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1 Introduction

In this paper we aim to develop a local Malliavin calculus with respect to a
Hawkes process. Malliavin calculus is a mathematical framework used to study
the smoothness of random variables and functionals of stochastic processes, es-
pecially those driven by Brownian motion. The central concept is the Malliavin
derivative, a type of derivative that extends the classical notion of differentia-
tion to the space of random variables. This approach allows one to analyze the
regularity and differentiability of random processes, providing powerful tools for
studying stochastic differential equations (SDEs) and probabilistic systems. The
key ideas of Malliavin calculus were introduced by Paul Malliavin in the 1970s.
There is a huge literature on this subject, encompassing Malliavin calculus for
Lévy processes (see among others [16] 2, @, 4] and the references therein).

Hawkes processes have been introduced by Alan Hawkes in the 1970s as a
class of self-exciting point processes. They are widely used to model events
or occurrences where the occurrence of one event increases the likelihood of
subsequent events in the near future. These processes have been used to model
earthquakes, and for some time now, they have been experiencing a renewed
interest due to their applications in finance and actuarial science [T, [7], [13].

A Hawkes process is characterized by an intensity function that depends on
both a baseline intensity and a history of past events. More specifically, the
intensity at time t is given by:

()= A+ / w(t — 8)dN,
(0,¢]

where A is the baseline intensity, u is a function that describes the impact of
past events, and N is the counting process that represents the occurrences of
events. The key feature of Hawkes processes is that the function p is typically
a non-negative function, which means that past events increase the probability
of future events — hence the term ”self-exciting.”

Recently a Malliavin calculus with respect to the Hawkes process N is devel-
oped in [I2] and [I1I]. Roughly speaking, the main ingredient consists to perturb
the system by adding a particle (or a jump) (see [I2, Lemma 3.5]) leading to
a expansion formula for functionals of the Hawkes process [12, Theorem 3.13]).
Let us mention that the derivative operator is not local. With these results,
they are able to develop a Stein method (see [I1]) and to compute some prices
of financial or insurance derivatives (see [12] Section 4]).

Our method is different and follows the approach of Carlen-Pardoux [6]. We
perturb the jump times and formally differentiate with respect to these jump
times. This allows us to define a local derivative, satisfying the chain rule. We
apply it to the study of absolute continuity for the law of Hawkes functionals
and to the computation of Greeks.



Breakdown. The first step of our construction of a Malliavin derivative with
respect to a Hawkes process is to define a directional derivative with respect to a
function m € H, where H is the ad hoc Cameron-Martin space. An integration
by parts formula is obtained thanks to the absolute continuity property of the
law of the perturbed jump times w.r.t. the initial probability measure (see
Proposition Theorem Proposition and Corollary .

The second step is to define the Malliavin derivative D in all directions by
considering a Hilbert basis of H. We obtain a local Dirichlet form (D!?, £) which
admits a carré du champ I" and a gradient D (see Proposition. Therefore we
get similar properties to the directional derivative as the chain rule. Moreover
we are interested in the associated divergence operator §, for which we get an
explicit expression of §(u) when wu is predictable (see Proposition Remark
and Corollary .

We then establish an absolute continuity criterion: conditionally to I'[F] =
(T[F;, Fi))1<ij<a € GL4(R), the random vector F = (Fy,---,Fy) € (D1?)4
admits a absolutely continuous law with respect to the Lebesgue measure on R?
(see Theorem [£.5] and Corollary [4.6).

This criterion is firstly applied to the solution of stochastic differential equa-
tion driven by the Hawkes process (see Theorem Corollary and Propo-
sition . As a second application, we compute Greeks for a financial payoff
when the underlying process is driven by the Hawkes process (see Proposition

517,

2 Framework and directional derivation

2.1 Setting and first notations

We consider the probability space (€2, F,P) where Q is the space of cadlag

w(t) = Z il[ti,ti+1)?

trajectories

with 0 <t < - <ty <---.

We define

Ni(w) = ZAwS, t>0,
s<t

the process which counts the jumps between 0 and ¢, where Aw, = ws — ws_
and ws_ = lim,_, - wy,.

We assume that, under P, (Ni)ier , is a Hawkes process with conditional
intensity

“+oo N¢—1

AT(t) = A+/( )u(t— $)AN, = X+ " p(t = T)lgsmy = A+ Y plt —Tp).
0,t

i=1 i=1

Throughout this paper, we suppose that



Assumption 1.
o A€ (0,400)

o 1 : Ry — Ry differentiable with bounded derivative and such that
+o0
Il = [ nttya <1
0

We introduce (T;);en~ the jump instants of the Hawkes process N, and, for
any n € N, 0 <t; <---<t, and s € R}:

n—1

i=1

Thus, for any n € N*, on the event {N; = n},

We consider the P-complete right continuous filtration (F;)o<¢<r generated
by the Hawkes process N where T' € R is a fixed time horizon.

We apply the same approach as in [6] to define the directional derivative
using the reparametrization of time with respect to a function in a Cameron-
Martin space.

Let L2([0,T]) be the usual space of square integrable function on [0, 7] with
respect to the Lebesgue measure and H be the closed subspace of L?([0,T])
orthogonal to the constant functions, i.e.,

= m 2 Tms S =
%{ EL([O,T])/O (s)d 0}. (1)

We denote m = [; m(s)ds for every m € #, then m(0) = m(T) = 0. In
a natural way, H inherits the Hilbert structure of L?([0,7]) and we denote by
[[l3 and (-, -} the norm and the scalar product on it. From now on in this
section, we fix a function m € H. The condition fOT m(s)ds = 0 ensures that
the change of intensity that we are about to define simply shifts the jump times
without affecting the total number of jumps. Let us define

—a  ifm(s) < -5
me(s) =< m(s) if g—sl <m(s) < é;
= if m(s) > 4.
and m. € H such that
_ IR
me(s) = me(s) — = ; me(s)ds (2)



Lemma 2.1. We have the following convergence
[lm — me||lyg — 0.
e—0

Proof. We have ||m — me||l < ||m — me||n + ||me — me||y with for the first
term, for almost every s € [0, T,

1 . 1
mo) g i MO <og
m(s) —me(s) = 0 if R <mf(s) < % (3)
1 ¢ 1 <
m(s) — = i 3 S m(s)

Thus
~ 1
Im(s) —me(s)| < Im(s)] + 32 ) limeiz2y < 2[m(8)|Lgjm(s) = L3
Therefore, by dominated convergence theorem,
l[m — mellye — 0.
e—=0

Indeed [m(8)[*Ljm(s)> L3 —; 0and ()2 L{m(s)= 3 < Im(s)[* € LH([0,T1).

= 3e

Now for the second term, as fOT m(s)ds = 0 and by Cauchy-Schwarz inequality,

/0 e (s)ds

—||me — m||ly — 0.
e—0

VT

1

T

[me —melln = =

T
/ (e (s) — m(s))ds
0

1
T
1

IN

We define the reparametrization of time with respect to m. as follow
S
7(5) = 5 + efa(s) :/ (1+emo(u))du, s€R,.
0

Notice that 7.(0) = 0,7.(T) = T, and since 1 4+ emc(s) € [3,2] C R}, 7. is an
increasing function hence invertible so the number and the order of jump times

between 0 and T remain unchanged. Moreover, a direct calculation gives

—1 _ ° 1
Vs €[0,T], 77 (s) = /0 1 +6m5(rs_1(u))du.

Let 72 : © — Q be the map defined by, for any w € 2,
(Te(w))(s) = w(e(s)),
T-F = FoT. for all F € L*(Q),

and ¢ be the probability measure P7_~! defined on Fr.



2.2 Directional derivation

Definition 2.2. We denote

D, = {F € L*(Q): OT-F

Oe 0¢
For F € D%, D, F is defined as the limit
OT.F

o1
Dp F = W‘EZO = lim E(EF - F). (4)

le—o = i 1(7;1*—1 — F) in L*(Q) exists} .
E—

Definition 2.3. Let define the set S of “smooth” functions. We say that a map
F : Q — R belongs to S if there exists a € R, d € N* and for anyn € {1,--- ,d},
a function f, : R™ — R such that:

1. The random variable F' can be written

d
F:al{NT:0}+an(T17T2’-.. 7Tn)1{NT:n}- (5)
n=1
2. Foranyn € {1,--- ,d}, the function f, is smooth with bounded derivatives

of any order.
Remark 2.4. The space S is dense in L?(Q, Fr,P).
Here are some basic properties of directional derivatives on S.
Lemma 2.5. Let j e N* and T; =T; AT. Then T; € D%, and
D, T; = —m(T}).
Proof. We first remark that, for any w € ),
Tjwor) = 77 Y(Tj(w)).

_ _ _ _ T (w)
|TeT5(w) = Tj(w) + em(T) ()| = |(T 0 To)(w) = T5(w) + 6/0 m(t)dt

Te(Se) .
= |To(8e) — 8¢ — 5/ m(t)dt|, with s. =717 1(T;(w))
0

IN

Te(Se) Te(se)
Te(Se) — 8c — 5/ me(t)dt| + 5/ |me(t) — m(t)|dt
0 0

Te(8e) Te(8e)
/ me(t)dt| + E/ |me(t) —m(t)|dt
Se 0

T T
gex/fs(sg)—sew% \mg(t)Pdt+5/0 I (t) — m(t)]dt.

<e




We have

7e(se) = sl = Tj(w)—se = /OTj(W) (1 1+ smgl(fgl(u))> .

/oT (1 1+ Emgl(rel(u))> du =3 0.

Moreover lim,_, fOT |me(t) —m(t)|dt = 0 and fo Ime(t) |2dt is bounded so that
we get by a dominated convergence argument that T, belongs to D and
D, T; = —n(T;). 0

IN

Proposition 2.6. Let n € N* and f : R — R a function of class C*. Then
f(T1,Ty,---,T,) belongs to DY, and

of
ot

j=1

Dmf(TlaT27"' 7Tn): (T15T27 7Tn)ﬁ7‘(Tj)

Thus S C DY and for any F € S of the form ,

ZZaf" (T4, T )T Ny

n=1j=1
Proof. By the definition of D,, given by we have

_ T f(Ty, T, T
Dmf(T17T27"'aTn): f( L 2 )

de le=o
[ T
- %f(,];TlvtreTQa' o aﬁTn)|E:0 - = atj 857;TJ|E:O
"of - of -
:Zait]DmTj = - : 8t (T17T2’ aTn)m( j)
Jj=1 j=1

where the last equality is due to Lemma We deduce the last assertion by
linearity using the fact that Ny o T = Np. O

Proposition 2.7.
1. If F,G € § then FG € § and D,,,(FG) = (D, F)G + F(D,,G).

2. We have the chain rule: If Fy, Fy,--- ,F,, € S and ® : R® — R is a smooth
function then
q)(F17F27"' 7Fn) €S

and
— 0P
Dy ®(Fy, By, Fo) = 0 o (Fy, Fay o Fy) D .
J

Jj=1

Proof.



1. We assume that F,G € §. Then

and

So

d
F = al{NT:()} + Z fn(Th T 7Tn)1{NT:n}

n=1

Thus FG € § and

Don(FG)

d
G =blinp=oy + D gn(Ti - To)lnp=n)-
n=1
d
FG = abl{NT:()} + Z(fn X gn)(T17 R >Tn>1{NT:n}~
n=1
d
abDlinp =0} + Y Dnl(fa X g) (Tt To) Lz—my]
n=1
L O X gn)
0- Z Z :lgt. (T, To)(T) 1 Np=n)
J

Moreover

(D F)G

n=1j=1 Ot
— Ofn _
Z - T(Tlv 7Tn)m(Tj) gn(Tla T 7Tn)1{NT:n}
n=1 j=1
d n ag
3| =20 o T TR | ST To) L vg—m)
n=1 j=1
d
> Do fu(Tr, -+ T)gn(Ths -+ To) L ing =)
n=1
d
+ Z Dmgn(Th o aTn)fn(Th T ,Tn)l{NT:n}'
n=1

d
= (aDml{NT—O} +ZDm[fn(Tla 7Tn)1{NT—n}]>

n=1

d
x <b1{NT_o} + > gn(T1, ’Tn)l{NT—n}>

n=1

d
0+ Z Dmfn(Tl, to aTn)gn(Tla T 7Tn)]-{NT=n}

n=1



and
d
G) = Z Dmgn(Th to 7Tn)fn(T1a to 7Tn)1{NT:n}'

Thus we obtain

Din(FG) = (D F)G + F(DyG).

. We assume that F,--- ,G € S and ® : R?> — R smooth. Then

J d
(FG) = @ (al{NTzo} + Z ST, Ta) YNp=n}, Dl {Np—0) + Zgn(Tla o
n=1 n=1
d
= (0, )1 (g0} + D O(fa(Trs+ T0)s gn (T, To))lnp—n)
n=1
d
= ®(a,b)1{np=0} + Z (frs gn)) (T, 1)) Y Np=n }-
n=1

Thus ®(F,G) € S and, according to the Proposition

Dm(q)(fnvgn))(Th T aTn)

n

8<I> an Ogn N
Z( fm n +7(fm n) atj)(Tlv"' aTn)m(Tj)

0P A fn R
:aﬁfmgn)(le-»Tn)( Jla{ (T, -,Tn)m@))

+Z§’<fn,gn><T1,~--,Tn>( ZZWTL ,Tnm(Tj))
= O ()T T D fu(Ts, - T
O ) (Ti T DTy o).
Then
Dy (®(F,G)) = @(a,b)Dinliny=0y

d
0o
+ z:l a?(fmgn)(Tlv e 7Tn)Dmfn(T17 e 7Tn)1{NT:n}

d
0P
+ Z ?y(fnvgn)(Tlv te 7Tn)-Dmgn(T1; o 7Tn)1{NT:n}~
n=1



Moreover

o
Z(F,G)D,,F
ax( G)
oL d d
=3 (al{NT_o} + Z Ty, To) Y Np=n}, Dl Np—0y + Zgn(T17 o To) gy
n=1 n=1

d
" (aDml{NT—o} + 2 Dinfu(T1, 7Tn)1{NT_"}>

n=1

L 99
= Z 7(fn(T17 >Tn)agn(Tla"' >Tn))Dmfn(T1a"' 7Tn)1{NT:n}

n=1 r
and
d
o o
Fy(Fv G)DmG = Z 7y(fn(T1a T 7Tn)7gn(T1» T 7Tn))Dmgn<T17 T 7Tn)1{NT:n}'
n=1
Thus P P

The case with more than two random variables is left to the reader.

2.3 Absolute continuity of P° w.r.t. P

Evoke that P is defined at the end of Section Let E® be the expectation
under the probability P°.

Let k € N"and 0 < t; < to < -+ < tg, knowing Th = t1,--- , T = ti
the process (N — Ny, )i>4,, is an inhomogeneous Poisson process with intensity
A*(s;t1, -+, tx). We deduce the following conditional link for ¢ > #:

P(Tk+1 > t|T1 = tl, v ,Tk = tk) = ]P)(Nt — Ntk = 0|T1 = tl, o ,Tk = tk)
o= S N (st ) ds

Thus the density of Ty11 knowing 77 = t1,--- , T =ty is

N (sitn,etk)

t— )\*(tvtla 7t/€)eiftk dsl{t>tk}'

We deduce that (71, -, Tk, Tk+1) admits for density

k+1 .
MRy g d
(tla"' 7tk+1) <H )‘*(tlvtla 7tk)> € Jo (sit1 k) S]-{0<tl<-~~<tk+1}7
=1

where we used the fact that A\*(s;¢1,--- ,tx) = A (s;t1,- -+ ,ti—1) if s < t;.

10



Let n € N* and a smooth function f : R" — R, we have

]Eg[f(Tla e 7Tn)1{NT:n}]
=E[(fo @ " )(Th, - s Tn) {1, <T<T 11}

n+1
:// (foq);)tlv 7 <H>\ tzath ) n))
0<t1 <+ <tn <T<tp41

Indl yx(gp ;
xe fo A" (s5t1,ee itn) d‘sdtl - dtn+1

n
- // (fo @) (b1, o) [[ A (st t)dty - -,
0<t1<-<tn,<T Pt
o . "
X / A*(tn—&-l;tl; ce ,%)6* Jo TN (5t ,tn)deth
T

// (J OIEI)(tla“' ;tn)(ﬁn(tl,”' 7tn)dt1dtn
0<ty <+ <tn <T
// flug, - un)(pn o @) (ug, -+ ,uy,)|det J®E|du1 coodu
0<uy <--<up <1

:// f(ul?"'7“”)(90710(1)6)(’“17"';”71)
O<ur < <un, <T

n

x (1+5m8(ui))du1~~dun

E[f T17 1{NT—'IL}Z ]

where
Qe (ur, - yun) = (ur +eme(ur), -+, up + eme(un)), (6)

Qon(tly"' 3tn) — (HA*(t“tl, , ))e fo Stl,- tn)ds, (7)
i=1

det Jp_ denotes the determinant of the Jacobian matrix of ®. and

©Pn © q) T17 o a -

Z: = ( (I+em 8
" Pn (T17 7 Zl;[ 6 ’L ( )
Let us emphasize that Assumption [I}is used to ensure that: A\*(s;t1,--- ,t,) >

A > 0. This yields:
Proposition 2.8. P is absolutely continuous with respect to P with density

d]P’f =
ZZ Linpeny == G°.

Remark 2.9. This series converges in L' uniformly in e because for f =1

+o0 e
G = Y ElZ npmm] = D B[ ngmny] = 1
n=0 n=0

11



Remark 2.10. In case of the Poisson process, p, is constant, equal to \" and
we have again the result obtained in [6] for standard Poisson processes

Nt
dpe
i=1

2.4 Limit behavior of the density G* when ¢ — 0
We begin with a first result about the limits when ¢ tends to 0.

Proposition 2.11. For any n € N*, a.s.

lim Z; = lim G* = 1.
e—=0 e—=0

Proof. Firstly we have the almost surely convergences

Vie{l,---,n}, em(T;) L= 0.

e—0
Indeed we use and to get

m(s) —me(s) =

_ I _
m(s) — me(s) + T /0 (m(r) — me(r))dr.

As T; < 400 a.s., for ¢ € RY small enough,

1

m(@) = meT) = |z [ ) = e()ar

1

<7 [ Ime) = lar

<

1 -
ﬁ”m —me|lu . 0.
See Lemma [2.11 Thus

eme(T;) = em(T;) + e(me(T;) — m(T5)) :ﬁ 0

So we have the convergence of the product in

n

[[@+ema () 5 1.

- e—0
i=1

Secondly for the convergence of @, for a.e. s €10,7],

T
7(s) — e(s)| < /0 m(r) = me(r) dr < VTm = me |l — 0.

In particular we have the uniform convergence on [0, 7] of m. to m. Then, for

a'nyie {L 7n}a

ee(T3) = em(T3) + (e (T3) — m(T)) 25 0.

e—0

12



Moreover

(Pn((I)e<T1a"' 7Tn)) = Qon(Tl +5m5(TI)a"' >Tn+5ms(Tn))

= JIN@ +eme(T)i Ty + eme(Th), - T + eiie(T))
j=1

Thus, as the function p is continuous,
San(q)a(Tlv e 7Tn)) (l-S; SOn(Tlv o 7Tn)
e—0

Therefore the a.s. convergence of Z7 is proved. We have the same convergence
for G° by dominated convergence theorem because

+oo +oo
Z]E[ngzl{NT:n}] = ZE[l{NT:n}] =1 < 4o0.
n=1 n=1
This achieves the proof. O

2.5 Integration by parts in Bismut’s way

Proposition 2.12. Under our setting

aGe _
¥|5:0 = /(O,T] ((m, s) + m(s)p(T — s) + m(s))dN
where
1 o
woms) = o @) Ao 6 —nan, )

S (wds) — () (s — )
A S (T — s)
Proof. Let n € N* and let’s work on the event {Ny = n}. From (8], we have

(n 0 @) (Th, ..., Tn) T
7: = ) .
" SD”(T177TTL) 71;[1( +€m€( Z))
Thus, for any ¢ € R, according to Proposition 7% as. converges to
Z% =1 and

ZZ_]- _ ((PHOCDE)(le'-an)_(Pn(Tlv‘”an) - _
e con(Th, - Ty) H(l +eme(T))
+§ (ﬁ(l +eme(Ty)) — 1) . (10)

13



For the first term

(o @) (Ty,....,Tn) —on(Th,. .., Ty)
eon(Th,..., Ty)
on(Th +eme(Th), ..., T +eme(Th)) — on(Th, ..., Ty)
eon(T1, ..., Ty)

6@n ~ ~ emE(Ti)
— T T),...,T, T,)) ——————
Z/o oL, (Ty + aeme(Th), ..., Ty + acme( ))éwn(Th"' )

do

n /\6 TZ 1 6 n N R
Z el P (T + aeie(TY), ..., T + acie(Ty))do

i—1 Qﬁn(Th' o aTn) 0 6t’L

= UGN TP

e=0 on(T1,...,Ty) O
where the almost surely convergence is justified by, for any i € {1,...,n}, m.(T;) L)i')
E—
_ dpn, . o :
m(T;) and % bounded because p admits a bounded derivative. And, as in

the proof of P;oposition 2.11

n

g(l +eme(T3)) “% 1.
For the second term
[[a+em(@) -1 = &Y m(T)+> > me(Tyme(Tj) + - + " [[me(Th).
i=1 i=1 1<i<j<n i=1
Thus
H?:1(1 +em(T3)) — 1 -

€
i=1 1<i<j<n

with, for any i € {1,...,n},m.(T;) =3 m(T;). Thus

e—0

- 1 T‘z -1 a.s -
Hz:l( + Emff( )) _) m(z—;)
£ e—=0 P

Therefore

n

ze — 70 a.s m(TZ) 880”
“n " “n a.s Ty, ..., 1y T;
c 3;%@1,...,%) or, e )+;m( )

14

= Y m(T)+e Y m(T)me(Ty) + -+ [[me(T0).
=1



with, for any ip € {1,...,n}and 0 <t; < --- <t, <T,

1 Opn,
(pn(tl, . ,tn) 8ti0

0
= ln((pn(tla . 7tn))

(t1,...,tn)

ot
n a . a T .
= ;at% In(\*(tiste, ... tn)) — o (/0 A (S,tl,...,tn)d8>

1 oN* 1 oON*

i=ip+1

d T
78-61.0 (A A (S,th...,tn)dS) .

Evoke that for any i € {igp +1,...,n} and s € [0, T,

io—1
N (tigits, oo tip-1) = A+ Y pltiy — ),
j=1
1—1
A*(ti;tla"'ati—l) = )\+Z.U’(t’t_tj)7
j=1
)‘*(S;tla"' 7tn) = )\+ZH(S 7tj)1{s>tj}-
j=1
Thus
ON* s
A (tigi 1, tig 1) = > W (tig — 1),
Oty =
ON* ,
o (Caste, oot = —p(t —ty),
8%( 1 1) w( o)
T n_ T
/ A (s;ty, ... tn)ds = /\TJrZ/ (s —tj)ds
0 j=1 t;
no Tt
= /\T+Z/ pu(s)ds,
j=1"9
8 T
G [ MGsttds = T 1)
Therefore
1 Opn
L)

QDn(tl, e ,tn) 8ti0
i90—1 n
2o Wtio — 1) 3 ' (ti = tig)
n) A*

)\*(tio;tl,...,t (ti;tl,...,tn)

i=io+1

15

= — (L3 t1y -y tin—1) + — (T, . .-
)\*(tio;tla .. ~ti0—1) 8%( 0 to ) Z )\*(ti;tl, .. ~ti—1) 8ti0( ‘

tio1)



Then

. m(T; dpn
o) Ti,....T,
2:: Tl,..., n)ati(,( 1 Tn)
[ 1 n n
- YAy - Y 3 e
B )\*TZO,T1,...7 W) Ti) )\*T Ty, T)
o=1 io=1 i=ig+1
Zm(Tio)u(T—tm)
n — n io—1
- S eSS i T
o w )\* Tzo’T17~-~7 n o1 i1 TzO,Tl,...,Tn)
Zﬁz (T —Ty,)
n 1 7;071
= m(Ty,) —m(Ty)) ' (T, — T (T, ) (T — T;
5 (e S50 RO ) < -
0= J=
Finally
Zg_ZO a.s " 1 bl '
Sl \ T 2, () = A Ty =)+ AlTihuT = Fig) + m(Tro)
0= =

oG*
Then we would like the same result for B l|e=0. We have, according to Propo-
3

sition 211}

0G® . GE—-1 G lNp=n} — Linp=n}
Oe Iszol{NT:"} = € Linr=ny = limy €
- ZolNp=ny — YNp=n} . Z5—1
= I : = iy =T =)
0Z¢
= 5 “e=0l{Nr=n}-
Therefore
aG* X 0Ge
@‘620 = Z@E:Ol{NT:n}
n=1
X oz
= Z e |s Ol{NT =n}-
n=1
NT 1 1071
= 2\ T, Ty 2 T = AT T =)+ (T )T = Ti) + (T
0= =
= / ((m, 8)dNg + m(s)u(T — s) + m(s))dNg
(0,T]
where 1) is given by @D O

16



Theorem 2.13. For any F' € S,

0G*

E[D,,F] =E { o

lE OF:|

Proof. We consider F' = f,(T1, -+ ,Tn)lin;—n} € S. Then, as the vectors
(r=YTy), - ,7=Y(T)) and (T, -- ,T,) are in the compact set [0,7]" and the
function f,, is smooth, there exists a constant C' = C(f,,n,T) € R% such that

el — _ |fn( _1(T1) | ﬂTs_l(Tn)) _fn(le"' 7Tn)|1
g c {Nr=n}
T, ,NT) = (T4, -+, Ty
Bl ARl ) R T P
(T Ty, - 7 YT) — Ty
_ ol (M) -1 g (T>) )Hl{NT:n}
~NT) - T,
o EE@T
1<i<n

() T
< C/ |me(s)|dsl{ng=n}
< c/ Ime(s) — m(s)]ds]pe n}+c/ §)ldsLinpon;
< C? 1N, = n}-i-C/ |d51{NT n}

where the last inequality is true for € small enough because m, i& m according
e—

to Lemma and the inequality (x) is due to the equality

N (Ty)
T, = r.(r-1(Ty)) = 7= N(Ty) + 5/0 me(s)ds.

Thus, by dominated convergence theorem and E[T.F| = E¢[F] = E[G° F],

E [lim TF_F] = limE VF_F] = limE {GE — IF} .

e—0 € e—0 € e—0 €

E[D,,F] =

Hence, as F' = fn(T1,- -, Tn)l{Np=n},

. [Ge -1
E[DmF] = ig%E fn(Tlv"' 7Tn)1{NT—n}:|
. :G LNp=n} —
= gli;%E i - fn(Tla 7Tn)1{NT:n}
. -Zfl—l zZ:—1
= il_r)%E fu(Thy - Ty )1{NT n}:| —;%E{ . F:| .

Let us come back to the definition of the growth rate of Z:. For the last
term in , we have

=1



and

M| =

[ﬁ(l + 5me(T1)> -1

i=1

< Z|m5 ) +e Z |m6(Ti)me(Tj)|+"'+€n71H|ms(Tz
i=1

1<i<j<n
We know that (T4, -+ ,Ty,+1) admits for density
n+1 _—
(th'" n+1 H )\* t]atlv" ) n) e fo A (s;thm7tn)d81{0<t1<-~<tn+1}‘
Thus, for any Borel function f : R” — R,

E\f(Ty, - ,Iy)l
BT, ) | Ny =] = D ) s <)

P(NT = TL)
1 n
tn \*(q.
- W f -t H (tjiti, - tn1) o= Jom AT (sitr e tn—1)ds
T="nN -
+oo n+1 *
X </ A*(tn-ﬁ-l; tl, .. )6 Jf (sitr,e ’t")dsdtn_;,_l) 1{0<t1<---<tn§T}dt1 cee dtn

tn

n

1 ¢
- - tq.ee- | I t t et — [ A (85t st 1)ds
P(NT:TL) /Rnf< 1, a j; 1" 9 1)

n +
|: e ft LD (s5t1,00+, tn)ds:|

n

o<ty <<t <Tydb1 -+ dly

1 oy
= tyooe- | I N(tj3te, - b = Jom A" (ssta, e tn—1)ds
P(NT:TL) /]Rnf( 1, 7 j7 1 1) €

" (1 e S A (st ,tn)ds> 1{0<t1<--~<tnST}dt1 e dty,.

Therefore (T4, -+ ,T},) knowing { Ny = n} admits for density

1 oA
(e ot) = e [ [N tae - s tam) | e 72 Gt by ds

— [ N (s5t1,ee tn)ds
X (1 — e Ju " Lio<ti<--<tn<T}

with, for any 0 <t; <---<t, <T and any j € {1,--- ,n},

j—1
N(tsty, o otn1) = A+ Yty —t) < X+

i=1

Thus the density of (11,---,T,) knowing { Ny = n} is bounded by

(tly"' ,tn) — ) (A-'-TL”,LLHOO)n 1{0<t1<---<tn<T}'

1
]P)(NT =N

18



Therefore, for any I C {1,...,n},

1
T; < - "
Hme( I < PNy = 1) A+ nllulle)
el
/ Hma ) Lo<t, <<t <T)dt
[OT] iel
e —" W / TT me (t)at
P(Nr =n) 011" <
1 n—
= W@*‘"HMHW T \IIH/ Ime(t;)|dt;
T iel
1 T 1]
= —— n il / t)|dt
PNy = n) A+ nllulle) (0 Ime(t)|d
<

T 1]
# n n pn—|I| m
P(Ny = 1) A+ nlplle)” T (/0 | (t)dt+1> .

The last inequality is justified by the convergence proved in Lemma [2:1]
For the first term in , we have, due to em(T;) L)&o 0, for any ¢ small
e—

enough,
n

[[@+ema(T2))

i=1

<2

and

(¢n 0 ®)(Th,--- aT)_QOn(Tla"' ,T)

Opn ~ .
—Z/ a‘; (Th, .. Tier, Te + et (Th), Tios1 + efie(Tisr), - . ) dex e (Th).

Let us define

Thus
Pty 1) = Py (tr, -ty )e” o At ta)ds,

Therefore, as p is differentiable,

1 Opn _ _
T T afk (Th,..., Thr, T + 0£iie(Th), Thsr + eme(Tsn), .. )
1 Oy, _ _
= ” (T1 T ) Bt (Tl,...,Tk_l,Tk+a€m5(Tk),Tk+1 —|—5m€(Tk+1),...)

9 T

ot N (85T, oo T, Ty + asme (Ty), Te1 + eme(Thya), - - )ds
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with, for the first term
wn(tla"' atn) = H )‘+ M(tl _tj)l{ti>tj}
Thus

and forany 0 <t; < - - <t, <T,

n -1 n —
Oy, 0
ot (tla T 7tn) = Z Z aT(/J(tZ 1{t1>t } H (A‘f' ZM 1{t >t; })
k =1 | j=1 9 =1, i=1
Therefore
aw n -1 n Jj—1
k =1 |j=1 i=1,it i=1
< 0¥ loo A+ nflulloe)™ !
Now for the second term
ON*
t tn)| < "Moo
St <l

Thus, as, for any o € 0,1[, Th < -+ < Tp—1 < T + aeme(Ti) < Tpy1 +
eMe(Thy1) < -+,

(‘Pnoq)a)(Tla"' aTn) - @n(Tla"' 7Tn) “
(1 4+ em(
3 (Pn(Tlv 7 11;[1 E
N nQM/OO)\_'_nMOOR—l n/\
< ( Iillee O i)™ | ) 55 e
k=1
n—1
o [ Pl oo (N + 1|l oo
< 22 ( il O+l +T”u,|oo>

where the last inequality is due to the uniform convergence of m. to 0.
Therefore we get a control (independant of €)

ze—1
S

’ < Cn,T,)\7u-

Thus, by dominated convergence theorem,

E[D,F] = E {lir% Zn = IF} =E {880 F] :
E— 3 (3

Then, by linearity, we deduce the same equality for any F € S. O

, 8G5
Remark 2.14. For F =1 inE[D,,F] =E

0.

0Ge
\E OF} we get: E{ 9% |5_0} =
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Note that we can also prove this property with the expression of the Propo-

sition [2.12)

[0G*

E| =
| Oe |

- [
)

where we note

-

T
= E /0 (W(m,s) +m(s)u(T — s) +m(s)) A" (s)ds]
- T
- |f ( /( () — ) (s~ DN + )+ ()T s))A*<s>> ds]

T
m(s) — () (s — )EN(£)]dtds + /O (m(s) + m(s)u(T — s))E[N*(s)]ds

T

(7(s) — e (s — )g(t)dds + / (m(s) + As)ulT — 5))g(s)ds

0

g(s) = E[\*(s)] which satisfies, according to [14],

o) =+ [ us = gl

2.6 Directional Dirichlet space

Proposition 2.15 (and definition of DL?). The quadratic bilinear form on

L*(9), (S,€m)

defined by
vX,Yes8, ¢&.(X,Y)=E[D,XD,Y],

is closable. We denote by (D12, E,,) its closed extension. As a consequence, D,y,

is also closable

and we still denote by D,, its extension which is well-defined on

the whole space DL2.
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Proof. Let (X,)nen be a sequence in S converging to 0 in L?(2) and such that

n,k——+oo n,k—+oo

Thus (D, X, )nen is a Cauchy sequence in L?(€2), so it converges to an element
Z in L3(Q2). Then, let Y be in S, we have by integration by part formula:

E[D,,X,Y] = E[D,(X,Y)]-E[X,D,Y]
= E [Xnyz(fso] —E[X,D,Y].

€

oG
The last equality comes from Theorem [2.13] Since Y§|E:0 and D,,Y belong

to L?(Q), we get, by dominated convergence theorem,

VY €S, E[ZY]= lim E[D,,X,Y]=0.

n——+oo

Hence Z = 0 by density. We deduce thanks to [B, Proposition 1.3.2] that (S, &)
is closable.

As a consequence, for any X € DL2 there exists a sequence (X,)neny € S
converging to X in D12 since for all n,k € N

Em(Xn — Xi) = E[|Dyn X, — D X%

we deduce that (D, X,,)nen is a Cauchy sequence in L? hence converges to an
element that we still denote D,,, X and defines in a unique way the extension of
D,, to D2, O

m

Corollary 2.16. Proposition [2.7 and Theorem remain valid for any F €
DL:2.

3 The local Dirichlet form

3.1 Definition using a Hilbert basis

We would like to define an operator D with domain D2 C L?() and taking
values in L?(Q;H) such that

T
VF D" meH, D,F=(DFm)y= / D;Fm(t)dt.
0

Let (m;);en be a Hilbert basis of the space H. Then every function m € H
can be expressed as

We now set

+oo +o00
L2 _ {X e DR D IDm X720 < —|—oo}
=0 1=0
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and
+o0

VX,Y €D"? E(X,Y)=> E[Dp,XDy,Y].
i=0

We also note £(X) = £(X, X). Then, according to [5, Proposition 4.2.1],

Proposition 3.1. The bilinear form (DY2,€) is a local Dirichlet form admitting
a carré du champ T and a gradient D given by, for all X,Y € D2,

I[X,Y] = (DX, DY)y

and
—+o0

DX =Y Dpm,Xm; € L*(Q,H).
=0

As a consequence DV2 is a Hilbert space equipped with the norm
1X11512 = [1X[122(0) + E(X).
Moreover, as S is dense in each D2, i € N, S is dense in D2

Proof. We start by proving that (D12, €) is a Dirichlet form on L?(2) in sense
of Definition 2.14 of []:

e The bilinear form (D'2,£) is a closed form on L?(Q). Let (X, )nen €
(DY2)N such that E[(X,,)?] -2 0 and
n——+00

+oo
li E[(D,,. X,, — D, X3)?] = 1i X, — Xi) =0.
n,kl—rg-ooiz:; [( m;<3n m; k)] n,k1—>H—li-oog( n k) 0

Then, for any i € N,

lim  E[(Dy, X — D, X)?] = 0.
n,k——+oo )
However, according to Proposition the operator D,,, is closable.
Thus
lim E[(D,,,X,)?] = 0.

n——+oo

Let e € R% . There exists ng € N such that, for any n, k > ng,

“+o00
N El(Din, X — Do, Xi)?] < Z.
i=0
Thus for any j € N,
J +o0 c
ZE[(Dman - DmiXk)Q] < ZE[(Dman - DmiXk)Q] < 4
i=0 i=0
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Therefore

J J J
Z E[(Dman)Q] 2 Z E[(Dman - DmiXk)Q] +2 Z E[(DmiXk)2]
=0 =0 =0

IN

J
€ 2
< 5T 2;E[(DmiXk) ]

with Zf:o E[(Dym, Xk)?] —> 0. Thus there exists k = k; € N such that

k— 400

Z ]E[(DmiXk)Z] <

=0

NN

Therefore 3°7_ E[(Dyn, X,1)?] < € and

+oo

Z E[(Dman)2] S E.

i=0

To conclude we get

n—-+oo

E(Xn):ioE[(Dman)g] — 0.

Therefore (D2, €) is a closed form on L?(Q).
The closed form (D2, €) satisfies:
VFeDY? FAl1eDY2 EF A1) <EF).

Indeed let F € D%2 and 5 € N. Thus, by definition of D'2, F € ]D),ln2 We

have to prove that F A1 € D};? and that &y, (F A1) < &y, (F). According

to the definition of D};? in Proposition there exists (F},)nen € S" such
2

that F, Lﬂ) F and D,,, F = lim,_, o Dy, F, exists in L?(Q2). For any

n—+oo
n € N, there exists a, € R,d,, € N"and f{': R —R,..., fI ‘R¥» — R
smooth functions with bounded derivatives of any order such

dm
Fo=a,{Np =0} + > o Ty, To) L np—m)-

m=1

We consider a sequence of smooth functions (¢x)reny with bounded deriva-
tives of any order such that we have the uniform convergence of ¢ to the
function z — x A 1 and ||¢}.||cc <1 for any k& € N. Thus

dum
& (Fn) = or(an)linp—oy + Z Sk (fon(T1, -+, T )l {Np=m} € S.
m=1

Moreover the following convergence in L?(2) holds:

FAl= lim lim ¢p(Fy).

n—+00 k—+4o00
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Therefore F A1 € D} and

Dmi(F/\ 1) = lim lim Dvm((bk(Fn))

n—+00 k—+o00

with for any n, k € N, by the chain rule,

Dmi (¢k(Fn)) = ¢;c(Fn)Dman

Thus
g””i (F/\ 1) = E[(Dmi (F A 1))2] < E[(D'"LiF)2] = gmi, (F)
Therefore
+oo +oo
EFN) =Y Em(FAL) <D & (F) =E(F).
i=0 i=0

Now we prove that I is a carré du champ of the local Dirichlet form (D2, £)
in sense of Definition 2.19 in [4]. Indeed the application I' is a positive symmetric
continuous bilinear form from D2 x D2 into L'(Q2) such that, for any X,Y €
]D)l’2,

EX,Y]] = E[(DX,DY)]

+oo

> (DX, m;) (DY, m;)
1=0

“+o0
ZDWXDWY
1=0

= £(X,Y)

= E

= E

where we used the fact that the family (m;);en is a Hilbert basis in .

To conclude we prove that the operator D is the gradient of the local Dirichlet
form (DY2€) in sense of its definition at the page 16 in [4]. Indeed:

e For any X € D2, as (m;);ey is an orthonormal basis in H,

2

+oo +oo
DX = |[d_ D Xmi|| = (D, X)* =T[X].
=0 H =0

e Let ® : R — R is a Lipschitz function and X € D"2. Then, according to
Remark [3.3] ®(X) € D'? and D(®(X)) = ®'(X)DX where ®(X) is the
Lebesgue partial derivative of ® almost everywhere defined.

O

Corollary 3.2. For alln € N* and j € {0, ...,n}, writing T; = T; AT, we have

T.
DT; == ~1p7.



As consequence for all

d
F = al{NT:()} + Z fn(Tla o 7Tn)1{NT:n} € Sa

n=1
we have F € DY? and
d n
Afn T;
DF = Z Z aitj(Th e, T) (T - 1[0,Tj]> L Np=n}-
n=1j=1
In particular this expression does not depend on the basis (m;)ien-

Proof. We have

. +o0 . +oo . +oo LT
DTJ' = ZDmiiji = — Zﬁzz(T])mz = — Z/ mi(s)l{ogsgfj}dsmi
i=0 i=0 i=0 "0
+oo /A sl
T T
- Z <T N 1[0,Tj]’mi> i = = Lo,
i=0 H
. T .
Notice that the term T is mandatory to belong to H defined by . O

We get the chain rule for the operator D on D2
Remark 3.3. For any Fi,...,F, € DY2 and smooth function ® : R® — R,

O(Fy,...,F,) belongs to D2 and
D®(Fy,...,F,)=> -—(F,...,F,)DF}.

Moreover we can extend this result with a Lipschitz function ® thanks to Propo-
0P

sition |4.8 where we replace — s the Lebesgue partial derivative of ® almost
)2

everywhere defined. (référence a trouver dans Bouleau-Hirsch Proposition 2.1.5

?)

3.2 Divergence operator by duality

Let § : L2(Q2,H) — L?(Q) be the adjoint operator of D. Its domain, Dom(4),
is the set of u € L*(Q2, M) such that there exists ¢ € R%. such that

T
/ Dt Fut dt
0

Hence, for all u € Dom(4), d(u) is the unique element in L?(2) such that

VF eD'?, [E < || Fllpr.e.

VF € ]D)l’2’ E[(S(’LL)F] = EKU, _DF>'H] =K l/T UtDtht
0

We now introduce the set S of elementary processes u of the form

n
u:ZAimi, TLEN*, Ai ED1’2.

i=1
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Proposition 3.4. For all u in S, we have u € Dom() and

T
o(u) = /«m (¢ (u, ) + u(s)u(T — 5) + uls))dNs — /0 Dy (u(t))dt

where 1 is defined by @[)
Proof. Let u = Am,;, with A € D%? and iy € N. For any F' € D'? we have

T
E / DtFutdt
0

< E

T
/ DtF|Ami0<t>|dt]
0

T
Ta Jﬂ«: / |A|2|mio<t>|2dt]

[ HA||L2(Q) ||mio||L2(0,T) =c||F|lpr.2

IN

with ¢ = [|A|| 12y M, | 12(0,7)- Thus u € Dom(d) and for any F € D2

[ T T
E[é(u)F} = E / uDyFdt| =E A/ mio(t)Dtht
0 0

T

“+o00
= E|A myi, (t) Z Dmi Fmi (t)dt]
0 i=0

S -
= E|A) D,F / Mg (£)m (t)dt
L =0 0

e
= E AZDmiF<mimmi)H1 = E[AD,, F).
L =0
Thus, integrating by parts:
E[(w)F] = E[Dn, (AF)] ~E[FD,,, A
oGS,
= E { - AF} —E[FD,,, 4]
Og  |e=0 0
oGS,
- E K A-D,, A) F} |
Oe  |e=0 0
Therefore, because (DA, m;, )y = j:g Dy, A(mi, mig) 5 = Do, A,
) aGiﬂiO A—-D,, A
(u) - e le=0 — Mmy,

( | tmiges) + (T = ) + mio(S))st> A= [ mi(0)D1ads
(0,7 0

T
/ (¢(Amloa S) + Amio (S)IM(T - S) + Amio (S))dNa - / Dt(Amio (t))dt
(0,7] 0

T
- / ((u, 5) + B()u(T — ) + u(s))dNs — / Dy (u(t))dt.
(0,77] 0

We deduce the result for any u € S by linearity. O
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Remark 3.5. We can retain that:

1. For allm € H and A € D2,

d(mA) =6(m)A— D, A.
2. For allm € H and A, F € D2,

E[AD,,F] = E[F§(mA)].
3. For all u € H we have Du =0 and

)= [ ((us) + A(T ~ 5) + u(s)dN..
(0.7]

Remark 3.6. Contrary to the standard Malliavin calculus on the Wiener space
(see [16]), we do not have a priori the inclusion of D2 @ H in Dom(d) (see
Ezample 3.4 in [G] where p=10).

Corollary 3.7. If u € L?>(Q,H) is a predictable process then
)= [ (0(us) + A(T — 5) + u(s))dN.
(0,7]

Proof. We establish this result for an elementary process of the form:
u(t) = folp,e,(t) + Zf; Ty, To)ljg ()

where n € N*, t; = 2L £, is a constant, for any j € {1,--- ,n}, f; is an infinitely
differentiable functlon from R"™ into R vanishing outside the simplex

AZL:{(xl,---,xn)e]R”, O<mm < <z <t}

and f,_1 = —fo — Z;L:_lg f;j. This last condition ensures that u belongs to
L?(Q;H). As a consequence, we can rewrite u as

)= o (Loag® - ) + ij T To) (et = 1 )

this proves that u belongs to S. We have, by Proposition and Corollary

n—1 n

0
Dyu(t) = ZZ G;Jccj (Tv.--- Tu) DiTs Lt 2,00 (8)

j=11=1

n—1 n Veal
0 T;
Z Z f] (T, ,Ty) (T - 1[O,Ti](t)> Lt 85421 (2)-

j=11=1

Now, since f; vanishes outside A7, we have for any j € {1,--- ,n — 1} and any

ie{l,-,n}
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ofj s
ale (T17 e 7Tn)]‘[07Ti](t)l]tj,tj+1](t) = 0

Moreover for any i, as u is valued in H,

T 4 _ B .,
/0 Z oz, (Ty,--- ,Tn)?l]t%tprl](t)dt = T om, /0 u(t)dt = 0.

Therefore

T
/ Dyu(t)dt = 0,
0

Hence from Proposition we deduce that
Sw) = [ (0lws) + AT~ 5) + u(s))aN.
(07T]

We conclude by using a density argument. Indeed if u € L?(Q,H) is a pre-
dictable process, there exists a sequence (uy,)nen of elementary processes as
above converging to u in L?(£2, H) and clearly §(u,,) converges to f(oﬂ ((u, s)+
u(s)pu(T—s)+u(s))dNg. Since 4 is a closed operator, we conclude that u belongs
to Dom(d) and that

5(u) = /( 08 FTRT =) 5 )N,

O
Proposition 3.8. Let F € D*2 and X € Dom(8) such that
T
F§(X)— | DFX.dt € L*(Q),
0
then FX € Dom(d) and
T
S(FX) :F(S(X)—/ DyFX,dt.
0
Proof. For any G € §
s
E[§(FX)G] = E / FXtDtGdtl
0
s
- E / Xo(Dy(GF) — GD,F)dt
0
i T
0
i T
- E G<F5(X)—/ DtFXtdt>].
0
O
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In particular if X = m € H C Dom(d) then d(m) = f(oﬂ(z/}(m,s) +
m(s)u(T — s) +m(s))dNs and fOT D.Fm(t)dt = D,, F. Hence we have

S(mF) = F /( ) AT = 8) 4 ()N, — D F

Remark 3.9. We do not have the Clark-Ocone formula because for ' = Ny €
DY? we have Ny # E[Nr] and D;Nr = 0. Indeed, for any m € H and € €
R%, TNt = Nr.

4 Absolute continuity criterion

4.1 Local criterion

Lemma 4.1. The distribution of (T1,--- ,T},) conditionally to { N7 = n} has a

density
kn : R* — Ry
k(t)
th, - tn M\
( 1, ) ) — fR" ,‘Q(s)ds

with, for any t = (t1,- -+ ,t,) € R™,

n N LT N (it e s
k(t) = 1{0<t1<-~<tn§T} (H)\ (tiste, - - ,tn)> o= Jo N (sitr,tn)ds

1=1

Proof. Let f be a measurable function on R”. Then

Elf(Ty,---,Ty) | Nr =n]
E[l{NT:'rL}f(T17 e 7Tn)]
]P(NT = ’I’L)
_ El¢r, <r<t 3 f (11, Th)]
P(T,, < T < Tni1)

oty bt ) b

f0<t1<---<tn§T<tn+1 Q(tr, - tnpr)dly - dlngy
with

n+1

t’Vl *
Oty ytpg1) = <H N(tisty, - - ,tn)) e Jo FUN*(s5ty,e st )ds
i=1

n
« « _otndl gy
(H)‘ (tist, - ,t")> N (it ytn)e Jo™ T At t)ds

i=1
L ~
) (H A" (st - ,tn)> e~ Jom A (sitrye tn)ds
i=1
i=1

) (A £ il t)) o T O et )
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Thus

/ o(ti, - tpg1)dtngt
T<tpiy1

+o00 n _ftn+1(/\+zv_x (s_tv))ds
= A+ Zu(tnﬂ —t;) | e In Y A/ M

T i=1

—e ftq; ()""'Z?:l l"(s_tt))ds.

Therefore

B (T 1) | v =] = S SO0 [ iy,

with, for any ¢ = (¢1,--- ,t,) € R™,

e * — [t N*(sitq,ee- s
k(t) = ljocti<o.<t,<T} (HA (tisty, - ,tn)> e= Jom AT (sita, tn)d

i=1
wo~ Jon ATy n(s—ti))ds

n

% T N * (e L

= l{octy<.<t,<T} (HA (tizt1,- - ,tn)> e— Jo N (st ,tn)ds7
=1

which implies the conclusion of the lemma. O

Now fix n € N*, as usual C°°(R"™) denotes the set of infinitely differentiable
functions on R™. We consider the following quadratic form on C*°(R"):

1 " ou ov titj

en(u,v) = 5 / gzjl 87“@)6?@) (ti At — T) Ky, (t)dt

and
en(u) = en(u,u).
Proposition 4.2.

1. (C*°(R™),ey) is closable, its closure (dy, ey) defines a local Dirichlet form
on L?(ky(t)dt) and eachu € d,, is a B(R™)-measurable function in L*(ky(t)dt)
such that for any i € {1,--- ,n} and for almost all

t=(tr, - s tic,tigt, - ,tn) ER™TL
the function
S — u(l)(g) = u(tlv' vy tis1, Sy tign, ’tn)

t
has an absolutely continuous version ﬁg) on [ti—1,tit1] such that

3 :;Z(t)g;j(t) <ti Aty — tfj’) € L (kn()dt)

i,j=1
L ou O

wnere — = .
8ti Os
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2. The Dirichlet form (dn,ey) admits a carré du champ operator 7, and a
gradient operator D™ given by

Yo, 0] () = Z @(t)@(t) <ti At — t;{j)

Sz oty
and
~ 2 ou ti
Diu(t) = - 371_(75) (T - 1[0,:&1-](5))
for allu,v € dp,t = (t1,-- )ER” and s € [0, 7).
3. The structure (R™, B(R™), k,,(t)dt, dy,vn) satisfies for every d € N* u =

(u1,--+ s uq) € (dn),
w[det(vn[u]) - knvn] < vg

where y,[u] denotes the matriz (vyn(wi, w;))i<ij<d, Vn (Tesp. vq) the
Lebesgque measure on R™ (resp. R?) and . [det(y,[u]) - knvy] the image
measure defined by, for any B € B(R?),

(us[det(yn[u]) - knvn])(B) = [det(yn[u]) - knvn)(u™"(B))
_ / det (11, w](£)en (1) .
u1(B)

Proof. We prove this result thanks to [4], Proposition 2.30 and Theorem 2.31]

ith
wi b

k:knv d:dn7 él](t):tl/\t]_ ;—,]a
where d,, is the set of B(R™)-measurable functions u € L?(k,(t)dt) such that
for any i € {1,--- ,n} and for almost all
t= (1, tict,tigr, - ln) ER™T
the function ‘
S u'i'l)(s) = u’<t17 ey tioa, Sati-‘rlv e atn)

(@)

has an absolutely continuous version ﬂ?

zn_: (Z- ; t;fj)eLl(kn(t)dt)

@)
and set for any u,v € dp:

on [ti—lati+1] such that

ot
where a—u =t

8ti 63

- 1 - ou ov titj
enlu,v) = /R ) i; S50 (tmt] -4 )k:n(t)dt.

The function k& = k,, : R® — R is measurable and the functions §; ; are
symmetric Borel function. We have to check if the two assumptions (HG) of [3]

are satisfied.
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Condition 1. For any i € {1,...,n} and v,_j-a.e. ¢ € B,_1 with
_ 7 _ n—1 (%)
Bn—l = {t = (tl, cee ati—lati+1a o ,tn) cR /Rkn,f(s)ds > O} s

we have 0 < t; < -+ < tj1 < tjy1 < --- < t, < T because else /@g) =
Kty tict, s tigr,-- o ty) = 0 and [p kfz)z(s)ds = 0. Thus, for any t; €
Jti—1,tials ,

kf;)z(ti) =kt ,ty) >0

because A > 0 and p > 0. Therefore

H(tla e 7tn)
Tty - ty) = 22 5
n(t n) Jon R(8)dt
In particular k,(t1,- - ,t,) is invertible and
» Kk(t)dt
ko (t1.--- . t.))" 1 = ﬁR”‘i
( n( 15 b n)) K/(tl,"’7tn)
n T
= lio<ti < <tn<T} (H()\*(ti;tlv"' atn))_1> elo (S;tl’m’t")ds/ K(t)dt.
Pl n
Therefore t; — (kn(t1,---,t,))"! is integrable on R because it is only the
integral of a continuous function on [¢t;_1,¢;41] and equal to 0 on R\[t;—1,t;41].
Condition 2. For any t = (t1,---,t,) € R™ and any ¢ € R", such that

0=ty <ty <t2<"'<tn<T:tn+1,

n n vy
Z fij(t)CiCj = Z <ti A tj — ?) CiCj

3,5=1 '7]'*1
2
= T E t C +T E ti(T—tj)CiCj

This double sum can be split as follows:

n n
Zti (T —t;)c? = ZZ lg — th—1 Z(te+1 —to)c
i=1 i=1 k=1 l=i
n n l
= Dt te) Y (e —t) 3
k=1 l=k i=k
n n—1 n 0
= Z(tk — tk—l)(tk+1 - tk)C% + (tk - tk—l) Z (t€+1 - tf) Zcz
k=1 k=1 l=k+1 i=k
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and

n

2 Y (Tt 2 ) i(tk—tk—l)Z(tul—te)Cicj

1<i<j<n 1<i<j<n k=1 1=j

n—1 n
2 Z(tk —tr-1) Z Z(t‘€+1 — tz)CiCj
k=1

k<i<j<n £=j

n

n—1
2 Z(tk — tkfl) Z (téJrl — t[) Z CiCj
k=1

(=k+1 k<i<j<t

Coming back to the initial sum, we have

n 1 n
> &y(t)eie; = 7 2t = tea) (bresr — te)e
ij=1 k=1
1 n—1 n 4
o D (= teea) D (e —te) |2 Y e
k=1 t=k+1 i=k k<i<j<t
1 < )
= 7 Dt = trm1) (tir — t)ed
k=1
1 n—1 n 4
+ ) (te = 1) St —te) | Y (i +¢5)?
k=1 t=k+1 ij=k
1< )
Z 7 Dt = tr-1)(trgr — tr)eq
k=1
Thus, for any compact K C {(t1, - ,tn), O0=tg<t1 < - <tp <T =tnt1},
there exists ¢ € R such that, for any (t1,--- ,t,) € K,
Z gij(t)cicj 2 ? ch.
i,j=1 k=1

The hypotheses (HG) of [, Proposition 2.30] being satisfied, we conclude
that (dy,ey) is a local Dirichlet hence (C*°(R™),e,) is closable and its closure
(dn, en) is such that d,, C d,,. The last assertion is a consequence of [4, Theorem

2.31]. O

Using this result, we consider ||-|l4, the norm on d,, defined by, for any
U € dy,
lullg, = lullZz, @ar) + 2en(w)-

4.2 Global criterion

We remind that for any F' € L°(Q), there exists a € R and f,, : R" — R, n €
N*, measurable such that, P-almost surely,

“+oo
F = a’]-{NT:O} + Z fn(Tl, e ;Tn)l{NT:'fL}' (11)

n=1
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Proposition 4.3. Let F € L°(2) of the form . Then F € DY? if and only
if frn, € dy, for any n € N* and

+o00
>l falld, P(Ny = n) < +o0.

n=1

In this case

+oo
|FlBez = a®P(Np = 0)+ 3 |1 full3, PNz = n).

n=1
Proof. Let F = al{ny—oy + So0_y fu(T1, To, -+, Tu)1{ny=n) be in S. Then
as a consequence of Corollary F belongs to D*? and
d

=2 Z P(Nt =n)en(fn)-

n=1

T
E(F,F)=R V |DF|? ds
0

Hence
d
IFI1 = a®B(Nz = 0) + 3 || full3, (N7 = ).
n=1
We conclude using a density argument. Indeed, if F belongs to D2, there exists
a sequence (F*); in S converging to F' in D2, Now if for any &

+oo
F¥ = apl{np—oy + Z T Ty To) Npmny
n=1
with f% € 0> (R%) and f* = 0 for n large, then clearly for all n, k, £:

(PR

hence (fF),, converges to an element f,, in d,,, a* tends to a real number a and
we get that

2. P(Nr = n) < |[F* = FO|

+oo

F = Cll{NTzo} + Z fTL(ThTQ, ce 7Tn)1{NT:’I’L}7
n=1
and
—+o0
1B = i Iy B2 = 0PN = 0+ S Il POV = )

Conversely, if ' € L°(Q2) of the form is such that f, € d, for any n € N*
and

+oo

D N fallZ, B(N7 = n) < +o0,

n=1
then define for any m, F™ = al{n,—o} + Yo fu(Ty, Ty yT)l{Np=n} by
approximating each f,, for n € {1,---,m} by a sequence of functions in C>°(R%)

we easily get that F™ belong to D2 and

IF™ |§1.2 = a®P(Np = 0) + Y _[| full, P(Nr = n).
n=1
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Then (F™) is a Cauchy sequence in D' converging to F' in L2, this ends the
proof. O

Remark 4.4. We can summarize the equalities between the Dirichlet structures
(Q, Fr,P,DY2 1) and (R™, B(R™), k,,(t)dt, dy,yn),n € N*: for any F € D12 of
the form

1.

“+o0
I1FIIZ2 () = a®P(NT = 0) + > [l fallZ2r, yar):
n=1

2. For a.e. s € 0,7,

“+o0
D,F = ZD?fn(Tla 7Tn)1{NT:n}7
n=1
with
~ " Ofn T;
D¢ fu(Ty, -+, Th) = 8{‘ (T, ,Ty) <T - 1[0,7}](5)) )
i=1 "
3.
+oo
F[F] = Z’}/n[f’ﬂ](Tl7 e 7Tn)1{NT:n},
n=1
/
—+o0
E(F) = Zen(fn)P(NT = TL),
n=1
5.

+oo
1F|I12 = a®B(Np = 0) + Y || full, B(NT = n).
n=1

Theorem 4.5. Let d € N* and F = (Fy,--- ,Fy) € (DY), Then, noting
P[F) = (TV[E, F]i<ij<as

the image measure F,[det(T'[F]).P] is absolutely continuous with respect to the
Lebesque measure vq on RY.

Proof. Let B C RY such that v4(B) = 0. We would like to get

0 = (F.[det(T[F]).B))(B) = /F o, ST

/Qdet(F[F] (W)1p(F(w))dP(w) = E [det(T'[F])1p(F)] .

But, according to Proposition there exist @ € R and f, € (d,)% n € N*

such that
—+oo

F = a].{NT:o} + an(Th T ;Tn)]-{NT:n}~

n=1
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Thus N
F[F] = F[F7F] = ZVn[fn](Tla T aTn)l{NTzn}~
n=1

In particular
det(T'[F])1{ny=0y =0,

for any n € N*,

det(D[F)1{nr=ny = det(va[ful(T1, - Tn))l{Np=n)
and also
1B(F)1{NT=n} = 1B(fn(Tlv T aTn))]-{NT=n}~
Therefore
—+o0
det(PFN)1p(F) = > det(ylfal(T1,- -+ Ta)1B(fo(Tr, - Tu))lnp=n}
n=1

and, according to Lemma [4.1}

E [det(T[F])15(F)]

+oo
Z E [det('Yn[fn](Tla T 7Tn)1B(fn(T1> T ’Tn)l{NT:n}]

n=1
—+oo

(]

E[det('yn[fn](Th T 7Tn)1B(fn(T17' o »Tn) | Nr = n]P(NT = n)

3
Il
-

(/] dettrnlfulintatsu(oh () B7 =)

1

NGPRINGP)

((fn)«ldet(ynlfn] - knvn)])(B)B(NT = n).

1

3
Il

However, according to Proposition applied to f, € (d,)? the measure
(fn)«[det(yn[fn] - knvn)] is absolutely continuous with respect to v4. Thus, for
any n € N*,
((fn)«ldet(nlfn] - knva)])(B) = 0
and
E [det(T[F])15(F)] = 0.

This concludes the proof. O

Corollary 4.6. Let d € N* and F = (Fy,--- ,Fy) € (DY2)%. Then, condition-
ally toT[F] € GL4(R), the law of the random variable F is absolutely continuous
with respect to the Lebesgue measure vq.
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5 Applications

5.1 SDE and density of the solution

We consider the stochastic differential equation

X =20+ /Ot f(s, Xs)ds + /(O ]g(s,XS,)dNS, 0<t<T, (12)
.t
or in the differential form
dX; = f(t,Xy)dt + g(t, Xi—)dNy,  Xo = xo.
We assume that:

Assumption 2. The functions f,g : [0,T] x R — R are measurable and
satisfy

1. For any t € [0,T], the maps f(t,-),g(t,-) are of class C*.
2. sup; (Vo f(t,z)] + |Vaeg(t, x)]) < +oo.
3. For any x € R?, the map g(-,x) is differentiable.

Remark 5.1. Since Nr admits moments of any order (See [15]), according
to [17, Chapter V.8 Theorem 7 and Chapter V.4 Theorem 10], there exists a
unique solution X to such that supg<,<p | X¢| € L*(Q).

We consider the deterministic flow ® defined by the solution of the ordinary
differential equation (ODE in short)

t
@S,t(x)zx—i—/f(u,(bs,u(x))du, 0<s<t<T, zeR%

Proposition 5.2. On the set {Np = 0}, we have
X =@o(v0), 0<t<T.
And, for any n € N*, on the set {Np = n}, we have
X, =[®p, 1 0U(Ty, )0 0®p 1, 0 U(Ty,-) 0 ®o (), T <t<T,

where
U(t,z)=x+g(t,z), 0<t<T, zecRL

Proof. We proceed by induction. On the set { Ny = 0} we have
t
X, =x9 —|—/ f(s,X)ds, 0<t<T.
0

Thus for all t € [0,T], X; = P ¢(z0).
On the {Ny = 1} we have, for any ¢ € [0,T}),

t
X = xg —|—/ f(s,Xs)ds.
0

38



Thus X; = ®¢ (x0). Then for any ¢t € [T1,T] we have

t

X: = Xp_+ f(s,XS)ds—l—/ g(s, Xs_)dN,
T [Th,t]
t

= Xpr_+ f(s, Xs)ds + g(Ty, X1,-)
T
t

= (T, Xp-)+ f(s, Xs)ds.
T

Hence

Xy = Op (V(T1, X7,-)) = @1, (Y(T1, Po,1, (0)))
= [®p 0 U(T1,-) o Do ](20).

We assume that the equality is satisfied on { Ny = n} for n € N* :
Xy = [®r, 10 W(T,) 00 Ppy 1, (+) 0 W(Th, ) © o 1y [(w0), T <t <T.

Let consider the set { N = n+1}. The process X satisfies, for any ¢ € [T),41, 7],

t
Xo = Xro+ [ feXgdst [ gl X)an,

Thn41 [Tr41,t]

t
U(Tog1, X100 —) +/ f(s, Xs)ds.
Thn41

Thus
Xr =@, 7 (Y(Tns1, X1, 4, -))-
However, as we are on {Np = n + 1}, we are also on {N; = n} for any ¢ €

[T, Thot1). According to the recurrence hypothesis,

Xy = [(pT t© \Ij(wa ) 0---0 (I)T17T2 © \IJ(Tlv ) © (I)O7T1]($0)'

ns

Thus, by continuity of the map ® with respect to ¢,

XT, =[®7, 100, OV (Th,-) 0 -0 Py 7, 0 W(T,-) 0 @1y (o).

+1—
Therefore
Xr = (bT,L+1,T(\II(Tn+1aXTnJrlf))

o1, (Y (Thy1, 7, 1,y © U(Th, ) 0+ 0 @y 1, 0 W(T, ) © Do 7] (20)))
[(I)Tn+1,T e} \I/(Tn+1, ) [¢] (I)Tan_'_l e} \I/(Tn, ) O+++0 (I)Tl,Tg [} \I/(Tl, ) @] @07'1"1](1'0).

The statement is proved. O

We continue this section with the same ideas as in [8]. As the following
results are formal computations, they are proved in the same way.
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Remark 5.3. The process V,® satisfies, for any 0 < s <t < T and x € RY,

0
avm(ps,t(x) = vrf(ta (I)s,t(z))vmq)s,t(x); vm(bs,s(x) = Id~

Thus

t
VP, 1(z) = exp (/ me(u,fl)svu(z))du) , 0<s<t<T.

Definition 5.4. We define the process K as the derivative of the flow generated
by X, solution of the SDE

t
K, =14 +/ Vaof(s, Xs)Ksds + Va2g(s, Xs—)Ks_dNg, 0<t<T.
0 (0.¢]

From now we assume that:

Assumption 3. For any (t,z) € [0,T] x R?,

det(I; + Vag(t,z)) #0
and (Ig+ V.g)~! is uniformly bounded.

We now define the process K as the solution of
K, = I;— /Ot K.V, f(s, X,)ds
~Jow K. Vag(s, Xoo )T = Vag(s, Xo- )T + Vag(s, Xo-)) 7 )dN..

Following [4, Proposition 8.7], we have:
Lemma 5.5. Processes K and K satisfy

K,Ky=1;, 0<t<T.
Moreover:
Kp, = (Ig+Vag(t, X0, ) Kp,—, Krp, = (Ig+Veg(Ty, X1, ) 'Ky, i€N*.
Definition 5.6. We define the process (K[ )o<s<i<T by:

K} =KK, 0<s<t<T.

Similarly to [8, Proposition 6.4], we get the following result.
Proposition 5.7. Let ¢ : [0,T] x R — R defined by:
V(t,x) € [0, T]xR%, ot z) = f(t,x+g(t,x))—(Id—FVIQ(Lm))f(t,x)—%(t,x).
Then X1 € DY2 and, for a.e. s €[0,T],

t
DSXT I K%(p(t,Xt_) <T — I[O,t] (S)) dNt
(0,1

Moreover

ut
rpxe = [ Rt Xl X)) (63)” (wn e = o ) dNia,
(0,1] J (0,17
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Thanks to this expression of DXt and I'[X7], we can deduce results about
the absolute continuity of the law of X7 using Corollary

Corollary 5.8. If we consider the event

t
C = < det / Kho(t, X ) (p(u, Xy ) (K3)* <u At — u> dNdN,, | >0
0.71J (0.1 T

then if P(C) > 0, the law of X1 conditionally to C is absolutely continuous with
respect to the Lebesque measure on RY.

Proof. 1t is a direct consequence of Proposition [5.7] and Corollary O

Theorem 5.9. In dimension d = 1, if for any t € [0,T] and x € R,

@(tam) = f(t’x +g(t,a:)) - f(t,l‘) - —(t,x)f(t,x) - 7(757‘%‘) 7’é 0,

then, conditionally to {Nt > 1}, the law of Xt is absolutely continuous with
respect to the Lebesque measure on R.

Proof. As d =1 we have, according to Proposition

N~ T
D X7p =— ZK?QD(E’XTi*) (TZv - 1[01Ti](8)> .

i=1
Let w € Q such that
T
I X7)(w) :/ |D, X7(w)|?ds = 0,
0
then, for almost every s € [0,7T], D;Xr(w) = 0. Thus, for almost every s €
TNy (w), T], we get, writing T; instead of Tj(w),

NT(UJ) T
Z K;l‘p(TleTl*)?Z =0.

i=1
Then for almost every s € [T, (w)—1, Ty (w)]
NT(u))fl

. T | Tnp Tnr(w)
> KFe(Ti Xn) g+ Ko Mo(TNT(w),XTNm)( = 1) ~o.
i=1

Therefore, by subtracting the two equations, we get

L)D(TVNT(Q./')’ XTNT(“,)*) =0

then
NT(w)fl T
Z KTESO(TZVXTi—)?I =0.
=1
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Thus, by considering s € [Ty (w)—2, TNy (w)—1] then s € [T, (w)—3, Tp(w)—2]s
..., we get, by successive iterations, for any i € {1,--- , Np(w)},

@(Ti,XTi—) =0.

Therefore, by contrapositive, if p(t,z) # 0 for any ¢ € [0,7] and « € R then
I'[X7] > 0 on the set {Np > 1}. Thus, according to Corollary condition-
ally to {Np > 1}, the law of Xp is absolutely continuous with respect to the
Lebesgue measure on R. O

Example 5.10 (Linear with constant coefficients in dimension d = 1). We
consider X the solution of the linear SDE

dX; = (aX; + b)dt + (aXi— + B)dNy, 0 <t <T, Xo=xg, (13)
where xg,a,b, a, B € R satisfy
af — ab # 0.
In this case we have, for any t € [0,T] and x € R,
ot,z) =alz+ax+5)+b—ax —b—alax+b) =af —ab#0.

Then, according to Theorem conditionally to { N > 1}, the law of X1 is
absolutely continuous with respect to the Lebesgue measure on R.

Corollary 5.11. We assume that d = 1 and the parameters f,g do not depend
ont € [0,T]. We consider the Wronskian of f and g:

W(f,9) =g xf—f xg.

Thus if the function f is of class C* and

1
Ve eR, [W(f,9)(x) > Il lcllgll

then, conditionally to {Nt > 1}, the law of X1 is absolutely continuous with
respect to the Lebesque measure on R.

Proof. As the parameters f and g do not depend on ¢, we have, for any ¢t € [0, T]
and x € R,
o(t,x) = flz+g(x)) — f(z) — g'(2) f ().
Then, by Taylor expansion, there exists y, € R such that
1 1
p(t,x) = 9(@)f (@) + 59()*f" (@) = g (@) F(x) = 59(42)* " () = W (£, 9)(2).

Thus, if there exists € R such that ¢(¢,z) = 0 then, according to the assump-
tion,

W(,9)(@)| = 59017 @) < Sl e < W (F,9)(@)

which is absurd. Therefore ¢(¢, ) # 0 for any ¢ € [0, 7] and z € R. We conclude
by using Theorem [5.9 O
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Example 5.12. We consider X the solution of the SDE in dimension d =1
dX; = cos(Xy)dt +sin(X;_)dNy, 0<t<T, Xo=uxo, (14)

where xg € R. In particular

1
Thus, according to Corollary conditionally to { Nt > 1}, the law of Xt is
absolutely continuous with respect to the Lebesgue measure on R.

|cos”[|oo [|sin%,.

Proposition 5.13. If there exists £ € N such that for any n > 0,0 < t; <

<ty < T and x1,--- ,x, € R, the family (KtTigo(ti,xi))lgiSn spans R?
then, conditionally to {Nt > €}, the law of X1 is absolutely continuous with
respect to the Lebesque measure on RY.

Proof. Let w € {Np > ¢} such that I'[X7](w) is non invertible. Then, as it is a
nonnegative symetric matrix, there exists u € R?\{0} such that

T
W T [X ] (@) = /O (u* D, X (w))2ds = 0.

Then, according to Proposition

Nr(w) 2

T T
: T;
0= / (’U,*DSXT(OJ))2dS = / u* Z K%’QO(TivXTif) (T — 1[0,T,;](£)> ds.
0 0

i=1
Thus, for almost every s € [0, 7],

Nr(w) T
u®* Z qu:iga(ﬂ,XTi—) <Tf — 1[O,Ti](5)> =0.

i=1

We deduce, as in dimension d = 1, that, for any i € {1,..., Nr(w)},
wKip(T;, X7,-) = 0

which is absurd because (K o(T;, X1,-))1<i<Ng(w) SPans R%, O

Remark 5.14. Necessarily we have £ > d.

Example 5.15 (Linear with constant coefficients in dimension d € N*). We
consider X the solution of the linear SDE

dX; = (AX; +b)dt + (MX;— + B8)dNy, 0<t<T, Xy= o, (15)
where xo,b, 5 € R? and A, M € R**¢ such that
det(M + 1) #0, AM =MA

and if there exists £ € N such that, for anyn > € and 0 < t; < --- < t, <T,
the family
(exp(A(T —t;)) (g + M)"""(AB — Mb))1<i<n

spans R%. In this case we have:
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e The process K defined by Definition satisfies
t
Kt:Id—i—/ AK ds + MKs;_dNs, 0<t<T,
0 (0,t]
i.e.
dK; = AKyds + MK,_dN,, 0<t<T, Ky=Ig,
i.e., for anyt € [0,T], as AM = MA,
Ky =exp(At) [ (Ia+ MAN,) = exp(At)(Ia+ M)

0<s<t

o As det(lqg + M) # 0 then we can consider the process K = K~ defined
Just above Lemma[5.5)

t
K, :Id—/ AK ds — M(I;+ M)™! K, dN,, 0<t<T,
0 (0,t]
7.€.
dK; = —AK;dt — M(Iq+ M) 'K,_dN,, 0<t<T, Ky=1,

i.e., for anyt € 0,T], as AM = MA,

K, = exp(—At) [[ (la—M(I4+M)'AN,)
0<s<t

= exp(—At) (Id — M(Id + M)_l)Nt
= exp(—At)(Iy+ M)~ N,

e The process (K}) is equal to, for any 0 < s <t <T,

K = KK,
= exp(A(t—s))(Id—FM)N‘*NS.

e According to Pmposz'tion we consider the function ¢ : [0,T] xR — R
defined by, for anyt € [0,T] and x € R,

o(t,z) = Al +Mz+B)+b— (Ig+ M)(Ax +0b)
= AB— Mb.

Therefore, according to the assumption about the spanning property, we get the
following result by Proposition : conditionally to {Nt > (}, the law of X
is absolutely continuous with respect to the Lebesque measure on RY.

This is the case for example when A = I3, M is a diagonalizable matrix with
d distinct eigenvalues (different to —1 to have det(M + I;) # 0): there exists
A, Ag in R\{—=1} (distinct) and P € GL4(R) such that

A1 (0)
M=P P
(0) Ad
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and v := [P~ (B—Mb)|; = [P~'B—DP7']; #0 for any j € {1,--- ,d}. Thus,
foranyn>00<t; <---<t, <Tandiec{l,--- ,n},

exp(A(T —t;))(Iq + M)" " (AB — Mb)
(14 M) (0)
=’ hp P8 — Mb).
(0) (1+Xa)"

Therefore the family (exp(A(T — t;))(Iq + M)""*(AB — Mb))1<i<n spans R if
and only if the family

(1 +A1)n711)1 (1+>\1)1}1 V1

(14 Xg)" tog (1+ Ag)va Vg

spans R?. The determinant of the last d vectors of this family is related to a
Vandermonde determinant:

P | YRS

1<i<j<d

which is not null. Therefore, conditionally to { Ny > {}, the law of X1 admits
an absolutely continuous law with respect to the Lebesque measure on R?.

5.2 Application to Greek computation

We consider an asset price whose dynamics is given by
dS; = rSydt + 0S;_dN,, S, = o, (16)

where N is a Hawkes process with conditional intensity A*, r the interest rate,
o the volatility and zg the initial wealth. In other words we have

dS; = (r — oA*(t))Sidt + 0S;_dNy.
Thus, if we write ay = 7 — o A*(¢t) then the dynamic is equivalent to
dS; = oy Sydt + 0S;_dN;, Sy = xp. (17)
We also consider an European option
C=E[f(5r)]

with f a function which can be not continuous as f = 1[x ;[ for example for
a binary European option, and we interest to compute Greeks as

ocC _9*C oC oC

Azi = —F = —_— =
&TQ’ 833%7 p v

or’ o

In the sequel  denotes a real number in an interval |a, b[ which can be equal
to xg,r or o.
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We consider a class L of real functions f of the form

n

i=1

where n € N, ®@; is continuous and bounded and A; is an interval with endpoints
in T =Ty U {—o0, o0} with the set Ty C R defined by:

1 1
TOZ{yER lim sup P(Fwe}y_7y+[):0}.
n—=+00 < <h n n

Proposition 5.16. Let |a,b] be an interval of R. Let (F*)q<p<p and (G*)a<z<p
be two families of random variables such that the maps x € |a,b[ — F* € D12
and x € Ja,b[ —— DY2 are continuously differentiable. Let m € H such that

for any x € ]a,b[ on {an % O}

ox
D, F* #£0
OF”
and such that mGIDa‘%x is continuous in x in Dom(5). Thus for any f € L

the map x — E[f(F*)] is continuous differentiable and

OF”
J 78308 (Gwm o: )

—E[G"f(F")) =E

+E [aaiwf(FI)] .

D, F*

Proof. We follow the proof of [8, Proposition 7.2]. First if f € C}(R) then, as
the maps  — F* and x —— G¥ are differentiable, the map = — G* f(F?) is
differentiable and, for any x € |a, b,

O w  OGT - QFT
(G = S+

o f(FEDG".

Then, as f € O} (R), Dyn f(F") = f'(Fy) D ", and, as Dy F* # 0 on {aj # 0}’
X

0 aG® OF* D, f(F*)

OF”
Thus, according to Remark and mGzﬁ € Dom(9),
i OF*
B )| = 5|5 ] v |6 g D)
: oF®
IE[ o f(F )} +E || mG D, Fe F(F*)
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13}
Finally, as the function z — —(G* f(F¥)) is continuous, we have

ox

S = B | @ )

and the result follows in that case. For the general case (f € £) we conclude as
in [8, Proposition 7.2], using an approximation argument. O

As in [I0], if we can apply the Proposition with
F*=S7, G"=1ln;>0, € Ja,b],

then we can compute the Delta conditionally to {Np > 1}

P 9870
T T ox
76on [1{NT>O}f (STO)] =E f(STO)5 mlin,>o} 7Dm§;0
The solution of (16]
dSt = Statdt + O'St,dNt, SO = Zo,

is given by

¢ ¢
SY° =z exp (/ asds> (140)Nt = zgexp (rt - O’/ X"(s)ds) (1+a)M, 0<t<T.
0 0

In particular
S0 = zgexp (rT — oAr) (1 + o)NT

with

T Nt .1
Ar = / A (s)ds = )\TJrZ/ w(s —Ti)lyp,<syds
0 —Jo

Nr .1 Nr . T—-T;
)\T+Z/ (s — Ty)ds = >\T+Z/ pu(s)ds
i=1"Ti i=170
Nt
AT + > (T —T)).

i=1

Thus the map zo — S7° is continuously differentiable and

95 _ Nr _ ST
A exp (rT —oAr) (1 +0)"T = v

To compute DS7° we cannot use the results of Section [5.1|because the paramater
of the SDE f : (t,2) — oz is not deterministic. However we can directly
compute DS7°. Indeed we have

T-Ar = AroT:
NroT.

AT + > (T T, 0T)
=1
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where Np o 7. = Ny because 7.(T') = T. Therefore

TAr—Ar %T:ﬁT o T) =T 1)
3
Nt Np
L?(Q) ~ Y o e
= D (T =T))DnTi =y u(T - T)in(T;).

i=1 i=1

Thus Ar € DY, and

Nt
Dby =S (T — T)in(Ty) = /( | 1T DRAN:
=1

Since D,, Nr = 0 (see Remark [3.9), we get, by chain rule, S7° € DL and

Nt
D,,57° = —0S7* Dy Ar = —0S7° Z,u(TfTi)ﬁl(Ti) =—0S}° / w(T—t)m(t)dNy.
i=1 (0,7]

Thus we have to choose a function m € A such that, for any ¢ € [0,T], m(t) =0
if and only if ¢t € {0,T}. In this case we get

aSHo

Linr>o0} Lins>o0}

ox
1 o — = - .
{Nr=0} DmS;c‘O (ogtiy) EfiTl M(T — TJT?L(TZ) 0xo f(O,T] ,U(T - t)m(t)dNt

9520
Finally, according to Remark ml{NT>O}DL§$O € Dom(d) because we
moT

BSIO

have m € H and ]'{NT>O}D 70 € D12 and

aSHo

oz
6 ml{NT>O}D7§%O

— _s(m) LN >0 D L{Nr>0)
ozo iy w(T = To)i(T5) owo Y0 w(T = To)i(T,)

Linr>0 Ling>0)
aro f(OyT] (T = )t )dNt g0 f(O,T] u(T" — t)m(t)dNy

= —5(m)
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with, on {Np > 0},

D LNz >0}
" \owo SN (T — T (T;)
T)m(T,

o (S T - ()
SN [(T3) Do (T — T)) + (T — T;) D (T3]
2

SN R(T)E (T = T)DwT; SN (T = Ty)m(T,) DT
oo (ZiN:Tl u(T = Ti)m :n—))2 oo (zg (T — Ti)m(Ti))2
Y (T - T)m(T)? SV w(T = Ty)ym(Ty)i(T;)
oo (S w(T ~TIR(T)) oo (S w(T — Tom(T)
Joo.r 1 (T — s)i(s)*dN; . Jio.ry 1T = s)ym(s)in(s)dN,
(

2

and, using Remark

S(m) = / ((m, s) + A(s)u(T — 5) + m(s))dN,
(0,77

Nt
= Y @(m,Ty) + T = Ty) + m(Ty))

=1

Nt 1
= > (A*@) /( (T3 = RO (T = 0N, + AT =) + m@))

NT i—1, ~ R
_ ST = AT =T | o o
) Z( WS s B (Tﬁ)-

Jj=1

Thus we deduce the following expression of the Delta:

Proposition 5.17. We have

O B oy £(S7)]

(9330
520
=E | £(S52)5 | m1 —Bze
[f( T ) (m {N7>0} DmS;D)]

g | IR0 o [ F6) o o (T = s)(s)*dN.
= — — — {N7>0}

00 fo.7y (T — t)m(t)AN, . ( Tom 1T~ s)ﬁz(s)st)Q

S50 T — m(s)dNs
+E f( T )f(oj] ,u( S)m(s)m(s) . l{NT>o} .
KD (f(O,T] w(T — s)ﬁz(s)st)
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Remark 5.18. Any term in the expression of A can be written from the Hawkes

process N, the jump instants (T;);en+ and the parameters T, A, u, @i, ', m,m and

f:
ST°

Ar

/ w (T — t)m(t)%dN,
(0,7)

/ W(T — t)ym(t)m(t)dN;
(0.7]

zoexp (rT — oAr) (1 +o)N7T,
Nt

= AT+ AT -T),
=1
_ NZ oI (UT) — (T (T = T
j=1 A+ 22;11 w(T; —To)
Nt

> ulT = Ty)i(T,)

=1

Nt
S (T — (T
i=1

Nt
Z w(T = T;)m(T;)m(T;).

+m(T —T;) + m(Tj)> )

In other words, if we simulate a sample of Hawkes process then we can approach
A conditionally to {Np > 0}.

Remark 5.19. On {Np = 0}, the process S™° is deterministic and we have to
know the derivative of the function f to compute A.

Remark 5.20. For the other Greeks we can notice that

628%
E-
0xj
oSt
or St
05%. Nt
—4 = —A —_— zo.
oo ( T+ 1+ 0’) St

Then we can deduce similar

2
{Nr > 0}. ForT'= —— we can start by writing

expressions of the other Greeks conditionally to

ox§
820
Gmg . 1 Oxg
= m {Aﬁ>0}my
2 0
T%E[l{szo}f(sf)] = T%E[f(STO)(S(GIO)]
9520 5
— E o x a:l?o' E o\ __ ~ o
$5703 | Grmp B | | + B[ (55 5,6 (G™)

where we apply two times Proposition [5.16 with different processes G.

50



References

[1]

2]

[10]

[11]

[12]

[13]

[14]

E. Bacry, I. Mastromatteo, and J.-F. Muzy. Hawkes processes in finance.
Market Microstructure and Liquidity, 01(01):1550005, 2015.

K. Bichteler, J.-B. Gravereaux, and J. Jacod. Malliavin calculus for pro-
cesses with jumps, volume 2 of Stochastics Monographs. Gordon and Breach
Science Publishers, New York, 1987.

N. Bouleau and L. Denis. Energy image density property and the lent parti-
cle method for poisson measures. Journal of Functional Analysis, 257:1144—
1174, 08 20009.

N. Bouleau and L. Denis. Dirichlet forms methods for Poisson point mea-
sures and Lévy processes, volume 76 of Probability Theory and Stochas-
tic Modelling. Springer, Cham, 2015. With emphasis on the creation-
annihilation techniques.

N. Bouleau and F. Hirsch. Dirichlet Forms and Analysis on Wiener Space.
De Gruyter, Berlin, New York, 1991.

E. A. Carlen and E. Pardoux. Differential Calculus and Integration by
Parts on Poisson Space, pages 63-73. Springer Netherlands, Dordrecht,
1990.

D. J. Daley and D. Vere-Jones. An introduction to the theory of point
processes. Vol. II. Probability and its Applications (New York). Springer,
New York, second edition, 2008. General theory and structure.

L. Denis and T. M. Nguyen. Malliavin calculus for markov chains using
perturbations of time. Stochastics, 88(6):813-840, 2016.

G. Di Nunno, B. @ ksendal, and F. Proske. Malliavin calculus for Lévy
processes with applications to finance. Universitext. Springer-Verlag, Berlin,
20009.

Y. El-Khatib and N. Privault. Computations of greeks in a market with
jumps via the malliavin calculus. Finance and Stochastics, 8, 09 2003.

C. Hillairet, L. Huang, M. Khabou, and A. Réveillac. The Malliavin-Stein
method for Hawkes functionals. ALEA : Latin American Journal of Prob-
ability and Mathematical Statistics, 19(2):1293, 2022.

C. Hillairet, A. Réveillac, and M. Rosenbaum. An expansion formula for
Hawkes processes and application to cyber-insurance derivatives *. Stochas-
tic Processes and their Applications, 160:89-119, June 2023.

P. Laub, Y. Lee, and T. Taimre. The Elements of Hawkes Processes. 01
2021.

P. J. Laub, T. Taimre, and P. K. Pollett. Hawkes processes, 2015.

o1



[15] T. Leblanc. Exponential moments for Hawkes processes under minimal
assumptions. Electron. Commun. Probab., 29:Paper No. 55, 11, 2024.

[16] D. Nualart. The Malliavin calculus and related topics. Probability and its
Applications (New York). Springer-Verlag, Berlin, second edition, 2006.

[17] P. E. Protter. Stochastic integration and differential equations, volume 21 of
Applications of Mathematics (New York). Springer-Verlag, Berlin, second
edition, 2004. Stochastic Modelling and Applied Probability.

52



	Introduction
	Framework and directional derivation
	Setting and first notations
	Directional derivation
	Absolute continuity of P w.r.t. P
	Limit behavior of the density G when 0
	Integration by parts in Bismut's way
	Directional Dirichlet space

	The local Dirichlet form
	Definition using a Hilbert basis
	Divergence operator by duality

	Absolute continuity criterion
	Local criterion
	Global criterion

	Applications
	SDE and density of the solution
	Application to Greek computation


