Malliavin calculus for Hawkes processes: a new approach

Dorian Cacitti-Holland

Laboratoire Manceau de Mathématiques - Université du Mans

29 April 2025

 C. Hillairet, L. Huang, M. Khabou, and A. Réveillac. *The Malliavin-Stein method for Hawkes functionals*. Latin American Journal of Probability and Mathematical Statistics, 2022.
C. Hillairet, A. Réveillac, and M. Rosenbaum. *An expansion formula for Hawkes processes and application to cyber-insurance derivatives*. Stochastic Processes and their Applications, 2023.

Idea: to perturb the system by adding a jump.

Profits:

- an expansion formula for functionals of the Hawkes process,
- a Stein method,
- to compute some prices of financial or insurance derivatives.

Idea: to perturb the jump instants and to formally differentiate with respect to these jump instants.

Profits:

- to define a local derivative satisfying the chain rule,
- an absolute continuity criterion (in particular for the solution of a SDE),
- computations of Greeks.

Notations:

- Ω the set of càdlàg real functions on [0, $+\infty),$
- $N_t(\omega)$ the number of jumps between 0 and $t \in [0, +\infty)$ of $\omega \in \Omega$,
- \mathbb{P} the probability measure such that N is a Hawkes process with intensity

$$\lambda^*(t) = \lambda + \int_0^t \mu(t-s) dN_s, \ t \ge 0,$$

with $\lambda \in \mathbb{R}^*_+$ and μ differentiable with bounded derivative and $\|\mu\|_1 < \mathbf{1},$

- $\mathcal{T} \in (0,+\infty)$ a terminal instant,
- $\mathbb{F} = (\mathcal{F}_t)_{0 \le t \le T}$ the filtration generated by *N*.

Directional derivative: Definition

A reparametrization $au_{arepsilon}$ of time depending on $arepsilon\in(0,+\infty)$ and $m\in\mathcal{H}$ where

$$\mathcal{H}=\left\{m\in L^2((0,T)) \int_0^T m(s)ds=0\right\},$$

and such that $\tau_{\varepsilon}(0) = 0$, $\tau_{\varepsilon}(T) = T$ and the number and the order of jump times of $\omega \circ \tau_{\varepsilon}$ remain unchanged for any $\omega \in \Omega$.

For any $F \in L^2(\Omega)$ such that the following limit exists in $L^2(\Omega)$,

$$D_m F = \lim_{\varepsilon \to 0} rac{F \circ \mathcal{T}_{\varepsilon} - F}{\varepsilon} \quad ext{with} \quad \mathcal{T}_{\varepsilon}(\omega) = \omega \circ \tau_{\varepsilon}.$$

Example

For any $i \in \mathbb{N}^*$, $\overline{T}_i = T_i \wedge T$ is Malliavin differentiable and $D_m \overline{T}_i = -\widehat{m}(\overline{T}_i)$ where $\widehat{m}(t) = \int_0^t m(s) ds$.

Directional derivative: Properties

On ${\mathcal S}$ the set of

$$F = a1_{\{N_{\tau}=0\}} + \sum_{n=1}^{+\infty} f_n(T_1, \cdots, T_n)1_{\{N_{\tau}=n\}}$$

where f_n is smooth with bounded derivatives of any order, the random variables are Malliavin differentiable and the directional derivative D satisfies on S

$$D_m(FG) = (D_mF)G + F(D_mG)$$

and the chain rule: for any $\Phi \in C^\infty(\mathbb{R}^n;\mathbb{R})$ and $F_1,\cdots,F_n \in \mathcal{S}$,

$$D_m\Phi(F_1,\cdots,F_n)=\sum_{j=1}^n\frac{\partial\Phi}{\partial x_j}(F_1,\cdots,F_n)D_mF_j$$

Integration by parts

For any $F \in \mathcal{S}$,

$$\mathbb{E}[D_m F] = \mathbb{E}\left[\left(\int_{(0,T]} (\psi(m,t) + \widehat{m}(t)\mu(T-t) + m(t))dN_t\right)F\right]$$

where $\widehat{m}(t) = \int_0^t m(s) ds$ and

$$\psi(m,t)=\frac{1}{\lambda^*(t)}\int_{(0,s)}(\widehat{m}(t)-\widehat{m}(s))\mu'(t-s)dN_s.$$

Idea of the proof: $\mathbb{P}\mathcal{T}_{\varepsilon}^{-1} \ll \mathbb{P}$ with density G^{ε} which satisfies $\mathbb{E}[D_m F] = \lim_{\varepsilon \to 0} \mathbb{E}\left[\frac{\mathcal{T}_{\varepsilon}F - F}{\varepsilon}\right] = \lim_{\varepsilon \to 0} \mathbb{E}\left[\frac{G^{\varepsilon} - 1}{\varepsilon}F\right] = \mathbb{E}\left[\frac{\partial G^{\varepsilon}}{\partial \varepsilon}|_{\varepsilon = 0}F\right].$

Theorem

The quadratic bilinear form

$$\mathcal{E}_m(F,G) = \mathbb{E}[D_mFD_mG], \quad F, G \in \mathcal{S},$$

is closable on $L^2(\Omega)$.

Thus we denote $(\mathbb{D}_m^{1,2}, \mathcal{E}_m)$ its closed extension and $(\mathbb{D}_m^{1,2}, D_m)$ the extension of (\mathcal{S}, D_m) .

The previous formulas remain valid for any $F \in \mathbb{D}_m^{1,2}$.

The local Dirichlet form: Definition using a Hilbert basis

For any F, G in

$$\mathbb{D}^{1,2} = \left\{ F \in \bigcap_{i \in \mathbb{N}} \mathbb{D}^{1,2}_{m_i}, \quad \sum_{i=0}^{+\infty} \|D_{m_i}F\|^2_{L^2(\Omega)} < +\infty \right\}$$

where $(m_i)_{i\in\mathbb{N}}$ is a Hilbert basis of \mathcal{H} ,

$$\mathcal{E}(F,G) = \sum_{i=0}^{+\infty} \mathbb{E}[D_{m_i}FD_{m_i}G]$$
$$DF = \sum_{i=0}^{+\infty} D_{m_i}Fm_i \in L^2(\Omega;\mathcal{H}).$$

The local Dirichlet form: Properties

Proposition

The bilinear form $(\mathbb{D}^{1,2}, \mathcal{E})$ is a local Dirichlet form admitting the carré du champ $\Gamma[F, G] = \langle DF, DG \rangle_{\mathcal{H}}$ for $F, G \in \mathbb{D}^{1,2}$, and the gradient D.

Moreover $\mathbb{D}^{1,2}$ is a Hilbert space for the norm

$$\|F\|_{\mathbb{D}^{1,2}}^2 = \|F\|_{L^2(\Omega)} + \mathcal{E}(F),$$

the operator *D* satisfies the chain rule for any Lipschitz function and doesn't depend on the choice of $(m_i)_{i \in \mathbb{N}}$ because, for $F \in S$,

$$DF = \sum_{n=1}^{d} \sum_{j=1}^{n} \frac{\partial f_n}{\partial t_j} (T_1, \cdots, T_n) \left(\frac{T_j}{T} - \mathbb{1}_{[0, T_j]} \right) \mathbb{1}_{\{N_T = n\}}.$$

 $\mathsf{Dom}(\delta)$ is the set of $u \in L^2(\Omega; \mathcal{H})$ such that there exists $c \in \mathbb{R}^*_+$ such that

$$\forall F \in \mathbb{D}^{1,2}, \ \left| \mathbb{E} \left[\int_0^T D_t F u_t dt \right] \right| \leq c \|F\|_{\mathbb{D}^{1,2}}$$

and, for any $u \in \text{Dom}(\delta)$, $\delta(u)$ is the unique element in $L^2(\Omega)$ such that

$$\forall F \in \mathbb{D}^{1,2}, \quad \mathbb{E}[\delta(u)F] = \mathbb{E}[\langle u, DF \rangle_{\mathcal{H}}].$$

Proposition

For any *u* predictable process in $L^2(\Omega; \mathcal{H})$,

$$\delta(u) = \int_{(0,T]} (\psi(u,t) + \widehat{u}(t)\mu(T-t) + u(t))dN_t$$

where $\widehat{m}(t) = \int_0^t m(s) ds$ and

$$\psi(m,t)=\frac{1}{\lambda^*(t)}\int_{(0,t)}(\widehat{m}(t)-\widehat{m}(s))\mu'(t-s)dN_s.$$

We do not have the Clark-Ocone formula because $N_T \in \mathbb{D}^{1,2}$ with $DN_T = 0$ but $N_T \neq \mathbb{E}[N_T]$.

Theorem

For any $F = (F_1, \dots, F_d) \in (\mathbb{D}^{1,2})^d$, the image measure $F_*[\det(\Gamma[F]).\mathbb{P}]$ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^d where $\Gamma[F] = (\Gamma[F_i, F_j])_{1 \le i, j \le d}$:

 $F_*[\det(\Gamma[F]).\mathbb{P}] \ll \lambda_d.$

Corollary

For any $F = (F_1, \dots, F_d) \in (\mathbb{D}^{1,2})^d$, conditionally to $\Gamma[F] \in GL_d(\mathbb{R})$, the law of F is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^d :

 $\mathbb{P}_{\mathsf{F}}(\cdot \mid \mathsf{\Gamma}[\mathsf{F}] \in GL_d(\mathbb{R})) \ll \lambda_d.$

SDE on [0, *T*]

$$dX_t = f(t, X_t)dt + g(t, X_{t-})dN_t, \quad X_0 = x_0,$$

where $f,g:[0,T] imes \mathbb{R}^d \longrightarrow \mathbb{R}^d$ are measurable functions and satisfy

- For any $t \in [0, T]$, the maps $f(t, \cdot), g(t, \cdot)$ are of class C^1 .
- $\sup_{t,x}(|\nabla_x f(t,x)| + |\nabla_x g(t,x)|) < +\infty.$
- For any $x \in \mathbb{R}^d$, the map $g(\cdot, x)$ is differentiable.

Auxiliary function:

$$\varphi(t,x) = f(t,x+g(t,x)) - (I_d + \nabla_x g(t,x))f(t,x) - \frac{\partial g}{\partial t}(t,x).$$

Proposition

 $X_T \in \mathbb{D}^{1,2}$ and we have an explicit expression of DX_T and $\Gamma[X_T]$.

Theorem

If d = 1 and $\varphi(t, x) \neq 0$ for any $(t, x) \in [0, T] \times \mathbb{R}$ then, conditionally to $\{N_T \ge 1\}$, the law X_T is absolutely continuous with respect to the Lebesgue measure on \mathbb{R} :

$$\mathbb{P}_{X_{\mathcal{T}}}(\cdot \mid N_{\mathcal{T}} \geq 1) \ll \lambda_1.$$

We also have a theorem for $d \ge 1$ with a spanning condition and conditionally to the fact that the process N admits enough jumps.

Dynamics of an asset price

$$dS_t = rS_t dt + \sigma S_{t-} d\widetilde{N}_t = (r - \sigma \lambda^*(t))S_t dt + \sigma S_{t-} dN_t, \quad S_0 = x_0.$$

We consider a function Φ and we would like to know the variations of $\mathbb{E}[\Phi(S_T)]$ with respect to the different parameters x_0, r and σ .

Our result is true for every classical payoff functions.

Application 2: Greek computation

Theorem

$$\begin{split} &\frac{\partial}{\partial x_{0}} \mathbb{E}[1_{\{N_{T} \geq 1\}} \Phi(S_{T})] = \mathbb{E}\left[\Phi(S_{T}^{x_{0}})\delta\left(m1_{\{N_{T} > 0\}}\frac{\partial S_{T}^{x_{0}}}{\partial x_{0}}\right)\right] \\ &= -\mathbb{E}\left[\frac{\Phi(S_{T}^{x_{0}})\delta(m)1_{\{N_{T} > 0\}}}{\sigma x_{0}\int_{(0,T]}\mu(T-t)\widehat{m}(t)dN_{t}}\right] \\ &-\mathbb{E}\left[\frac{\Phi(S_{T}^{x_{0}})\int_{(0,T]}\mu'(T-s)\widehat{m}(s)^{2}dN_{s}}{\sigma x_{0}\left(\int_{(0,T]}\mu(T-s)\widehat{m}(s)dN_{s}\right)^{2}}1_{\{N_{T} > 0\}}\right] \\ &+\mathbb{E}\left[\frac{\Phi(S_{T}^{x_{0}})\int_{(0,T]}\mu(T-s)m(s)\widehat{m}(s)dN_{s}}{\sigma x_{0}\left(\int_{(0,T]}\mu(T-s)\widehat{m}(s)dN_{s}\right)^{2}}1_{\{N_{T} > 0\}}\right]. \end{split}$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ...

æ

Thank you for your attention.

Do you have some questions ?