Calculer $pgcd(X^n 1, X^m 1)$ dans $\mathbb{C}[X]$. Et dans $\mathbb{R}[X]$?

Exercice 3 Soit G un groupe non réduit à $\{e\}$. Montrer que

G d'ordre p premier $\Leftrightarrow G$ admet uniquement G et $\{e\}$ comme sous-groupe

Exercice 4 (Groupes abéliens d'ordre pq) Soient p et q deux nombres premiers distincts. Montrer que tout groupe abélien d'ordre pq est cyclique.

Exercice 5 Soit G un groupe, g et h des éléments de G d'ordres finis. L'ordre de gh est-il fini?

Exercice 6 Déterminer $Aut(\mathbb{Z}/6\mathbb{Z})$.

Exercice 7 Soient H et K deux sous-groupes d'un groupe G. On suppose que [G:K] fini.

- 1. Montrer que $[H:H\cap K]\leq [G:K]$, et donc que $[H:H\cap K]$ est fini.
- 2. Si G = HK, montrer que l'on a égalité dans la question précédente.
- 3. On suppose en plus que [G:H] est fini (et toujours G=HK). Montrer qu'alors

$$[G: H \cap K] = [G: H][G: K].$$

Exercice 8 (Sous-groupes de type fini)

Un groupe est dit de **type fini** si il est engendré par un nombre fini d'éléments.

Soit G un tel groupe et H un groupe d'indice fini dans G. Montrons que H est également de type fini.

On note $\{x_1, x_2, \dots, x_n\}$ une famille engendrant G et pour simplifier, on notera $x_{i+n} = x_i^{-1}$ et peut considérer que $G = \langle x_1, x_2, \dots, x_{2n} \rangle$.

- 1. On note $G = \bigcup_{1 \leq j \leq m} Hg_j$ où $\{g_j\}$ est une famille de représentants des classes à droite de G modulo H (avec $g_1 = e$. Montrer que pour tout couple $(i,j) \in [\![1,2n]\!] \times [\![1,m]\!]$, il existe un unique $h_{ij} \in H$ et un unique k tel que $g_j x_i = h_{ij} g_k$.
- 2. En déduire que H est de type fini engendré par les $\{h_{ij} | 1 \le i \le 2n, 1 \le j \le m\}$.

Exercice 9 (Groupe diédral infini)

On se place dans \mathbb{R} espace affine euclidien, et on note $\mathcal{I}(\mathbb{R})$ l'ensemble des isométries de \mathbb{R} .

On note $G = \{ \varphi \in \mathcal{I}(\mathbb{R}); \ \varphi(\mathbb{Z}) = \mathbb{Z} \}.$

- 1. En posant $\tau: x \mapsto x+1$ et $\sigma: x \mapsto -x$. Montrer que $G = \{\tau^n, \tau^n \circ \sigma; n \in \mathbb{Z}\}$.
- 2. En déduire que G est un sous-groupe de $\mathcal{I}(\mathbb{R})$.

Ce groupe est appelé le groupe diédral infini et est généralement noté D_{∞} .

3. Montrer que pour tout $\alpha \in \mathbb{R} \setminus \mathbb{Q}$, D_{∞} est isomorphe au sous-groupe de $\mathcal{I}(\mathbb{C})$ engendré par la symétrie $s: x \mapsto \overline{x}$ et la rotation r de centre 0 et d'angle $2\pi\alpha$.

Exercice 10 Quels sont les morphismes continus de $(\mathbb{R}, +)$ dans (\mathbb{C}^*, \times) ?