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1 Introduction

Optimal liquidation is an important and challenging topic in mathematical finance. There is a huge
literature on this subject ; the reference [12] is interesting to have an overall view (see also the references
therein). Here we consider the stochastic extension of the Almgren & Chriss model, first exposed in [I].
Namely for some p > 1, we consider the stochastic control problem to minimize the functional

T
J(taa):E</ (nsas|p+78|55|p)d5+’ft>
t
over all a € A(t, ) where A(t,x) is the set of admissible controls such that = satisfy the dynamics
s —z+/ audu t<s<T, acL'(to)as.
t

together with the terminal constraint £ = 0 a.s. (mandatory liquidation). This control problem and
the link with backward stochastic differential equations (BSDE in abbreviate form) has been studied in
[3]. Tt is proved that a minimizer of the functional .J is the process E* given by

s q—1
EY =xexp (/ <Y;) du) (1
t N

where (Y, Z) is the minimal solution of the BSDE

qg—1 T T
=&— / |Y | Y 28 TS s+ / Ysds + / ZsdWs, (2)
t t

with singular terminal condition £ = +oc0 a.s. Here and in the rest of the paper, ¢ is the Hélder conjugate
of p. Moreover the value function of this control problem is given by v(t,z) = |z|PY;. Remark that due
to the singular terminal condition, the standard notion of solution for BSDE has to be adapted (see
Proposition [1| below).

Another way to solve this control problem is the use of the Hamilton-Jacobi-Bellman equation. In
[10], it is proved that there exists a smooth solution v of the related partial differential equation (PDE
in short). Both approaches are connected through the link: Y; = v(s, X;), where X is the underlying
forward process.

~—

The aim of the paper is to study the Malliavin differentiability of the solution Y. Our motivations
are pluralist:
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e From the theoretical point of view, this question naturally appears in our previous work [6]. We
studied the continuity at time 7" of Y. To obtain our result, we used the Malliavin calculus on the
approximating sequence Y (see Proposition [2| below). We left the Malliavin differentiability of Y
and the convergence of the Malliavin derivative DY™ out.

e It is also well-known that Malliavin derivatives (and the related divergence operator and integration
by parts) can be used to analyze the sensitivity of the optimal state w.r.t. the parameters (see
among many others [8, [9]). In our context, since the optimal state is given by , the Malliavin
derivative of Y plays a crucial role.

e In [I0] the existence of a solution v € C([0,T); D(L)) is proved. In dimension one, it implies that
v € C? (see [10, Remark 2.5]). Nonetheless the gradient of this solution and its behavior at time
T is not studied. Formally this gradient is related to the Malliavin derivative by the formula:
0,v(s, Xs)o(s, Xs) = DY, o being the volatility matrix of the forward process X.

In this work, we prove that Y has a Malliavin derivative DY and that the sequence of Malliavin
derivatives DY™ converges to DY on [0,T). We also study the behavior at time T of DY and show that
there is a singularity at time T": roughly speaking, DyY; tends to +o0o when ¢ tends to T. Applications
to PDE or sensitivity analysis are then provided. To the best of our knowledges, all these results are
completely new.

We are well aware that some parts of the proofs are quite heavy due to the handling of the function
y +— —y|y|?! and its derivatives. The arguments would be much more easier in the quadratic case, that
is for ¢ = 2. Nonetheless we also know that in practice the case ¢ = 2 is too restrictive. In [2] the authors
analyze a large data set from the Citigroup US equity trading desks and show that ¢ = 1.6 is a good
estimate of this parameter. This is the reason why we keep this general setting.

Breakdown of the paper. In Section 2, we evoke the known results concerning the BSDE ((2)), its
approximating sequence Y™ and why the convergence of the sequence of derivatives DY™ cannot be
done with the same arguments. In few words, the proof that Y™ converges to Y is heavily based on the
non-linearity of the BSDE ([2)). But the equation satisfied by DY™ is linear. In Section the asymptotic
expansion of Y allows us to show the differentiability of Y and the behavior of its derivative. The next
section [] studies the convergence of DY™ to DY. For the liquidation problem such convergence seems
quite incidental and the reader interested by the applications can skip it. In Section [5] we explain how
to apply the results to the gradient of the related PDE and to the sensitivity. In the last section, for the
sake of completeness, we give the proof for the asymptotic behavior of Y, which is the key tool of this
paper. If most of the arguments can be found in [I1], we simplify them and give a better estimate of the
parameters.

Notations In this paper we consider a deterministic time horizon T' € R* | a probability space (€2, F,P),
a d-dimensional Brownian motion (W})o<¢<7 defined on the probability space and (F¢)c(o,7] the aug-
mented filtration generated by W. For all p € [2, +o0[, we note:

e D* is the domain of the Malliavin derivative operator in L?(Q2). Furthermore we note D1 =

N DY*. For A € DY we note (Do A)o<o<r its Malliavin derivative and for X a D' -process we
p>2

note (DyXy)o<o,1<T-

e 57(0,T) is the space of stochastic progressively measurable processes (A4;)o<i<7 With values in R*
such that

E( sup At|p) < +o0
0<t<T
and S*(0,T) = (1,5, 57(0,T).

e H?(0,T) is the space of stochastic progressively measurable processes (A;)o<;<7 with values in RF

such that
T
0

and H*(0,T) = ,5, H?(0,T).



e Whenever the notation T— appears in the definition of a process space, we mean the set of all
processes whose restrictions satisfy the respective property when T— is replaced by any T — ¢,
e > 0. For example, S?(0,7—) = (1,5, 5”(0,T — €). Moreover we say that a sequence (F},)nen
converges in S”(0,T—) to F' € SP(0,T—) if for any € > 0, the sequence (F},)nen converges to F' in
SP(0,T —¢).

In the rest of the paper, C' denotes a generic constant, which can depend on other coefficients, and may
change from line to line.

2 Setting and known results

We suppose that
Assumption 1.

1. The coefficient n is an Ité process:

t t
77t=770+/ b?ds—&-/ oldWs, 0<t<T,
0 0

with an initial condition ny € R.

(a) The drift 57 : Q2 x [0,T] — R and the diffusion matriz ¢ : Q x [0,T] — R are progressively
measurable and bounded.

(b) There exist 1. and n* in R such that, a.s. for any s € [0,T],
0<ne <ms <t

2. The process v is a progressively measurable, non-negative and bounded: there exists v* € R’ such
that, a.s. for any s € [0,T],
0< vy, <"
In Section [5, Example [T] provides a case where Assumption [T] holds.

Remark 1. In particular the process nn and v satisfy

T 1 T
]E/0 (nq1—%775)als<—|—oo7 IE/O Ysds < 400.

Under this framework, if & € LP(Q) for some p > 1, then there exists a unique solution (Y, Z) €
SP(0,T) x HP(0,T) to the BSDE (see [5l, Theorem 4.2]). When & = +o0, following [3, [15], we
proceed by truncation and consider the following BSDE: for any n € N

T |Yn|q—lyn T
VA =n+/ (—(p—l)sqls +vs) ds—/ Zrdw,, tel0,T). (3)
t Ns t

Lemma 1. Under Conditions[l] the truncated BSDE (3) admits a unique solution (Y™, Z™) in SP(0,T) x
H?(0,T) for all p € 11, +00[. Moreover the sequence Y,, is non-decreasing and the process Y™ is bounded

from above: for m <n
T
/ Ysds ]-'t] .
t

Proof. Existence and uniqueness directly follows from [5, Theorem 4.2]. Now standard a priori estimate
on the solution of a BSDE (see [19, Theorem 5.30]) and the comparison theorem (see [I9, Theorem 5.33])
imply that Y™ is non-negative and the desired estimation. This achieves the proof of this proposition. [

Vte[0,T], 0<Y"<Y"<n+E

Since Y;" is a non-decreasing sequence, its limit Y; exists. However the upper estimate on Y™ is not
sufficient to ensure that Y; is finite. According to [I5] 6], we have:

Proposition 1. Under Conditions[l] the sequence (Y™, Z™) converges to (Y, Z) in S>(0,T—)x H>*(0,T—).
The limit (Y, Z) is the minimal supersolution to the BSDE on [0,T[ in the sense that:



1. The couple (Y, Z) belongs to S>=(0,T—) x H*>*(0,T—).
2. The process Y is non negative.

3. Forall0<s<t<T,

t Yr q—er t
Y, :Y;t'i'/ (—(p—l)lql +,Y7‘> d?"—/ ZdW..
s Ns s

4. The process Y satisfies a.s. limy_,7 Y; = 400.

5. The process (Y, Z) is minimal: if (17, Z) satisfies the four previous points, then a.s. for any t,

Y, <Y:.
ft]}- (4)

®)

Moreover for any t € [0,T] and n > 1:

. 1 1
E Sw—t+waw{nwl+E

As a consequence, the process Y satisfies: for all 0 <t < T

T
l<m+@fw4ww@

1

T
n _ p
0<Y, <Yt<(T_t)pE[/t (s + (T — 5+ 1)Py,) ds| 7

We show the Malliavin differentiability of the couple (Y™, Z™), due to [I7, Theorem 5.1 and Appli-
cation 6.1]. We assume that:

Assumption 2. The processes b, 1,7y are in valued in DV2, their Malliavin derivatives Db", Dn, Dy
admit progressively measurable versions which are in L*(Q x [0,T] x [0,T]).

Proposition 2. Under Conditions [1] and [3, the solution (Y™, Z™) of the truncated BSDE (3) is in
L2([0,T],DY2 x DY2). Moreover for all0 <t < 0 <T, DgY;" =0, DgZ =0 and, for all0 <0 <t <T,

T n 1 n 1yn
Y- YY)
DgYr = / (—( )| | Dy Yn |”7D9’r]7~ + DQ’V,«) dr — / DandW (6)
t 'f]r T
Proof. Under our setting, we can directly apply [6, Proposition 6]. O

In our setting, the approximating sequence Y™ has a Malliavin derivative DY ™, which satisfies the
linear BSDE given in Proposition 2] Very natural questions are: does the minimal solution Y have also
a Malliavin derivative DY and do we have the convergence of DY ™ to DY ? Evoke that to obtain the
convergence of Y™, the a priori estimate together with the monotonicity of the sequence Y are
crucial. We do not have similar tools for the Malliavin derivative. And we derive the a priori estimate
using the non-linearity of the BSDE . Hence it is not possible to directly pass to the limit in the linear
BSDE (@

Formally if we pass to the limit in @7 we should have a linear BSDE of the form:

T —1 1 T
Y. |? Y, |T7Y,
Ut = / <_(p - 1>‘ q‘,l ’I“ | |7) D977r + D@’V’r’) dr — / Vvdes
t t

r T

with a singular generator since a.s.

ni~!

This property comes from the liquidation condition =} = 0 a.s. and Equation . In [13, 14], such

linear BSDEs with singular generator are studied. Nonetheless to apply the results of these papers, the
y|a—!
process %D@?] + Dy~ should be bounded. In general this property does not hold.
U]

Y, |97t
/ ¥l dr = +o0.
0

However in the liquidation problem, that is for the BSDE (2)) when £ = 400 a.s., we can prove the
Malliavin differentiability of Y. Let us evoke the results of [1I] thanks to Assumption I} The minimal
solution Y of can be written: forall 0 <t < T

Nt 1

Y=g ot “




The process H is the unique solution of the BSDE:

T T
Ht:/ F(s,Hs)dsf/ ZHaw,, o<t<T (8)
t

t

with generator F' given by: for all 0 <t < T
F(t,h) = [(T = )b} + (T = t)Pv]

(st =

This generator F' is singular at time 7', in the sense that for h # 0, a.s.

q—1 1
—(p—=1)m

T
/ (4, h)|dt = +oc.
0

Therefore existence and uniqueness of H needs to be explained. Here we prove that there exist two
constants § > 0 and R > 0, depending only on ¢, T, n and ~, such that on the time interval [0,T], H
satisfies a.s. for any t € [T — 6,7, |H;| < R(T —t)?, H is bounded on [0, T], and the solution (H, Z)
is obtained by a Picard iteration argument in the space of adapted processes

HO = {H € L>(QC(T — §,T);R)), ||H| s < +oo}

endowed with the weighted norm

[H|[ys = || sup (T —t)"*H,

te[T—46,T)

See the appendix for more details. Let us give the value of the constants R and d:

2 R
R=|b"oe + ——=7", L=1

1 n
o 92la=2l  § — min (1, T, — 1 ) . (10)
p U

2L 2R

3 Malliavin derivative for the minimal solution and its behaviour
at time 7T

Let us define on the set [T'— 46, T) x R X [n,n*] the function G by:

Gt hym) = (p— 1)n (1+77(T1t)h)‘1+mhq_1—1—th].
On this set we have:
(Zi(t,h,n): (Tp_t) (’1+77(T1_t)hq1—1> (11)
%(tvh,n):(pfn (1+ (T—t)h)‘1+n(T1—t)hql1q77(T1_t)h]
- <‘” = t)hql 1)
= (1+17(2}_wh>‘1+77(1}_ﬂhq_1—<l—|—77(Tl_t)h>‘1+n(T1_t)hq_l—p+l
‘@L}:_)?n@l—t)h‘ <Tp}it>’”n<T1—t>h“ e
_ <1+ n(T—t)h> ’1+ n(T_t)hq_l+1+p (’14— (Tl_t)hq_1—1> . (12)




In the case where ¢ = p = 2, we get the easier expression

h? oG 2h oG h?
G(t7h777):7 7(t7han):7 7(t7h”77):_ 2

n(T —t)?"  0oh n(T—t)?" o (T —t)*
A key point in the proof of [I1, Theorem 23] is a.s. for any T'— 6 <t < T, |H;| < R(T — t)?. Therefore
these derivatives are bounded when we replace (h,n) by the processes (Hy,n;) for t € [T — §,T].
From time to time, we use the next representation of G and their derivatives:

qh2 1 1 q—2 1
G(t,h, :7/ 1+a————h sin(l—l—ah) 1—a)da
Chm == ), Mmoo A A

oG qh /1 1 -2 ( 1 )

—(t,h,n) = — 1+a————h sign (1+a—————h | da 13
on ) = e | Pt e T =0 (13)
oG qh? /1 1 -2 ( 1 >

—(t,h,n) = —————= 1+a————h sign |1+ a————h | ada. 14
gy ) = e | [P og | S WT =1 (14)

1
These representations may be not well-defined when ¢ < 2 if 1 + a————h = 0. However in the

n(T —1)
construction of the solution H, ¢ is chosen such that
1
(T —t) ~ 2

Hence we can use these versions with h = H; on the whole time interval [T — 4, T].

Lemma 2. Under the previous assumptions, the process H has a Malliavin derivative, such that DgHy =
0ift<@ and forany0 <O <t<T

(&Hs,ns)Da??s - g%(S,Hs,Us)DeHs ds

T
DyH; = / {(T — 8)Dgb? + (T — s)PDgrys —
t 877

T
- / Dy ZHaw,. (15)
t

Proof. Tt is an adaptation of the proof of [7, Proposition 5.4]. The solution (H, Z¥) is the limit in #H°
of the sequence (H*, ZH-*) unique solution in H° of

T T
HF = / F(s,H 1)ds — / ZHkaw,
t t
with (H?, ZH:) = (0,0). Moreover for any k and t € [T — 6, T, |[HF| < R(T —t)? and |Hf| < C. By
recursion we prove that H* has a Malliavin derivative DH* such that for § <t < T and t > T — §:

k T oG k-1 oG k-1 k-1
DyH} = (T — s)Dgb? + (T — 5)P Dyrys — 8—77(5,Hs ,Ns)Dons — %(S,HS ,s)DoH, ds
t

T
— / Dy ZHkqw,.
t

The processes gﬁ(s,Hf,ns) and %(S,Hf,ns) are bounded, uniformly w.r.t. k. Indeed using the
representations (13)) and we obtain that for T — 6 <s<T

oG oG
<

%(savans) ain(SaH;zns) =

R2
92 (1 — )?2le2

*

< ﬁqu—2\7 ‘

T

Hence using classical a priori estimates for BSDE (see [19, Section 5.3.1]), we prove that the sequence
DgH* converges to the solution of on [T — 6§, T]. Moreover we can also use classical arguments on
[0,7 =] ([7] or [I7]) thanks to the expression of H on [0,T — 0] given by (see end of the proof of
Proposition [7| for the properties of F on [0, 7 — 4]). Fianlly we get

T T
E/ / | Dg Hy|*dfdt < +oo.
0 0



Note that for ¢ = 2, the BSDE becomes

T 2 T

2H

DyH,; = T — 8)Dpb" + (T — 8)?Dpys + ——2——Dyns — ——>—DyHs| ds — DyZHaw,.
ot /t [< 8)Dob3 + (T = )" Do + 2o Doms = S — 555 Do } ’ /t 0L

S

Lemma 3. There exists C' such that the Malliavin derivative of H satisfies: a.s. for any0 <0 <t <T

T
|DoH:| < C(T —t)E / (IDobd[ + [Dovs| + |Dons|) ds| Fi (16)
t
Proof. Evoke that |H| < R(T —t)* and remark that, by solution of the linear BSDE (T3],
T oG
DyH;, =E / [(T — 8)Dgb? + (T — $)? Dygrys — a—n(s, HS77)S)D977$:| Iy sds|Fy (17)
t

where s 50
Ty s =exp (—/ (u,Hu,nu)du> . (18)

’ t 8}1/

We already know that on [T — 6, T:

‘3G < Wogy |G

a1 H97 s = a aHsv s
O (5, Hoom) G (s,

2
< %QW*Q\ (T — s)2.
n

*

T

If0<O<Tand (T—-9)Ve<t<T, the result directly follows from . fo<o<t<T-9,

DyH, =E |:D9HT6Ft,T6

7

= le]
+E / |:(T - S)DGbZ + (T - S)pD973 - %(SvHsans)Dansil Ft,sds ‘Ft
t
oG oG .
and %(, H, n)| and a—(',H, 7)| are bounded processes on [0, — d]. Hence there exists a constant
n
C such that

r T—6
\DoHy| < CE || Dy Hr_s| / (IDeb] + | Dorys| + | Do) ds
L t

]:t] +E

|
T

T3
< CE |Cd (|D6)b§’|+|D0%|+|D677s|)d5+/ (I Dob?| + [Dovs| + [Dons|) ds ft}
t

T—6

T
< CE / (|Dgb?| 4 | Dgvs| + [ Donsl) ds Ft]
t

C T
= ST -0E / (1Dob2| + [ Dl + [ Do |) ds ft] .
t
O
From Equation and the previous lemma, we deduce the following result.
Proposition 3. The process Y is valued in D2 and, for any 0 <0 <t < T,
Doy 1
DyY; = DyH,. 19
oYt (T—t)P—1+(T—t)P 011t (19)

From Equation and Assumption [2 we deduce that:

T 1/2
|DoH| < C(T —t)*/*E (/ (ngg’|2+|Dms|2+|D9ns|2)ds> ‘]—}
t



Deny

T and on the set {Dgnr # 0}

Thus close to T', the leading term in DyY; is
lim |DyY;| = +o0.
t—T
Therefore there is a singularity at time T for the Malliavin derivative, even in this quite simple case
where £ = +00 a.s. And we expect that a similar singular behavior holds in the general setting studied

in [I5 [6] when & can be equal to +o00 with a positive probability.

1
ngHt and from

)
a}

T
/ ‘DG’Vs'dS
t

Remark 2. However if n is deterministic, then Dgn =0 and DyY; =

T
|DoH;| <E / (T — 5)P|Doys|Ts,sds
¢

]—'tl < C(T - t)PE

Then a.s.
lim |DyY;| = 0.
t—T

Thus in this case we do not have singularity of the derivative.

4 Convergence of the Malliavin derivatives

Evoke that Y, converges a.s. to Y; given by . Moreover Y™ and Y belong to D2 (Propositions |2/ and
and thus a natural question is: does the sequence DY ™ converge to DY 7 The goal of this section is
to give an answer to this question.

Let us define the process H"™ by:

n* g—1\7? n* q—1

v =

to get

—_

(r-t+(5)")

Thus

() v () o (20 (5) e (2 o (2) o

The process H" is the solution of the BSDE

=y (1= Ly T (o (TN Y as - [ zraw (21)
t =7 77* nq_l ’ n s . s s

Note that the terminal value is non-negative:

N 1
=) (1- 1) s >0

n* ) ne”

Let us start with an estimate on H™. With an abuse of notations, we still denote the constant § in
the next statement. Indeed we can always take the minimum between the constant ¢ coming from the
existence of the process H and the constant § coming from this lemma.

Lemma 4. There exist § > 0, ng € N and two positive constants C; and Cy s.t. for any n > ng and

T 6<t<T:
*x\ ¢—1 2 *\ 4—1
—01<T—t+<77> )g%ﬁgcg(T—tJr(”) )
n n

Moreover there exists C' such that for any n, on [0,T —¢], |[H}| < C.



Proof. We already know that

o< mp =y (1-10) Ly < U

< 7 ) i
Hence the estimate holds at time T for any C; > 0 and Cy > n*.
«\4—1
Now if V; = C; (T — (%) ) then —dV; = Cydt and

oo (5 )= (e () e e ()

o1+ &) 0]

Tt

n

s\ ¢ C x\ -1 o g—1\ P
ot [ ) ez (o (1) (e () )
t t

In particular it holds if

%\ ¢—1
Hence FH (t — (77) ,Vt> < (4 if for any ¢t and n:

ISR

ool %) -]

> %(T + )Y [I67]]oe + (T + ()77 |

which is equivalent to

C! a C! q—l *\q— *\q— *
(1+2) 1= S N ) [ e+ (T ()T
Nt Mt T

The function ¢ : z — (1 4+ 2)? — 1 — x is continuous and increasing on [0, +oo[, with ¥(0) = 0 and
1(00) = oco. Hence it is sufficient to take

Gzt [w—l (qn‘*lm (7)1 [167)l + (T + (n*)q_l)”v*]> v 1} |

to obtain, by the comparison result for BSDE, that a.s. for any ¢, H < V;. Remark that for ¢ =2, Cs
can be explicitly obtained by solving a second degree equation.

N\ a1 2
To get the lower estimate, we similarly proceed, by defining Uy = —C} (T —t+ (%) > . This

\ 41
quantity satisfies —dU; = —2C (T —t+ (%) > dt and

o= (3 ) (e (2o (e ()
—(p =D [(1=x) L=l — 1+ g
> 21Xt (22)

where



Note that for some § > 0 and ng € N such that

*x\ a—1
no 2
the quantity y; satisfies: x; < 1/2. Moreover let us recall that if 1 — y; > 0, then

1
(L—x) 1= x| =14 qxe = qlg — 1)Xf/ 11— axe|" % (1 - a)da.
0

Then the previous inequality holds if
1 9 7]* q—1
oot [ 1=l (= a)da =2 < = (T () ) (99 + (7 ()],
0
which can be written as:

*\ 4—1
()2 (T—t+<n) )—201+K§0,
Ur n

with )
Gt = (J/ [1— axt|q72 (1-a)da, K= [||b’7HOo + (T + (7]*)q)p71,y*] .
0

Note that for ¢ = 2, (; = 1, which simplifies the discussion here after. First under , for
T—-6<t<Tandn>ng

1
_aqf 1 _ q—2 q( 1 _ x
§*—2(2q2/\1>§(t—q/0 |1 — ax:| (1—a)da§2(2q2\/1>—(.

Now if

then for any T — 6 <t < T and n > ng

o\ g—1
S g <T—t+<")q ) <1
Tt n

Thus the desired estimate holds if

and

N
C < T |1+ 1—QK<T—t+<n>q )
G (T—t+(2)") U n

For the upper bound, remark that for T — 0 <t <T and n > nyg

* —1
It — |1+ 1—QK<T—t+<n>q >
G (Tft+(%)q ) Tt n

* * -1
> e L 1—<K<5+<")q )
¢ (5+ () ) e o

10

(23)

any

(24)

(25)



And the lower bound satisfies:

S e N e

*

Therefore there exists 6 > 0, ng € N and C; > 0 such that Conditions ,, and hold.
Then by comparison principle for BSDEs, for any T'— 0 <t < T and n > ng

x\ 91 2
W > —Cy (T—H— (77) ) .
n
The last statement of the lemma comes from (): on [0,7 — 4]

1 /1
OSYtRSYtS(Sp<+(T+1)p7*>

T

and from the very definition of H™:

x\ -1\ 7
My < <T+(ZL> ) v

This achieves the proof of the lemma. O

Since Y;" converges a.s. to Y; for any ¢, we already know that H}' converges to H;. The next result
is a convergence result with weights.

Lemma 5. We have a.s.
lim - L ___ldt=0
n—+oo Jq T—t (T*t+i)

n

and for any 0 > 0

T H n
lim ]E/ LA t | dt=0.
n—+oo o |T—1 (T—t—‘,—%)

Proof. For any 0 <t < T and any n, we have

—1\ p—1
Ht _ H? _ _ \p—1 _ _ (77*>Q1 Yn
T ey (o (3 t

and Y and Y™ are non-negative processes. Using , we have

1 Tr1
- t

S

1
ﬁ) < — 4+ (T +1)P*

7))

Now from the a priori estimate :
1 1 T(/p—1\""
n _ P
Y S(Tt+n£1)p{rﬂ1+E</t ( m) FT s ds
1 1 p—1\""
S(Tt+11)P{nq1+(T_t)<( Un ) +(T+1)p7*>}'
nd—

11



Moreover

_ ) -1\ 1 .
B <1+ nq—l(T—t)+1> (na=YT —t)+ 1) =

And
%\ 9—1 p—l _ p—1
n *\ ¢—1
(G I (S
_ - T — _
(e D) R PR
-1
B R0 St S S (At N
- na—1(T — 1) + 1 (i (T—t)+1) —
Therefore

@_¢+QDQj“E¢<W1+(@;gPPHT+w¢ﬂ.

Since Y™ converges to Y pointwise, the result is a consequence of the dominated convergence theorem. [

Now let us study the Malliavin derivatives. We already know that Y™ is Malliavin differentiable and
the solution of the linear BSDE @ isfor0<O0<t<T:
ft] |

T q s q—1
YTL Yn
/ (( 2 ) Dyns +D975> exp —p/ <“) du | ds
t Ns t Nu
Proposition 4. The processes (H"™)nen are Malliavin differentiable and their Malliavin derivatives sat-
isfy, for any 0 <0 <t <T:

DyY," =E

—_

DyY," = 1 Dgny + 5 DoHY.

1
(r-ee ey ™) (o))

Proof. 1t is due to the fact that the processes Y™ and n are Malliavin differentiable and (20)). O

Evoke that DgH is the solution of the BSDE ([L5):

T oG oG r
DGHt = / I:(T - S)ngg + (T - 8)pD975 - Can(S’Hs,Us)Deﬁs - ah(&Hs,ns)DaHs} dS—/ DGZ;qu&
t t

The Malliavin derivative DgH™ is the solution of:

,’7* q—1 T n* qg—1 77* qg—1\ P
DG’H? = — (’n) D(N}T +/ (T — s+ <TL> ) Dobg + (T — s+ <n> > DH'Y;| ds
t
T x\ 71 x\ 4—1
_ / % S — l ”H?’ns Dons + % s — i ,H?’ns DG,HZL ds
t on n oh n

T
- / Dy ZdW,.
t

12



4.1 Convergence of DyH"

Our goal is to prove that DyH"™ converges to DyH. The difference DgH — DygH™ satisfies the next
equation:

n* g—1 ,,7* g—1 T 1 ,,7* g—1
A} = DgHy — DoHy = () Donr — () / [ngg +p (/ (T —s+a () ) da) Dms] ds
n n P 0 n
oG oG 7\
a_ HS? s) T o - - ) ?7 s
677(8, 5:1s) an (S (n) Hn
Gl le! 9
%(SaHsvnS) - % (S - <2) 7H2ans>] DQHSdS

T *\ ¢—1
—/ 8—2 <s - (”) ,7—[’;,778> (Do H, — DyH"| ds. (27)
t

Our first statement is:

T
Mm%f/(Dﬂf*Dﬂ@W%
t

Lemma 6. There exists a constant k1 > 0 such that a.s. for any n > ng and s € [0,T)

oG N\
% (S — <?7n> ,H?,ns> 2 —K1.
Proof. Evoke that from
1
1+a——h

oG B qh !
aﬁ“”mnw—waﬂ (T D)

Lemma [ implies that for any 7' — § < s < T and n > ng:

« * *\ 9—1 *
T {5 N PR
s Ns n TNs (T_S_'_(%) )

Now from and since H"™ is bounded by C, if s <T — ¢

q—2

1
sign 1+ ah> da.
< n(T —1t)

e #\ 77! 1 ot
a1 s — <T]> 77{?7778 = P xyq—1 1+ *\q—1 H:L _1
o\ @ | e ()
-1
p c N\
<= 1+ — 1].
5(( +77*(T—5> + )
O
The second result concerns the control of the next difference terms.
Lemma 7. There exist two processes X" and T™ such that
oG oG n* q—1 H, HYn (g—1)A1
a H?? s) T o - - b n7 S S Tn - 2 29
y o) an<5 (%) )| < la s - a=r 2

and

oG oG N\
aih(SaHmnS)_aih (5_ (n) 77'[5’775)‘
< T‘?
T (T—s)

(T=s) (T=s+n/n)t)

’ H, Hr

(g—1)A1 *\ ¢—1
n P
(%) @s+@Vqu} (80

And Y™ and Y™ are bounded uniformly w.r.t s € [0,T] and n > nyg.

13



Proof. For (s,h) and (u, h) and if

s__ b h
nT—=s) n(T-u)
then from and
oG oG N
B (a 777)_8777(7"? 777)
1 7 a1 h q—1 iL a-1
= —qd 1+ + ad da+p‘1+ —-pl|l+ 31
o ' RT =) WT =) 31)
1 2 q-1
0 (T —u)
1 z q-2 3
+pq—15/ 1+ ————+aé sign {14+ ——— +ad | da
@=00 J = 0T — )
. —2 . R
——q5/11+h+a5q L—i—aé sign 1+L+a5 da (32)
0 n(T — ) n(T — ) n(T —u)

provided that there is no division by zero when ¢ < 2.
If (s,h) and (u, h) are chosen such that

for any a € [0, 1]
h h

1
1+ ——+4+ad=14+(1-a +a > —.
T =) ST T e R
Evoke that from our choice of § and ng,
H, 1 HT 1

ns(T — s) > X Ns(T — s+ (n*/n)a—1) X

and from Lemma |Z| HP C R
: tadh <14+ 2

<1+
ns(T — s+ (n*/n)a~1) un

DN | =

with " yn
577, S s

T8 (T s+ (p/n)e)
Hence we deduce that for any T'— § < s < T and n > nyg
%(SH )—% s— A "~ Hy =776y
87] ) ER) 775 377 9 5 778 - s7s

n

with the bounded process

1 HT q—2 HP
T = — / (1 + 2 + QSZ) ( 2 + a5?> da.
1), 1s(T — s+ (1" /n)7 1) (T — s+ (i /n)a )

On the rest of the time interval [0,T — 4], since s — 1/(T — s), H and H" are bounded, from , we
easily deduce that if ¢ > 2, the functions are Lipschitz continuous and thus

oG oG N\
%(SaHSanS)fain (5 <7’L> 7Hsans

But for 1 < ¢ < 2, since z + |z|771 is (¢ — 1)-Hélder continuous, we only obtain that

oG oG 7\
6777(87]{5,773)_8777 (8— (n) aHsvns>

14
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Similarly with and the same previous notations as previously:

i et = i (1)

p(s —u)
(T —s)(T —u)

+

Hence there exists a uniformly bounded process Y™ such that a.s. on [T —4,T) and for n > ng

oG oG P\
8h (S Hsan ) % (S (n) aHs7ns

it ((THES) T s ﬁs*/n)‘ﬂ)) i (731*)4_1 (T—s+ f”*/”)q_l)] '

(T —s)
And on [0,T — ¢], we obtain the inequality by Lipschitz-continuity if ¢ > 2 or Holder-continuity if ¢ < 2,
and by boundedness of H and H". O

Let us start with the next result:

Lemma 8. Assume that for some o > 1,
T T
IE/ | Donpr|? +/ (|Dgb?1® 4 | Dgys|® + | Dons|®) ds| df < +oo.
0 0
Then for any 0 < 0 <t < T DgH} converges a.s. to DoH; and for £ < o, DH"™ converges to DH in

LY(Q x [0,T)?).
Proof. From Lemma [f]

)

s aG ,'7* q—1
| - _ el (" n
ts = exp l /t o (u ( " ) ,Hu,nu> du

is bounded uniformly w.r.t. n > ng by exp(Tx1). Since is a linear BSDE, we have:

]
T 1 n* q—1

/ Dpb? +p / T—-—s+a (n) da | Dyvys | Tt sds|Fy
t 0

ft]

]-'t] . (33)

DyH; — DyH™ = (Z*)q_l E [DenTF?,T
. (n*)q‘l £

n
/tT Bf(s,Hs,ns) — 2—5 (s — (Z)q_l 77'1?#75)] DoH,I'} (ds

In the right-hand side of , the first two terms satisfy for any 0 < 0 <t < T and n > nyg

,,7* q—1 ,’7* q—1
() ft} <c () E [DenTl
n n

15
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and

E

3=

T 1 n* q—1
/ [ngg +p (/ (T —s+a () ) da) Da%] I'y.ds Ft]
t 0 n '
g

]-"t] . (35)

.

< *>q—1
*\ 9—1
(2
n
x\ ¢—1
(2]
n
From (29), we obtain that

T *x\ 4—1
|E [/; 7677 (S, HS,T]S) — 787’] (S — <) 7%37”8)] DQT’SFt,SdS

T
/(WMHmU4mW*Hmmms
t

T
/(me+wmﬁm
t

n

T n (g—1)A1
H, H
<E|[ 10| _ s Dyns|T7.
<E| | T - e e 'GMM“E]
T n (g—1)A1
H, H
<\ [ gy - a s aen| Pl ft] | 0

From , we have
|D0Hs| S C(T - S)Csa

where
T T
(. =E [/ (| Dbl | + | Doyau| + | Donul) du ]-'s] =F [/ wudu ]-'5] .
Thus using
oG oG P\
%(57}[35778)_% (S_ (n> aHs7’r]S |D9Hs|
n (g—1)A1 o\ g—1
. H, H “ny (1 Cs
< CCIxn - s cpltr (1L
<Oy o] roT(E) @t
and

[ T
5|
t

oG oG *\ 11
%(S,Hsﬂ?s) - % (5 - (2) 7H?7ns>] DOHSF?,st
H, HT

E]
[ ¢la=s-T=s o }4

+pC <2:>q1 E ]-"t] : (37)

.

(g—1)A1

< CE ds

T CS
l T st ()™

/tT T—s+ (1n*/n)q—1 (/f wudu> ds
d

For the second one

0<E _—

Fi

T
/ Gs ds
¢ T —s+(/n)!

—In(T — ¢ + (" /n)* )G — E

T
/t In(T — s+ (n*/n)? Yw,ds

.
E]

T
<In(T+ (n*)THG +E / —In(T — s)wsds
¢

T
ST+ )G E| [ o)lmds

16



Coming back to , with , , , , we obtain that for 0 <9 <t <T

x\ 4—1
|DoH; — DoHy'| < C (77> E
n

%\ ¢—1
+C (”) E
n

T
(Dol +2 [ (1Dab] + Do) + D] ds
t

.

T
/ [ In(T — s)|wsds|Fy
t

T H Hn (g—1)A1
+ CE / = _ 2 Dgns|ds|F;
T = T—sr | P
T H Hn (qfl)/\l
+ CE s = _ = ds|Fi| - 38
| ela=s - m=sr o | %)
With Hoélder’s inequality (1/04 1/0. = 1):
T T 1/0« T 1/e T /e
E / [ In(T — s)|wsds ft] < / [In(T — s) Q*ds] E/ (ws)?ds ft] <C E/ (ws)?ds ft]
t t t t
and
E /T Hs i (H)M|D \ds|F,| < vr E/TD |eds|F, "
_ s|dS S U s
c NT=5) T T =5+ /mr ) S e A
_ 1/e
T H HP (g—1)A1 T
E s = — - ds|Fi| <vl |E s|2ds|F,
U “lT—s " T s+ /) o7 <ot B [tz
with .
§ E/T . Hn g*((q—l)Al)d - /e
v = - s )
' i |(T=s) (T—s+m/n)t) '
Note that
T T T ¢
EV IC|eds|F | =E / EV wudu};] ds]-"t]
t t s
T T 1 T
<E / (T —5)'E / (w)du| Fy | ds|F; gE(T—t)QE / () du|Fy | .
t s t

From Lemma 5] and its proof, we can use the dominated convergence theorem to deduce that for a fixed
t, v™ converges to zero a.s. Thus coming back to , we obtain the a.s. convergence of DoH} to Do H;.

To obtain the convergence in mean, we raise to the power 1 < £ < p and use the expectation in (38]):

*\ ¢(g—1) T
E|DgH, — DoH}|* < C (7; ) E [IDM)TE +/ (1Deb?|* + [ Doys|* + |Dons|") ds]
t

o) o]

T
E / Dyny|2ds
t

L/o

/e
+CE | (v1)* ]:t] +CE | (v)'E

L/p
ft]

/ ()

n* £(g—1) T
<c(L) B (1ol [ (Date 4 1Dl + Do) ds
t
T t/p
IE/ (wu)gdu]
t

T
| Donrl|® +/ (|Dgb?|® + [Dos|? + | Dgns|?) ds]
t

t/o

(e=0)/e
+C [E(th)fg/(@—@)} +

T
E / |Dgns|°ds
t

< CeE

17



with

\ Ha=1) (e-0)/e
En = (1) + [E(Ug)ée/(@—f) )
Therefore with Lemma

T T
hmE//ﬂmm—mmthm
0 0

n——+o0o

which achieves the proof of the lemma. O

Remark that if the condition is:

T
sup E [wenﬂ@ + [ (Do 41D+ Do) ds | < +oc,
0€[0,T] 0
then
T
lim wa/\mm—amNﬁzo
n—=+gci0,1] Jo
Now we prove a stronger convergence result.
Lemma 9. Assume that for some o > 1,
T
sup B ||Donrl” + [ (IDab2]? + Dol + (Do) ds | < 4.
0€[0,T] 0

Then for any 1 < €< p

lim sup E[ sup |DgH; — DyH}|" | =0.
n—=+0 gc0,7) te[0,T

Proof. We apply It6’s formula to AT = Dy H;— Dy} with the function x + |z|* for £ > 1,0< 0 <t <T
and n > ng. Using the BSDE representation , we obtain

(AAME=1)) [T
eﬂﬂA?V4—l——é?——Dl/ eS| A2 21 a0 20 (Do ZH — Do Z1)?ds
t
n* 4(q—1) T
< () e“T\DgnT|Z—/ ue“s|A?|eds
n t

*\ 9—1 T 1 *\ 4—1
_ (1) / e“S\AZ|5721A§L¢O ngbZ +p </ (T —s+a <7771> > da) De%] Alds
t 0

*\ ¢—1
Z;;(S,Hsﬂ?s) - ZS; <5 - (77) 5H27n3>] DOWSA:LdS

T
-+€/we”ﬂAZM41Ag¢O
+ n

T
— [ AT L0 20 AN (DoZE — DaZD)AW,

t
oG oG "\ .
%(svHs,ns) TS (3 - (n) JHY ms | | DeH A ds

T *\ ¢—1
_ 8G n 2
— B IAT 2]\ g [ 5 — [ — " s | (AT ds.
/t € ‘ s| As?éoah <5 (n) aHsvnk)( s) S

With Young’s inequality we have
1 77* q—1
Dgb? +p / Ts+a<> da | Dg~s
0 n

T
_E/ @MS‘AZ|6721ALL¢O
t

77* g—1
o A" E721 "
() 1an a0

n* £(q—1) 1 n* q—1 ¢
<n) DObZ +p / T—s4+a <n) da Doy,

0
*\ £(g—1) o\ g—1 £

1
Z <’ZL) ngg —|—p <T—|— <’ZL> > Dg’)/s
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|AT| %1 an20

oG oG et n
06 o Hom) - ml<—(2) ,me>MmHHAA

¢
1|0G oG P\ ‘
6]1 (S Hs»ns) - ah <S - <'fl> 7Hs,ns>

-1
(Do, |+ =~ AL,

and
a1y 50 | 2 6t = 29 (o= () g ) [ IDomelian)
s AT#£0 877 y M55 7]s 877 n y Tlg s s 07s s
110G G 7\t ‘ (-1
< - | = (s, H s (L n Don,|t + ——=|A"|L.
<4 |5t 3n<5 (%) ,Hym>‘9m|+ iay
Therefore
AN(—1 T
e#t|A?|l+((2))/t | A 21 pn 20(Do ZE — DpZ7)?ds

£(g—1) T
< (”) " | Donr |t —e/ eS| AL T2 an 20 AL (Do ZE — Do Z7)dW
t

—\n

T *\ q—1
oG n ¢
(1) —p—t—s— (= s s | | e*|AY[d
“f F( )~ 8h<5 (*) ,Hwn>]es|s
w\ L(g—1) ,T *\ 91 ¢
() [ Debup(m () )Dm
n t n
T *\ ¢—1 ¢
oG oG n
ms |27 (o F _ = - n
+/t e an (87 sﬂ?s) an (S <?’L> 77-[3’778)

T q—1
oG oG n*
us - S H?
/t “ |on (5, Hs,75) oh (8 (n) ’ sﬂ?s)

Using Lemma 6, we choose
u=1+3(€—1)+€1€1

ds

|D9ns|eds

4
|DoH,| ds.

such that

oA (-

T T
1
A + / e |AY | ds + 5 ) / AN T 1 an0(DoZY — Dy Z7)?ds
t t

2(q—1) T
< (Z) e*T| Donrl|t —4/ eS| AP T2 a0 20 A (Do ZE — Do Z1)dW
t
17* £(q—1) T ,'7* g—1 ¢
+ () / e’ | Dpb +p | T + () Dy
n ¢ n
T 8G 77* g—1 ¢
+/ (s, Hs,ms) — = (s— () ﬂ?ﬂh)
an n

T g—1
oG n*
ps Hyng)— — [s— ([ — n
+/t ‘ (5, Hs, 15) oh (S (n> ’HMnS)

ds

|D9’I75|éd8

4
| Dy H, | ds.
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From Lemma [7] with Young’s inequality with £ > 1
¢

9G 9G 7\ .
Hsa s - - ) ?7 s -D s
a77(8 Ns) — o (s <n> Hems || [Dons]
k—1]oG e 7\ 0! oy
— - _ (= n - Ik
— K 87] (S Hsylrls) 67’] <S (n) 77_[57778) + H‘Dens‘
k—1 H, HP = |
< TTL S _ S - D R Ik
= ’6<<T—s> (T—s+(77*/n)q1)> Dol
k—1 H H™ Zﬁ 1
< — - . —|Dgns ™.
= ‘(T—s> T st rmen| T wPel

If ¢ < o, then there exists x > 1 such that ¢k < p. With Lemma [5) our assumption on Dyn, and the
dominated convergence theorem, we deduce that if £ < o
¢

T q—1
. oG oG n* ’
ns I n =
nll)rfooE/O e an — (s, Hs,ms) — 377 (s <n> ,7—[5,775> |Dons|*ds = 0.
Again with Lemma [7]
T q—1 ¢
oG oG n* ’
E H - — — [ = n DoH
A_6e 6]7, (3 sans) h (S <n) 7H57775> | [ sl ds
H, HD ¢
< 2“01@/ Gl — s ds
e Ty T @ s e

(YT 1
e (n) E/H (T — s+ (o fr)aD)e ™

T T
(s=E l/ (|Dgb| + | Doyl + | Donul) du }"51 =E l/ o, du

T
|<s|e <E l/ ‘wu|£du ]:s‘| .

Next we can argue as in the proof of the previous lemma to deduce that

1 oG oG n* -1
: ns n
nhm E/O e A —(s,Hs,ms) — h s — () yHE s

Taking the expectation in , we deduce that

where again

4 |

Thus

14
|DyH,|’ds =0

T T
lim  sup sup Eett| AT + E/ e“S|AZ|2_21A?¢0(D9ZSH — DpZ™)%ds —I—IE/ e’ |AMfds | =0
n—+% gc(0,1] \ t€[0,T] 0 0

The Burkholder-Davis-Gundy inequality leads to:

E sup

T
/ eS| A 2120 AT (Dg ZE — D Z) AT dW
t€[0,T]

2
2“3|Ag\2‘f—21A?¢0(DGZ§’ — DgZ§)2d3>
2

te[0,T]

E

l\J\»—t

T
( sup e’”|A"|e/ e“S|A?|e*21AQ¢0(Dng DgZ§)2d5>
0

02
sup 6‘”|A"z> + —E/ 6#S|AZ|£721A?¢0(D9Z§L] — Dy ZM)?ds.
t€[0,T)
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With the same arguments as above, we obtain that:

lim sup E[ sup eM|A?|*] =0.
n—+ gc[0,T) t€[0,T]

To obtain the convergence of the sequence AZ" = Dy Z" — DgZ" for 1 < £ < 2:

T t/2 T
E </ |AZ;’|2ds> =E </ 1A2¢0|AZQ|2ds>
0 0

T /2
S FE (A:)Z(Q—f)/Q (/ (A?)é—Q 1A:¢0|AZ:|2dS>
0

2/2 T 2/2
) ( / (AMZE (A 2 lA?;ﬁOAZ;les)
0

IN

£/2
(2-0)/2 T
{E [(Az)ﬂ } {E/O (Am)*2 1A2,¢0|AZ;L|2ds}

L

24 n\¢ T ny¢—2 n|2
< TE[@n ]+ 5B [ an T 1aplazr s

2

where we have used Holder’s and Young’s inequality with QT_Z + g =1 and A} = supy¢o,77|AY]. This
achieves the proof of the lemma.

4.2 Convergence of DyY™"
Let us start with the convergence for fixed parameters 6 and t.

Proposition 5. If we set DgYr =0 for 0 < 0 < T, then for any 0 < 0 <t < T, we have the almost
surely convergence:
lim Dg)ftn = D@Y%
n—-+oo

Proof. For any 0 < § <t < T, according to Proposition [3] Proposition [4] and Lemma [§]

1
DGY;H - p—1 D@nt +

(r-t+(5)")

pD@H?

1
(r-t+ ()"

converges a.s. to
Domy 1
DyH; = DyY;.
T -t @ —gp T P
For t = T, since YJ' = n, DpY] = 0 for any n. Another way to obtain this fact consists of using
Proposition [f] and the terminal condition of the process H™:

Lon n\’ . on n\* .. 1 Donr
DoYr = EDOUT + <77*> DoHp = EDOUT - <77*> (n )qnq_1 P 0.
Hence the sequence DyY7}' converges a.s. to 0 = DyYr. O
Note that
n* g—1\ P * q—1

*
= (T — t)*(DgY, — DgY;") — DoY;" + "= Dyn.

(T—t—i— (’Z)H)p — (T —t)"

This equality allows us to prove the following result.

Theorem 1. Under the conditions of Lemma9,

sup (T —t)?|DgY; — DgY;"|
t€[0,T]

lim sup E
n=+00 gelo,T]
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In particular for any 0 <7 <T

sup |DgY; — DoY;"|*
te(0,7]

*\ q—1 p
(T—t+<n> ) (T — )P
n
0\ a—1 1 «\ -1 p—1
DeYtn=P<n> DaYt"/ <T—t+a<n> > da
n 0 n

DoH} A}

lim sup E
n—+ gc(0,T)

Proof. From the previous remark,

*
(T — t)P(DgY; — DgY;") = DoH; — DyH} + MW—%MW

Furthermore with Proposition []

N\ -1\ P
(T—t+<”> ) (T -ty
n
*\ 4—1 *
=p (Z) Done Ay +p <77

n)q @’t+2$f1)

77* q—1 ,'7* q—1 1
0 () Dom A7 +p () (DM — DyHy) A
n n (T —t+

(=)")
*\ ¢—1 1 N
o (711) (7—t+(2)") P

1 1 7\ p-l
0< A} = 1p—1/ T—t+a() da <1.
(T -+ (z)")" o "

Note that for any n and ¢

with

and from for t € [0,T7,

T
Dutt] < (T —)E | [ (Db + Dol + Do) s
t

ft] |

|Done| 4 p| Doy — Do Hy|

Therefore

<T—t+ (7;:)(1—1)1’ — (T —t)P

x\ ¢—1
n

|IDeY,"| <p | —
n

,'7* q—1 T
o () E|[ (a2l + Dol + 100n) s
t

ft] |

In other words

*

«\ 91
(T —t)?|DgY: — DpYy"| < (14 p)|DoHy — DoH}| + (Z +p <77 > ) | Do

n
x\ 4—1
n

The conclusion directly comes from Lemma [9]

T
/ (IDob?| + | D] + | Dons ) ds
t
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5 Applications and Examples

5.1 Gradient of the related PDE

Here we consider that 7 and « are smooth functions, 7, = n(t, X;) and v = (¢, X3), of the solution
X = X7 of the SDE: for z € R?

t t
Xi=x —|—/ b(s, Xs)ds —|—/ (s, Xs)dWs, 0<t<T. (40)
0 0

We suppose that b and o are continuous on [0, 7] x R? and of class C! with respect to z with bounded
first derivatives. According to [18, Theorem 2.2.1], we have :

Lemma 10. The SDE admits a unique solution X in S°°(0,T) such that:

1. For allt € [0,T], X; € DY*° and for all p € [1,+o0],

sup ]E( sup |D9X;|p> < 400. (41)
0<6<t \O<s<T

2. The process DX satisfies the linear SDE

d t ] d d t j '
Do X! = 0;(0,Xg) + Z/ S—Z(s, X,)DpXFds+> > 00 (s, X)Dg X dWi.
k=179 i

Under this setting,

e =n(t, Xi) =n(0,2) + /Ot(ﬁn)(&Xs)ds + /Ot Fan(s, Xs)o (s, Xs)dWs,
where L is the infinitesimal generator of the SDE :
Lo = (b, 0,0) + %tr (ao*@iqﬁ) ) (42)
Hence b7 = (£Ln)(s, Xs) and o7 = 9,1(s, Xs)o(s, Xs).

* *

U atan(zx) +
0

Example 1. If we apply Ito’s formula to n = o(X), with d =1 and p(z) =

then n satisfies all required conditions (Assumptions and@ of the previous sections.

In this section, the superscript ¢, x indicates the dependence of the solution on the initial data (¢, ),
and it will be omitted when the context is clear. In this Markovian setting, it is known that the coupled
system of Equations — is related to the solution of the PDE:

Ou |u|?—t
E O T

ot
If Y*® solves the BSDE when 7, and 75 are replaced by n(s, X©*) and (s, X®), then for any
0<t<s<T,Y: =u(s,X5") and u is the viscosity solution of the previous PDE. See |20, 10, 21} [6].
Furthermore the expansion @ of Y corresponds to:

u+y(t,z) =0, uT,-)=+o0 (43)

n(t, x) h(t,x)
(T —t)p=t (T —t)p’

Y(t,z) € [0,T) x RY, u(t,x) = (44)

with |h(t,z)] = O(T — t)? at time T. This property is also given in [I0, Lemma 4.1]. Here h is defined
thanks to the relation: h(s, X*) = HL*.
Proposition 6. We assume that:

e The functions (t,x) — n(t,xz), (t,x) — Ln(t,z) and (t,x) — ~(t,x) are continuous w.r.t. (t,x)

and of class C* w.r.t. x, with bounded derivatives.
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o The matrix o is uniformly elliptic, that is if there exists A > 0 such that

Vs €[0,T), ¥(z,y) € R x RY, (o(s,2)0"(s,x)y,y) = Aly|*.

The solution u is of class C' w.r.t. x and for 0 <t < T and x € R?

0:n(t, ) Oh(t, x)
(T —t)p=t (T —t)p’

Ou(t,z) =

Finally the approxzimating sequences u™ and d,u™ (resp. h™ and O,h™) pointwise converge to u and J,u
on [0,T) x RY (resp. to h and d,h on [0,T] x R?) where u™ is the continuous viscosity solution of the
PDE with terminal condition u™(T, ) =n and h™ is defined by

u(t,x) = it z) + h(t,2) (t,z) € [0,T] x R%.

(T—t—i—(%)q_l)p_l (T—t+( )q 1)177

Proof. The function A" is linked to H" by the relation: h"(s, X»*) = H>»*. We know that u™ and
h™ pointwise converge to u and h (from the convergence of Y™ and H"™ to Y and H), which gives the
asymptotic expansion of u.

Under our setting, we use [16, Lemma 2.4 and Theorem 3.1] to deduce that DgY.” and DgH are of
the form

DY = VY (VX)) o0, Xo)lg<s, DoH? = VH(VXy) ‘0 (6, Xg)lo<s,

where the processes VX, VY™ and VH" are solution of the variational equations related to (40)), (3) and
(21). Furthermore h™ is of class C! w.r.t. = with 9,h" = VH" and 9,h"™ is continuous on [0, 7] x R<.
Let us emphasize that these results cannot be directly used for Y (singularity in the terminal condition)
or H (singularity in the generator).

However we can define the solution (VH, VZ) of the variational equation related to (8]

VH, = / ) Db (1, X))V X + (T — w)PDuy(u, X))V Xo] du

T
_ gG(u Hyynu)0:m(u, X)) VX ydu — / 55 (u, Hyyn)VH, du—/ vZzZHaw,

using again that a.s. |[H,| < C(T — u)? close to T. And from Lemma 2 we also have
DyH, = VHS(VXQ)_la(Q, X@)lggs.
Then we check the proof of [16], Theorem 3.1] to deduce that 9, h exists. We define

VX: = ! (Xivte —X07), VHS = 1
£ €

(HL™te —HPT), VZg =

m | =

(Z;’J,t,x-i-e _ Z;’J,t,x)

and prove that VH¢® converges to VH when € goes to zero. First note that
T
VHE = / [(T — w)Db" (w) + (T — w)Py7 (u) — 8nG(u)] VXEdu

T T
—/ 8hG(u)VHZdu—/ VZ:dW,
where

80" (u / Bpb" (u, Xb% 4 a( XL+ — X)) da
07 (u / Opy(u, XL + a(XE"Te — XE7))da
1
/ 0nG(u ,nbT 4 a(nbtte —nb®) HE*E)da x / Do, X5% + a( XE*Fe — X57))da
0

onG(u / oG (u,nl™, HE® + a(HL" 1 — HY™))da.
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The key point now is that |[H:®| < C(T — u)? on the interval [T — §,T] and both constants C and §
depend only on the bounds on 7 and 7, and not on x. Therefore the processes 87]@ and 8h(~¥ are bounded,
uniformly w.r.t. . The rest of the proof can be copied from [16], to conclude that 0,h exists and is
equal to VH and that d,h is continuous on [0, 7] x R

From , we deduce that d,u exists on [0,T) x R? and is given by the statement of the proposition.
From our convergence result (Lemma E[), we deduce that the sequence VH" converges to VH. Hence
the sequence 9,h" converges to d,h on [0,7] x R?. The result follows immediately for 9, u". O

.

Estimate becomes for 0 < <t <T

|DoH;| = |VH,(VXg) o (6, Xp)|

T
<O - 1E / (18 (Lu) (s, X0)] + 18en(5, Xo)| +10:7(5, X)) | Do X ds

T
/ |D9Xs|d8 .F,;| .
t

From Lemma |10 and Hélder’s inequality, we deduce that

< C(T - t)E

10:h(t, )| = |VH,| < C(T — t).

Remark 3. In [10, Theorem 2.9], it is already proved that u is of class Ct w.r.t. t.

5.2 Sensitivity in liquidation problem

Malliavin calculus is a useful tool to analyze the sensitivity in finance, see among many others [8,[@]. In
the liquidation problem mentioned in the introduction, the optimal state process is given by

- [
Zs=uzexp | — — du
t m
or with the previous notations:

e = e (‘/ (Ti@ (” m(zfiu))qld“)
:mi:iexp (—/t(Tiu) [(H%(;f"_u))ql —1] du) .

In particular for 0 < 6 <s<T

q—2

um

u

El
DeE, = (g - 1)55/
t

sign (Y) Dy (Yu) du. (45)

A key argument in the greeks computations is the positivity of the Malliavin covariance matrix. This
property is ensured if there is a diffusion part in = with an elliptic diffusion matrix (see again [8,[9]). In
our case, there is no diffusion part for Z. Worse than this, we know some degenerate examples.

Indeed in [3, Section 5|, the authors consider the case where v = 0 and 7 has uncorrelated multiplica-
tive increments. In our setting, it means that:

Lemma 11. When n is an Ité process, n has uncorrelated multiplicative increments if and only if the
drift b" is of the form: by = g(t)n; where g is a deterministic function.

Proof. If the drift b" is of the form: b} = g(t)n;, from [3, Example 5.1|, n has uncorrelated multiplicative
increments. Conversely we have

t t t
e =mno + / blds + / osdWs = Eny =ng + / E(b1)ds.
0 0 0
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If we consider M; = n;/En;, from [3, Lemma 5.1|, n has uncorrelated multiplicative increments if and
only if M is a martingale. But

dM; =

E(n,)b" — E(b7)n,] dt + —-dW,.
(Ent)2 [ (Wt) t ( t)nt] Ent t

Eb
Hence b} = (Ent> . O
¢

From [3] Propositions 5.2 and 5.3], we know that 1 has uncorrelated multiplicative increments if and
only if = is deterministic, that is Dg=s = 0 for any 0 < 0 < s < T. We also have another result.

Lemma 12. When v = 0, n has uncorrelated multiplicative increments if and only if for any 0 < 0 <

Yu
uw<T, Dy (n) =0.

Proof. From the proof of [3, Proposition 5.3], we also know that if n has uncorrelated multiplicative
increments, then — is deterministic, hence its Malliavin derivative is zero. Conversely if the Malli-

n
avin derivaitive of Y/ is null, using , Dy=; = 0, thus = is deterministic and 7 has uncorrelated
multiplicative increments. O

Moreover we can explicitly compute H, either from [3] Proposition 5.3] where Y is given, or directly.

Lemma 13. Assume that 1 has uncorrelated multiplicative increments, with b = g(t)n;. Then H; =

(T — t)h(t) with
h(t)=-1+ (Tl—t /tT exp <—(q -1) /ts g(u)du) ds)

Proof. Since v = 0 and b] = g(t)n;, H is the solution of the BSDE with generator

qg—1 1
—1—q———h
qm@ﬂ]

1-p

(4 st s

and terminal condition 0. Make the ansatz that Hy = (T — t)h(t). Then

F(t,h) = (T —t)neg(t) — (p — D)n;

dH; = [(T — t)h(t)neg(t) + no (T — )W (t) — neh(t)] dt + o dW,
F(t, Hy) = (T = mg(t) = (p = e [(1+ (1) [1+ @I =1 - qh(t)] -
Therefore dH; + F(t, Hy)dt is a martingale if
(T = £)i(t)g () + (T = £)i'(5) — (p— 1) [i(t) i)~ — ()] =0
with i(¢) = h(t) + 1. Define G as the solution of G(t) = g(¢)G(t) with G(0) = 1. Then
(T = OOGE) = - 1DGW) [i() i)™ — ()]

We can verify that

T I=p
z’(t)G(t)z(Tltt G(Sl)qlds> .

o= (2 [ (59) )

Note that h(t) ~ (T —t) as t goes to T. By uniqueness of H, we obtain the result. O

Thus
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Remark that we obtain an explicit expression for Y:

S —n;)”*l i (Tf—ltt)p (T —nff)p—l (Tl_t/tT <P <—(‘1 -1 /tsg(U)du) ds) -

=1 (/tT exp <(q -1) /t g(U)dU) d8> o

Let us consider the case where 7 is deterministic. Then for § < s < T
H
1+ =

s 1
DeZy = —(q— 1),
0=s =l >LK<T—M%U T — )

and DyH is the solution of the BSDE , which becomes:

q—2

H,
sign 1+ ) DoH,du.
< Nu(T — )

T 8G T
DGHt = / l:(T - s)pDG'Ys - ah(&Hsvﬁs)DeHs} ds — / DQZdeS
t t
a}

where I'; 5 is given by . If v5 = v(s, Xs), then Dgys = (0:7)(s, Xs5)DpXs. In this case, we can find
easy conditions on d,7v and the coefficients b and o of the SDE of X such that the Malliavin covariance
matrix of Dy H is definite positive For example if 0,y is never equal to zero and if the parameters b and
o satisfy the conditions of [I8, Section 2.2].

T
=FE / (T — 5)PDgrysTy sds
t

Now in general we have for 0 <0 <s< T

q—2

T

[1

DQES = 7(q - 1)’—3/
t

Yy

sign (Y,,) Dy (> du
U

q—2

’ 1 H, H,
=—(¢g—1 Es/ 1+ sign (1 + ) nuDoH, — H,Dgny,] du
@=V% | Toomg ' nr—w @) |

with DygH given by . Existence of tractable conditions such that the Malliavin covariance matrix is
definite positive is left for further research.

6 Appendix

Let us evoke the arguments of [11, Theorem 23]. We want to solve the BSDE

[ rtemalz]

.

Proposition 7. If n is bounded away from zero by n, and if the drift b" of n is bounded, there exists
a process (H,Z™) solution of the previous BSDE and there exists three constants 6 > 0, R > 0 and C
such that a.s. on [T —6,T), |H;| < R(T —t)? and on [0,T], |H,| < C.

T T
Ht:/ F(s,Hs)dsf/ ZHaw, =E
t

t

where F'is gievn by @ We define the operator
T
T'(H):=E / F(s,Hy)ds
t

and a solution is a fixed point of this operator T.

Proof. Remark that




Now suppose for a while that |H;| < R(T —t)? on [T — 4, T]. Then for any a € [0,1] and T —§ <t < T
\H,| R(T—t) RS 1
<a <—<

a a)
(T —t) ~ n un
if we choose § < 277—]; Moreover

oG p 1 -t

—(t,h,n) = 1 h -1

or, (1) G—O<‘+MT—ﬂ

—2
qh /1 1 s < 1 >
= 1+a——h sign (1+a————h | da.
n(T —1)% Jo n(T —1) n(T —1)

Thus if again |H;| < R(T —t)? on [T — 6, T], and under our previous condition on §, we have

"96’ < Poa _ g

*

%(ta Ht7 T/t)

Therefore if both H and H are bounded from above by ¢ — R(T — t)% on [T — 8, T], then
a]
E]

T =
/ LM(T — s)st
t

|H — s (T — t)?

\F(H)t—F(fI)t|§E/t |F(s, Hy) — F(s, Hy)|ds

T
<E / L|H, — H,|ds|F,| <E
t

(T —s)?

< L(T = )| H = Hl|jps < SL|H = Hljggs (T — )* <

DN | =

it 6 <1/(2L). Hence
ITCH) = T(E) s < 5 — Hls
that is I is a contraction on the ball of H? with radius R. Finally
ID(H)e| < [T(H): = T(0)¢] 4 [T(0)¢]

1 T
§§||H||H5(T—t)2+E/ (T—s)bg+(T—8)p’yS|ds}'t]
t
R 1 1
< T = )2+ (T = 02| 20" + —— (T — £)P~ 1"
< S0P+ (= 0P |10+ =P
1 1 R
< |2 Y 2 < N2
< |30+ 4 | (-0 < R )
2
if 6 <1and R = [[0"[|oc + ——7*. To summarize, if
p+1
2 qR _ . 1 7%
R= 0" + ——n* L=%ol=2 5_min(1,7,— T
H ||00+p+17? s 9 min ) 72L’2R

then T' is a contraction from the ball of H® with radius R into itself, thus has a unique fixed point H,
which is the solution of the wanted BSDE. Moreover the solution (H,Z) is the limit in H° of the
sequence (H*, Z™F) unique solution in H° of

T T
H} = / F(s, HF"1)ds — / zZHkaqw,
¢ ¢
with (H°, ZH:%) = (0,0) and for any k and t € [T — §,T], |[HF| < R(T —t).
Note that the generator F is continuous and monotone in h on [0,T — 4]:

(4 s =) =

g—1 1 _

F(t,h) = F(t,h) = —(p — )n, - <1+m(Tl_t)ﬁ> ’Hm(T_t)h

N

p ~
da+ ——(h—h
a+T—t( ),




thus for t <T —§

(F(t,h) — F(t,h))(h— k) < Z(h — )2

SRS

And

1
[E(t, h)] < (T = 8)[1b"]|oe + (T = )P7" + (p — L)t Hl + ot
t

a q
1+ —lh
0 - +77t5| @

1
n; 04

S T[0"loo + TPy + (p = Dme2°™ <1 + |hq) 5

< T |oc +T79" + SIA]+ (p = D27 |7 + (= (27" + D

6
In particular
E sup |F(t,h)| < C(1+En;) < +oo.
[h|<M

Since Hr_s is a bounded random variable, the BSDE
T-6 T-6
H, = Hp_; +/ F(s,H,)ds — / ZHaw,
t t

has a unique solution on [0, 7 — ] and there exists a constant C' such that |H;| < C on [0,T —§]. See [19}
Proposition 5.24] and [4, Proposition 3.3]. Notice that the martingale [ Z#dW is a BMO-martingale on
[0,T —§]. Since H is bounded (by C), we can modify the generator F' outside the interval [-C, C], such
that F is Lipschitz continuous and with linear growth w.r.t. h. Then we can define the sequence H* on
[0, T — 6], converging to H and such that a.s. |[HF| < C. O

We define on [0,T) the process

~ i 1
Y, = H,.
S ) T B T

We can easily verify that forany 0 <t <s<T

% e ® ?u a-1 > 5
Y, =Y, +/ <_(p - 1)‘ q|_1 Yu + ’Yu) du — / ZydWy,
t n t

u

and a.s.
lim Y; = +o0.
t—T

Moreover on [T — §,T],

Ul 1 1 Tk

(T —typ—1 R(T — > T (. — R(T —t)) >

Y, > —_—
= = oT — T

Thus Y is non-negative on [T — §,T]. By standard comparison principle on [0,7T — 4] (see [19, Section
5.3.6]), Y is also non-negative on [0,7]. Since Y is the minimal non-negative solution, a.s. for any
te0,T],Y, <Y,

From the uniqueness result of [I1, Theorem 10], Y =Y and thus the minimal solution of is given
by . Let us evoke the main arguments.

Proposition 8. If n and the process (71)*n,; 1! are bounded, Yy=Y.

Proof. We split Y as follows
M 1
T P T
Since ¥ > Y, we deduce that a.s. for any ¢, H; < H;. Our goal is to prove that H = H, thus y=vY.
Since Y; > 0, for any ¢, —(T — t)n; < H¢, and on [T — §,T), H; < H; < R(T —t)2. Thus a.s.
limy 7 H; = 0. From the dynamics of Y, H solves the BSDE on [0, 7] for any 7 < T'. Finally
Hy

Y;
1+ ———— =(T—-t)P" 1= >0.
ne(T —t) ( ) ¢

}/t:
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Hence

F(t, He) = (T — )b + (T = )P 7]

1 a1 1

1
—(—=n <1+ nt(T_t)Ht> ’14— 777t(T—t)rHt -1 _qint(T—t)th

is controlled on [0, T7:

o= (p— D (1 R t)) < F(t,Hy) — [(T — ) + (T — )P] < (p— L)y + pR(T 1),

Hence H is also a solution of the BSDE ().
Now let us consider AH = H —H, AZ = ZH — Z and we proceed as in the proof of [L1, Proposition
20]. We denote

9@) =Wy, g W) =ayl*, ¢"(y) = alg —1)|y|* sgn(y).

Then for 0 <¢ < T

T T
AH, — / F(s, Hy) — (s, H)ds — / AZ,dW,
t t

:‘(p‘”/f”s () ) o () e
—(p—l)/tTns [g’ <1+ns(;{s_s)> —q} %ds—/tTAstWs.
Definefor T - <t<s<T
==l () o ars) o () )
s w 1
fe :/t ”“ [g/ (” nugu)) ‘q] @)

s H, |7 1
= q
t

1u(T — u) (T —w)
Then for any € > 0

du.

i

AH, =E [AHTE exp(—(p — 1)YTe,r—)

]—'t} —(p-1)E l/tT_E =, exp(—(p — 1)Te0)ds

.

<E [AHT_E exp(—(p— DYy r—c)

7]

since 25 > 0 because g is a convex function on [0, 00).
Let us explain how to control the negative part of T; ;. From [II, Lemma 6], we also know that a.s.
for any t € [0, T

T I-p
Y, > E(/ n;stftﬂ .
t
Thus .
-p
H, LY gt /T - e
1+ —t (¢ it> |t g 1-a4s|F, >
ne(T —t) ( ) Ul T—t ¢ ! ! Mt

Evoke that 7 is an It6 process, bounded from below by 7, > 0. By Ité’s formula for ¢t < s <T

B S S _ 1 S
nt=m / (1 = q)ny, b + / (1—q>n;q02qu+% / oy du.
t t t
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Hence

T
E / ni=ads
t

T s
ﬁ>a'w¢q+mDEU“(/<nfw+2quﬂWM)w
t t

:

T
= (T - t)ntl_q +(¢—1E / (T — uw)b,du|F;
t
with | |2 )
— _papn 9 —q-1 n2 — 1 QGZ _i
Thus
T I-p
Y, > (T =ty "+ (¢g—1E </ (T — u)f,du ftﬂ
t
T (q—mf~" r o
> 1 ) T -
> e | (/t (T = w)budu ]-'t>] ,
and
1-p
Y H (q— i~ g
Tty 1t 2 >4 2t R / T — )0 du|F, )
( ) e nt(T_t)_ T — ¢ . ( ) t
We deduce that
-1
He | (q—Dni~" ’
14— 1 1> |14+ 8 " g T — w)b, 1
‘ +77t(T—t) > [1+ T4 /t ( )0y du|Fy
-1
_ (q—nf" /T (q— D" /T
=—|1+ T4 E ) (T — u)Bydu|Fy T ¢ E ) (T — u)0ydu|Fy
(q— D™ /T
> Tt E t (T — u)0ydu|Fy | .
Hence
s qg—1 1
p— 1)Y= (p—1 / q ’1+“ )
=l ==1) | 1T =) T
T e ([ e d
> — - - :
20| gt [ o)
If  and 0 are bounded by n* and ||0||~, we obtain
(b= 1)t = =2 (") 0] oo
Since for any € > 0,
AHt S ]E |:AHT_E exp(f(p — ]-)Tt,T—s) .Ft:| S CE |:AHT_5 .Ft:|

we can pass to the limit to deduce that AH < 0, that is H < H.

Remark that another sufficient condition would be: if n € L2(£2) and

T g1 T
exp (q/t (T]“_WIE (/u (T — )9, dr ]-"u> du) € L (Q).

For example, 1 geometric Brownian motion: b7 = un, ¢”7 = on and

UZ_IE (9r|]:u) = f(uvT)'

Here 0, = .
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