Question de cours. Soit $n \in \mathbb{N}^*$, quels sont les générateurs de $\mathbb{Z}/n\mathbb{Z}$?

Exercice. Déterminer tous les morphismes de groupes de \mathbb{Q} dans \mathbb{Z} .

Exercice. On considère $\mathbb{Z}[i] = \{a + ib, a, b \in \mathbb{Z}\}$ et pour $z \in \mathbb{Z}[i], N(z) := |z|^2$.

- 1. Montrer que $\mathbb{Z}[i]$ est un anneau commutatif unitaire.
- 2. Montrer que N est une application à valeurs dans \mathbb{N} et multiplicative.
- 3. Déterminer les éléments inversibles de $\mathbb{Z}[i]$.
- 4. Montrer que N est un stathme sur $\mathbb{Z}[i]$, ie une application de $\mathbb{Z}[i]\setminus\{0\}$ dans \mathbb{N} telle que pour tout $z\in\mathbb{Z}[i]$ et $w\in\mathbb{Z}[i]\setminus\{0\}$, il existe $q,r\in\mathbb{Z}[i]$ tel que z=qw+r et N(r)< N(w) ou r=0.

Exercice. Soit $n \in \mathbb{N}^*$ et K un corps fini de cardinal $p^{\alpha}m$ avec p premier, $\alpha \in \mathbb{N}^*$ et $m \in \mathbb{N}^*$ non divisible par p.

- 1. Calculer le cardinal de $GL_n(K)$. Indication : Dénombrer les bases de K^n .
- 2. En déduire le cardinal de $SL_n(K)$.
- 3. On considère T l'ensemble des matrices carrés de taille n à coefficients dans K, triangulaires supérieures avec uniquement des 1 sur la diagonale, montrer que T est un sous-groupe de $GL_n(K)$ et calculer son cardinal.

Question de cours. Pour K un corps, de quelle forme sont les idéaux de K[X]?

Exercice. Soit G un groupe admettant un nombre fini de sous-groupes.

- 1. Soit $x \in G$, montrer que x est d'ordre fini.
- 2. Montrer que G est fini. Indication : Considérer E l'ensemble des sous-groupes de G et F l'ensemble des sous-groupes monogènes de G.

Exercice. On considère $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2}, a, b \in \mathbb{Q}\}.$

- 1. Montrer que $\mathbb{Q}(\sqrt{2})$ est un sous-corps de \mathbb{R} .
- 2. Déterminer tous les automorphismes de $\mathbb{Q}(\sqrt{2})$.

Exercice. Soit $n \in \mathbb{N}$ avec $n \geq 2$, et on considère, pour $r \in \mathbb{R}_+^*$, N(r) le nombre de points de \mathbb{Z}^n de norme inférieure ou égale à r.

- 1. Pour n=2, montrer que $N(r) \underset{r \to +\infty}{\sim} \pi r^2$ l'aire du disque de rayon r.

 Indication : Considérer les hypercubes $C_x = \left\{ t \in \mathbb{R}^n, \forall i \in [\![1,n]\!], |t_i x_i| \leq \frac{1}{2} \right\}$ pour $x \in \mathbb{Z}^n$.
- 2. Dans le cas général, en considérant b_n le volume de la boule unité dans \mathbb{R}^n , montrer que $N(r) \underset{r \to +\infty}{\sim} b_n r^n$.

Question de cours. Parmi les ensembles suivants \mathbb{Q} , \mathbb{R} et $\mathbb{R}\setminus\mathbb{Q}$, lesquels sont dénombrables? Le démontrer.

Exercice. Soit G un groupe abélien fini (dont la loi est notée multiplicativement).

- 1. Soit $x, y \in G$ d'ordres respectifs a, b premiers entre eux, montrer que xy est d'ordre ab.
- 2. Soit $x, y \in G$ d'ordres respectifs a, b, montrer que xy est d'ordre ppcm(a, b).
- 3. Montrer qu'il existe $z \in G$ tel que l'ordre de z soit le plus petit commun multiple des ordres des éléments de G.
- 4. En déduire que pour K un corps et G un sous-groupe fini de K^{\times} , G est cyclique.

Exercice. On dit qu'un anneau A est principal si pour tout idéal I de A, il existe $a \in A$ tel que $I = \langle a \rangle$.

Citer deux anneaux principaux.

Montrer que l'anneau $\mathbb{Z}[X]$ n'est pas principal.

Indication : Considérer l'idéal $\langle 2, X \rangle$.

Exercice. Déterminer a_n le nombre de manières de recouvrir un damier de dimension $2 \times n$ avec des pièces de dimension 1×2 . Indication : aboutir à une relation de récurrence.