Question de cours. Montrer que $\{x > 0, \forall y < 0, x < y\} = \emptyset$.

Question de cours. Décrire la géométrie des solutions en fonctions du paramètre réel m puis donner l'ensemble des solutions quand ce n'est pas un singleton.

$$\begin{cases} x + y + (1-m)z = m+2\\ (1+m)x - y + 2z = 0\\ 2x - my + 3z = m+2 \end{cases}$$

Question de cours. Déterminer les $z \in \mathbb{C}$ tels que $(iz-z)\overline{z-i} \in i\mathbb{R}$. Décrire géométriquement les points correspondants.

Exercice. On considère une fonction $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ bornée.

- 1. Montrer que les réels $\sup_{x \in \mathbb{R}} (\inf_{y \in \mathbb{R}} f(x, y))$ et $\inf_{y \in \mathbb{R}} (\sup_{x \in \mathbb{R}} f(x, y))$ sont bien définis.
- 2. Montrer que

$$\sup_{x \in \mathbb{R}} \left(\inf_{y \in \mathbb{R}} f(x, y) \right) \le \inf_{y \in \mathbb{R}} \left(\sup_{x \in \mathbb{R}} f(x, y) \right).$$

3. A-t-on égalité en général ? Si oui le démontrer. Si non déterminer un contre-exemple.

Réponse.

1. Comme la fonction f est bornée il existe $m, M \in \mathbb{R}$ tels que $m \leq f \leq M$. Ainsi

$$\forall x \in \mathbb{R}, \quad m \le \inf_{y \in \mathbb{R}} f(x, y) \le M.$$

Donc

$$m \le \sup_{x \in \mathbb{R}} \left(\inf_{y \in \mathbb{R}} f(x, y) \right) \le M.$$

De même

$$m \le \inf_{y \in \mathbb{R}} \left(\sup_{x \in \mathbb{R}} f(x, y) \right) \le M.$$

Donc ces réels sont bien définis.

2. Soit $x \in \mathbb{R}$. Alors, pour tout $y \in \mathbb{R}$,

$$f(x,y) \le \sup_{x' \in \mathbb{R}} f(x',y).$$

Donc

$$\inf_{y \in \mathbb{R}} f(x, y) \le \inf_{y \in \mathbb{R}} \sup_{x' \in \mathbb{R}} f(x', y).$$

Ainsi $\inf_{y\in\mathbb{R}}\sup_{x'\in\mathbb{R}}f(x',y)$ est un majorant de la fonction $x\longmapsto\inf_{y\in\mathbb{R}}f(x,y)$. Donc, comme la borne supérieure est le plus petit des majorants,

$$\sup_{x \in \mathbb{R}} \left(\inf_{y \in \mathbb{R}} f(x, y) \right) \le \inf_{y \in \mathbb{R}} \left(\sup_{x' \in \mathbb{R}} f(x', y) \right).$$

3. Non nous n'avons pas égalité en général. Par exemple si l'on considère la fonction

$$f:(x,y)\longmapsto 1_{\{x=y\}}$$

alors

$$\sup_{x \in \mathbb{R}} \left(\inf_{y \in \mathbb{R}} f(x, y) \right) = \sup_{x \in \mathbb{R}} 0 = 0$$

et

$$\inf_{y \in \mathbb{R}} \left(\sup_{x \in \mathbb{R}} f(x, y) \right) = \inf_{y \in \mathbb{R}} 1 = 1.$$

Par contre nous pouvons avoir égalité par exemple pour la fonction constante égale à 1.

Exercice. On définit une relation binaire \leq sur le demi-plan complexe $P_i = \{z \in \mathbb{C}, \text{ Im}(z) \geq 0\}$ par, pour tout $z_1, z_2 \in P_i, z_1 \leq z_2$ si $|z_1| < |z_2|$ ou $(|z_1| = |z_2| \text{ et Re}(z_1) \leq \text{Re}(z_2))$.

- 1. Montrer qu'il s'agit d'une relation d'ordre totale.
- 2. Peut-on étendre cette relation d'ordre sur $\mathbb C$?
- 3. Cette relation d'ordre est-elle compatible avec les opérations suivantes ?
 - (a) $\forall z_1, z_2, z_3 \in P_i, z_1 \leq z_2 \Longrightarrow z_1 + z_3 \leq z_2 + z_3$
 - (b) $\forall z_1, z_2 \in P_i, [0 \le z_1, 0 \le z_2] \Longrightarrow 0 \le z_1 z_2$
 - (c) $\forall z \in P_i, \forall \lambda \in \mathbb{R}_+, 0 \leq z \Longrightarrow 0 \leq \lambda z$

Réponse.

- 1. On vérifie les axiomes d'une relation d'ordre :
 - Réflexive : Soit $z \in P_i$. Alors |z| = |z| et $Re(z) \leq Re(z)$. Donc $z \leq z$.
 - Transitive : Soient $z_1, z_2, z_3 \in P_i$ tels que $z_1 \leq z_2$ et $z_2 \leq z_3$. Alors nous avons les différents cas suivants.
 - Si $|z_1| < |z_2|$ et $|z_2| < |z_3|$ alors $|z_1| < |z_3|$ et donc $|z_1| \le |z_3|$ et donc $|z_1| \le |z_3|$.
 - Si $|z_1| < |z_2|, |z_2| = |z_3|$ et $\text{Re}(z_2) \le \text{Re}(z_3)$ alors $|z_1| < |z_3|$ et donc $|z_1| \le |z_3|$
 - Si $|z_1| = |z_2|$, Re $(z_1) \le \text{Re}(z_2)$ et $|z_2| < |z_3|$ alors $|z_1| < |z_3|$ et donc $z_1 \le z_3$.
 - Si $|z_1| = |z_2|$, $\operatorname{Re}(z_1) \le \operatorname{Re}(z_2)$, $|z_2| = |z_3|$ et $\operatorname{Re}(z_2) \le \operatorname{Re}(z_3)$ alors $|z_1| = |z_3|$ et $\operatorname{Re}(z_1) \le \operatorname{Re}(z_3)$ et donc $z_1 \le z_3$.
 - Antisymétrie : Soient $z_1, z_2 \in P_i$ tels que $z_1 \preceq z_2$ et $z_2 \preceq z_1$. Etudions les différents cas.
 - $-|z_1| < |z_2|$ est impossible car nous avons $|z_2| \le |z_1|$.
 - $-|z_2| > |z_1|$ est également impossible.
 - Il ne reste plus que $|z_1|=|z_2|, \operatorname{Re}(z_1)\leq \operatorname{Re}(z_2)$ et $\operatorname{Re}(z_2)\leq \operatorname{Re}(z_1)$. Ainsi $\operatorname{Re}(z_1)=\operatorname{Re}(z_2)$. Donc, comme $z_1,z_2\in P_i$,

$$z_1 = \operatorname{Re}(z_1) + i\operatorname{Im}(z_1) = \operatorname{Re}(z_1) + i\sqrt{|z_1|^2 - (\operatorname{Re}(z_1))^2} = \operatorname{Re}(z_2) + i\sqrt{|z_2|^2 - (\operatorname{Re}(z_2))^2} = z_2.$$

Montrons maintenant que cette relation d'ordre est totale. Soit $z_1, z_2 \in P_i$. Etudions les différents cas :

- Si $|z_1| < |z_2|$ alors $z_1 \leq z_2$.
- Si $|z_2| < |z_1|$ alors $z_2 \leq z_1$.
- Si $|z_1| = |z_2|$ et $\operatorname{Re}(z_1) \leq \operatorname{Re}(z_2)$ alors $z_1 \leq z_2$.
- Si $|z_1| = |z_2|$ et $\operatorname{Re}(z_2) \leq \operatorname{Re}(z_1)$ alors $z_2 \leq z_1$.

Par conséquent, dans tous les cas nous avons $z_1 \leq z_2$ ou $z_2 \leq z_1$.

- 2. Non nous ne pouvons pas étendre cette relation d'ordre sur $\mathbb C$ car sinon $i \leq -i$ et $-i \leq i$ sans avoir i = -i.
- 3. (a) Soient $z_1 = 0, z_2 = 1, z_3 = -1$. Alors $z_1, z_2, z_3 \in P_i, z_1 \leq z_2, z_1 + z_3 = -1$ et $z_2 + z_3 = 0$. Donc nous n'avons pas $-1 = z_1 + z_3 \leq z_2 + z_3 = 0$ car |-1| = 1 > 0.
 - (b) Soient $z_1, z_2 \in P_i$ tels que $0 \leq z_1$ et $0 \leq z_2$.
 - Soit $z_1=0$ ou $z_2=0$ et dans ce cas nous avons bien $0=z_1z_2\preceq z_1z_2$.
 - Soit $z_1 \neq 0$ et $z_2 \neq 0$. Alors $0 < |z_1|$ et $0 < |z_2|$. Ainsi $0 < |z_1 z_2|$. Donc $0 \leq z_1 z_2$.
 - (c) Soient $z \in P_i$ tel que $0 \leq z$ et $\lambda \in \mathbb{R}_+$.
 - Soit z = 0 ou $\lambda = 0$ et dans ce cas $0 \le 0 = \lambda z$.
 - Soit $z \neq 0$ et $\lambda > 0$ et dans cas $0 < \lambda |z| = |\lambda z|$. Ainsi $0 \leq \lambda z$.

Question de cours. Soient A et B deux parties non vides minorées de \mathbb{R} . Montrer que $A \cup B$ admet une borne inférieure et l'exprimer à partir de celles de A et B dont on aura justifié l'existence.

Question de cours. Décrire la géométrie des solutions en fonctions des paramètre réels a et b puis donner l'ensemble des solutions quand ce n'est pas un singleton.

$$\begin{cases} ax + by + z = 1 \\ x + aby + z = b \\ x + by + az = 1 \end{cases}$$

Question de cours. Enoncer et démontrer l'inégalité triangulaire et son corollaire (sur \mathbb{C}). Préciser les cas d'égalité.

Exercice. On considère deux parties majorées non vides A et B de \mathbb{R} .

1. Montrer que la partie $A \cup B$ admet une borne supérieure et qu'elle vérifie

$$\sup(A \cup B) = \max(\sup(A), \sup(B)).$$

2. On définit

$$A + B = \{a + b, \quad a \in A, b \in B\}.$$

Montrer que la partie A + B admet une borne supérieure et qu'elle vérifie

$$\sup(A+B) = \sup(A) + \sup(B).$$

3. On définit de même

$$A \times B = \{ab, a \in A, b \in B\}.$$

A-t-on également que la partie $A \times B$ admet une borne supérieure et qu'elle vérifie

$$\sup(A \times B) = \sup(A)\sup(B) ?$$

Réponse.

1. Comme A est non vide, la partie $A \cup B$ est également non vide. De plus la parties A et B sont majorées donc la partie $A \cup B$ est majorée par le maximum des majorants par exemple :

$$\forall x \in A \cup B, \quad x < \sup(A), x < \sup(B).$$

Donc

$$\sup(A \cup B) \le \max(\sup(A), \sup(B)).$$

Puis $A \subset A \cup B$ et $B \subset A \cup B$ d'où

$$\sup(A) \le \sup(A \cup B), \quad \sup(B) \le \sup(A \cup B).$$

Par conséquent

$$\sup(A \cup B) = \max(\sup(A), \sup(B)).$$

2. Comme A et B sont non vides, la partie A+B est également non vide. De plus les parties A et B sont majorées donc la partie A+B est majorées par la somme des majorants par exemple :

$$\forall a \in A, b \in B, \quad a+b \le \sup(A) + \sup(B).$$

Ainsi nous avons déjà la première inégalité

$$\sup(A+B) \le \sup(A) + \sup(B).$$

Puis, par caractérisation séquentielle des bornes supérieures, il existe $(a_n)_{n\in\mathbb{N}}\in A^{\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}\in B^{\mathbb{N}}$ tels que

$$a_n \xrightarrow[n \to +\infty]{} \sup(A), \quad b_n \xrightarrow[n \to +\infty]{} \sup(B).$$

Donc $(a_n + b_n)_{n \in \mathbb{N}} \in (A + B)^{\mathbb{N}}$ et

$$a_n + b_n \underset{n \to +\infty}{\longrightarrow} \sup(A) + \sup(B).$$

Ainsi

$$\forall n \in \mathbb{N}, \quad a_n + b_n \le \sup(A + B)$$

donne en faisant tendre n vers $+\infty$:

$$\sup(A) + \sup(B) \le \sup(A + B).$$

Par conséquent

$$\sup(A+B) = \sup(A) + \sup(B).$$

3. Non nous n'avons pas la même propriété car nous avons des problèmes de signe. Si par exemple $A=B=\mathbb{R}_{-}$ alors A et B sont deux parties non vides majorées (par 0) mais $A\times B=\mathbb{R}_{+}$ est non majorée.

Exercice.

- 1. On considère $E = \{0,1\} \times \mathbb{N}$ muni de l'ordre lexicographique \leq_L : pour tous $(k,n), (\ell,m) \in E, (k,n) \leq_L (\ell,m)$ si $k < \ell$ ou $(k = \ell \text{ et } n \leq m)$. On considère également la partie $A = \{(0,n), n \in \mathbb{N}\}$ de l'ensemble E. Montrer que la partie A admet une borne supérieure mais pas de plus grand élément.
- 2. On considère maintenant $E = \{0, 1\} \times \mathbb{Z}$ muni encore de l'ordre lexicographique \leq_L . On considère également la partie $B = \{(0, n), n \in \mathbb{Z}\}$ de l'ensemble E. Montrer que la partie B est majorée mais n'admet pas de borne supérieure.

Réponse.

1. • Nous avons

$$\forall n, m \in \mathbb{N}, \quad (0, n) \leq_L (1, m).$$

Donc, pour tout $m \in \mathbb{N}$, (1,m) est un majorant de l'ensemble A. Réciproquement soit (k,m) un majorant de l'ensemble A. Si $k \neq 1$ alors k = 0 et $(k,m) = (0,m) \leq_L (0,m+1) \in A$ ce qui est absurde. Donc k = 1 et (k,m) = (1,m). Par conséquent l'ensemble des majorants de la partie A est $\{(1,m), m \in \mathbb{N}\}$. Ainsi la borne supérieure de la partie A est le plus petit majorant de cet ensemble (1,0).

- On suppose par l'absurde que la partie A admette un plus grand élément (0, n) avec $n \in \mathbb{N}$. Alors $(0, n) \leq_L (0, n+1) \in A$ ce qui est absurde. Donc la partie A n'admet pas de plus grand élément.
- 2. Comme précédemment la partie B est majorée par tous les $(1, m), m \in \mathbb{Z}$.
 - L'ensemble $\{(1,m), m \in \mathbb{Z}\}$ n'admet pas de plus petit élément. Donc la partie B n'admet pas de borne supérieure.

Question de cours. Montrer que l'application $A \mapsto \sup(A)$ est croissante de l'ensemble des parties non vides majorées de \mathbb{R} ordonné par l'inclusion dans \mathbb{R} ordonné par \leq .

Question de cours. Décrire la géométrie des solutions en fonctions du paramètre réel m puis donner l'ensemble des solutions quand ce n'est pas un singleton.

$$\begin{cases} x - my + m^2z = m \\ mx - m^2y + mz = 1 \\ mx + y - m^3z = -1 \end{cases}$$

Question de cours. Déterminer les $z \in \mathbb{C}$ tels que $(iz-i)\overline{z-i} \in \mathbb{R}$. Décrire géométriquement les points correspondants.

Exercice.

1. On considère, pour tout $n \in \mathbb{N}$, la fonction $f_n : [0,1] \longrightarrow \mathbb{R}$ définie par

$$\forall x \in [0, 1], \quad f_n(x) = x^n(1 - x).$$

Déterminer les réels suivants

$$\lim_{n \to +\infty} \sup_{x \in [0,1]} f_n(x), \quad \sup_{x \in [0,1]} \lim_{n \to +\infty} f_n(x).$$

2. On considère, pour tout $n \in \mathbb{N}$, la fonction $f_n : \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$\forall x \in \mathbb{R}, \quad f_n(x) = \frac{1}{1 + (x - n)^2}.$$

Déterminer les réels suivants

$$\lim_{n \to +\infty} \sup_{x \in \mathbb{R}} f_n(x), \quad \sup_{x \in \mathbb{R}} \lim_{n \to +\infty} f_n(x).$$

3. Que peut-on en conclure ? A-t-on toujours une inégalité vérifiée ?

Réponse.

1. Pour tout $n \in \mathbb{N}^*$ la fonction f_n est dérivable sur [0,1] de fonction dérivée

$$f_n': x \in [0,1] \longmapsto nx^{n-1}(1-x) - x^n = nx^{n-1} - nx^n - x^n = x^{n-1}(n-nx-x) = x^{n-1}(n-(n+1)x).$$

Ainsi on obtient que la fonction f_n est croissante sur $\left[0, \frac{n}{n+1}\right]$ puis décroissante sur $\left[\frac{n}{n+1}, \right]$. Donc

$$\sup_{x \in [0,1]} f_n(x) = f_n\left(\frac{n}{n+1}\right) = \left(1 - \frac{1}{n+1}\right)^n \frac{1}{n+1} \xrightarrow[n \to +\infty]{} 0.$$

Puis

$$\sup_{x \in [0,1]} \lim_{n \to +\infty} f_n(x) = \sup_{x \in [0,1]} 0 = 0.$$

2. Pour tout $n \in \mathbb{N}^*$ nous avons par minimisation du dénominateur

$$\sup_{x \in \mathbb{R}} f_n(x) = f_n(n) = 1 \underset{n \to +\infty}{\longrightarrow} 1.$$

Donc Et

$$\sup_{x \in \mathbb{R}} \lim_{n \to +\infty} f_n(x) = \sup_{x \in \mathbb{R}} 0 = 0.$$

3. Nous pouvons conclure que nous n'avons pas égalité en général. Par contre si nous avons une suite de fonctions majorées $(f_n:I\longrightarrow\mathbb{R})_{n\in\mathbb{N}}$ telle que $(f_n(x))_{n\in\mathbb{N}}$ converge pour tout $x\in I$ ainsi que la suite $(\sup_{x\in I}f_n(x))_{n\in\mathbb{N}}$ alors

$$\sup_{x \in I} \lim_{n \to +\infty} f_n(x) \le \lim_{n \to +\infty} \sup_{x \in I} f_n(x).$$

En effet, pour tout $x \in I$, pour tout $n \in \mathbb{N}$, nous avons

$$f_n(x) \le \sup_{x' \in I} f_n(x').$$

Donc, en faisant tendre n vers $+\infty$,

$$\lim_{n \to +\infty} f_n(x) \le \lim_{n \to +\infty} \sup_{x' \in I} f_n(x').$$

Donc la fonction $\lim_{n\to+\infty} f_n$ est majorée et vérifie l'inégalité souhaitée.

Exercice. On considère un ensemble E muni d'une relation \mathcal{R} réflexive et transitive. On considère également la relation \mathcal{S} sur E définie par, pour tout $x, y \in E, x\mathcal{S}y$ si $x\mathcal{R}y$ et $y\mathcal{R}x$.

- 1. Montrer que la relation S est une relation d'équivalence sur l'ensemble E.
- 2. Montrer que la relation \mathcal{R} définit bien une relation d'ordre sur E/\mathcal{S} les classes d'équivalence de la relation d'équivalence \mathcal{S} .

Réponse.

- 1. Vérifions les axiomes d'une relation d'équivalence :
 - Réflexive : Soit $x \in E$. Alors, comme \mathcal{R} est réflexive, $x\mathcal{R}x$. Donc $x\mathcal{S}x$.
 - Transitive : Soient $x, y, z \in E$ tels que xSy, ySz. Alors xRy, yRx, yRz, zRy. Donc, comme la relation R est transitive, xR et zRx. Ainsi xSz.
 - Symétrique : Soient $x, y \in E$ tels que xSy. Alors xRy et yRx. Donc yRx et xRy. Ainsi ySx.
- 2. Pour tous $\dot{x}, \dot{y} \in E/\mathcal{S}$, on dit que $\dot{x}\mathcal{R}\dot{y}$ si $x\mathcal{R}y$. Vérifions tout d'abord que la relation \mathcal{R} est bien définie sur E/\mathcal{S} i.e. qu'elle ne dépend pas du représentant choisi : soient $x_1, x_2, y_1, y_2 \in E$ tels que $\dot{x}_1 = \dot{x}_2, \dot{y}_1 = \dot{y}_2$ et $\dot{x}_1\mathcal{R}\dot{y}_1$. Alors

$$x_1 \mathcal{R} x_2$$
, $x_2 \mathcal{R} x_1$, $y_1 \mathcal{R} y_2$, $y_2 \mathcal{R} y_1$, $x_1 \mathcal{R} y_1$.

Donc, par transitivité, $x_2 \mathcal{R} y_2$. Ainsi $\dot{x}_2 \mathcal{R} \dot{y}_2$. Vérifions maintenant les axiomes d'une relation d'ordre sur E/\mathcal{S} :

- Réflexive : Soit $\dot{x} \in E/S$. Alors xRx et donc $\dot{x}R\dot{x}$.
- Transitive : Soient $\dot{x}, \dot{y}, \dot{z} \in E/S$ tels que $\dot{x}R\dot{y}$ et $\dot{y}R\dot{z}$. Alors xRy et yRz. Ainsi par transitivité xRz. Donc $\dot{x}R\dot{z}$.
- Antisymétrie : Soient $\dot{x}, \dot{y} \in E/S$ tels que $\dot{x}R\dot{y}$ et $\dot{y}R\dot{x}$. Alors xRy et yRx. Donc xSy. Ainsi $\dot{x} = \dot{y}$.