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Abstract

We establish both local and global bifurcation results for traveling periodic solutions of the one-dimensional
two-species Vlasov—Poisson equation. These solutions consist of strip-like regions of ions and electrons in
phase space that propagate coherently and emerge from spatially homogeneous, velocity-dependent equilib-
rium layers. Depending on the geometry of the underlying equilibrium and on the selected Fourier mode, the
bifurcation diagram exhibits either two or four solution branches. In all cases, the bifurcation is of pitchfork
type; in symmetric configurations, the local structure near the equilibrium has a hyperbolic geometry. We
further show that these locally constructed branches extend globally. This work extends the previous study
[40] of the purely electronic case, where the ions were modeled as an immobile neutralizing background.
Allowing both species to evolve dynamically leads to a more intricate, higher-dimensional analysis. Finally,
by means of an affine change of variables, we reveal a connection with the one-dimensional two-component
Euler—Poisson system, which in turn enables the construction of traveling periodic waves of both small and
large amplitude for that model as well.
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1 Introduction

In this article, we investigate some dynamical properties of plasmas made of ions and electrons. We shall
first present the equations of interest in this study, called two-component Viasov-Poisson system. Then, we
may discuss a particular class of solutions called ions-electrons layers for which we find a new set of equations
describing the perturbative regime near stationary trivial solutions. Finally, we expose our main results.

1.1 The two-component Vlasov-Poisson system

The Vlasov—Poisson system constitutes one of the fundamental kinetic models in plasma physics and galactic
dynamics, describing the evolution of collisionless charged particle distributions under a self-consistent electro-
static field. Let us consider a collisionless neutral plasma composed with ions and electrons and evolving in
a single dimension of space. This latter fact implies that the particle motion is only influenced by induced
electrostatic forces and therefore we disregard electromagnetic interactions. We further assume that the space
direction z is 27-periodic, i.e. x € T £ R/27Z. The velocity variable is denoted v. We consider f, (¢, z,v) > 0
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and f_(t,x,v) > 0 respectively the distribution of ions and electrons traveling with speed v at position z and
time ¢. The dynamics of these two quantities is described by the two-component Vlasov-Poisson system, see [5l,
Chap. 13],

8tf+(t,:£,v)+v81f+(t,:c,v)+E(t,:c)(9vf+(t,:c,v):(), (t x ’U)ER «T xR (1 1)
atf7 (t7 x? v) + va@f* (t7 x’ ,U) - E(t7 ‘r)avf* (t7 ‘/'L.? v) = 07 , ’ * ’ .
where E(t,x) is the electric field given by
E(t,z) = 0zp(t, x), Ozaip(t, ) = /R (f+(t,z,0) = f-(t,z,0))dv. (1.2)

By using (1.2) and Taylor formula, the periodic condition
E(t,0) = E(t,2m)

can be reformulated into the following neutrality condition

/0 " /R Fo(t,z,v)dedy = /0 - /R - (t,z, v)dadv. (1.3)

The quantity ¢ in is the electric potential. Notice that only the quantity 0,¢ is of interest in the problem.
Therefore, the electric potential ¢ is well-defined up to a time dependent additive constant that we select so
that, for any time, ¢ has zero space average. Consequently, introducing the inverse Laplace operator 9!
defined in Fourier as

sin(jx)
;2

cos(jz)
;2

Vi€ Z*, 0, cos(jr)=— and Otsin(jx) = —

9

we obtain from (1.2]) and (1.3]) that
olt, ) = 05 ( J R <t,x,v>)dv) | (1.4
R

Functions depending on the velocity variable only (f+(¢,z,v) = f+(v)) consitute trivial solutions with zero
electric field that are called homogeneous states. From the mathematical viewpoint, the Vlasov—Poisson system
has been extensively studied with regard to well-posedness and long-time behavior. Global existence of classical
solutions was established in various settings by Bardos-Degond [4], Pfaffelmoser [37], and Schaeffer [4I]. In
1946, Landau [27] observed near Maxwellians (Gaussians homogeneous states) a damping effect, namely time
decay of the electric field. It has been mathematically rigorously justified in the work of Mouhot—Villani [33] and
subsequent contributions that small perturbations of homogeneous states may damp out in analytic or Gevrey
spaces. Lowering the regularity it is possible to find nontrivial steady or traveling structures. Indeed, there is a
huge physiscal literature of traveling waves for the Vlasov-Poisson system [2} [3] [7] [8] 18], 19} 23] 25| [32], [36], [38].
Among them, a cornerstone in the study of nonlinear electrostatic waves is the seminal work of Bernstein,
Greene, and Kruskal [3], who introduced what are now known as BGK waves. These are nontrivial stationary or
traveling solutions constructed by prescribing the distribution function as a function of the particle energy. Their
approach yields spatially periodic or solitary phase-space structures and demonstrates that the Vlasov—Poisson
system admits a rich family of nonlinear equilibria beyond homogeneous states. The BGK waves constitute
an obstruction to damping in weaker topologies. This interplay has motivated a more systematic investigation
of nonlinear periodic and traveling solutions. The rigorous construction, stability analysis and caracterizations
of BGK waves has been addressed in several works and the reader is refered to [6l 20, 21| 22] 28] 29| [30, 43].
These results reveal that periodic kinetic waves can exhibit subtle dynamical behavior and are often spectrally
or nonlinearly unstable, emphasizing the need for a careful structural analysis of traveling solutions. In the
present work, we construct traveling periodic waves that live near singular homogeneous states.

1.2 Ions and electrons layers

Our next goal is to present to notion of patches of ions/electrons which are weak solutions corresponding to
localized regions of the phase space (z,v) evolving in time. Among them, we may focus on the particular
subclass of ions/electrons layers that are patch-type solutions with strip-shaped domains.

Let us recast the equations (1.1]) as a system of two coupled active scalar equations. For that, we assimilate

the phase space T x R to the cylinder manifold embedded in R3 through the local chart

P (0,1) xR — R3 (1.5)
(z,v) +— (cos(z),sin(z),v).



Using the classical identification vector/directional derivative we get that at any point (x,v) € T x R, the
tangent plane T(, ) (T x R) = R? admits the orthonormal basis

ey £ 83?7 €y £ 811-
For any function g: T x R — R, the gradient is given by
Vavg(x,v) = 0y8(z,v)e, + Oug(x,v)e,.

The orthogonal gradient is obtained by a rotation of angle 7

1 a ({0 -1
Vaw & JoaVow,  Mat (3,) = (1 o) (1.6)
Consider the velocity field
vi: TxR = T(TxR)2 ] Tuu(TxR) (1.7)
(z,v)€TXR

(z,v) — we,x E(t,x)e,,
which is divergence-free

divy v (t,z,v) = 0,(v) + 8, (E(t, x)) = 0. (1.8)
More precisely, by virtue of (1.2), we can write

2

vi(t,z,v) = *Vch_,v\I’:t(taxav)a W (t,x,v) £ b} Feo(t ). (1.9)

Then, the system (1.1]) can be written in the following coupled system of active scalar equations

atf—l—(t,xav) + <V+(t,’£,’v), vavf+(t,l’,?))> = 07
o, (TXR) (1.10)
8 - t’ ) < - t7 ) 7V:1/"U - t7 ) > = 07
- 0) + (Vo) Voo (b))
where the scalar product on the tangent space T(; ,)(Txr) is defined by
v+ ey, ver +0 v> £ S. 1.11
<ae + Bey, Ve, + de T (T ay+ (1.11)

Following the theory of Dziurzynski [16], any initial datum (f9, f) € (L*°(T x ]R))2 generates a unique global
in time weak solution (fy, f-) € L™ (R+7 (L>°(T x R))Q) which is Lagrangian, i.e.
f:l:(t7x7v) = fi (Xti(x,v)),
where XtjE is the flow map associated with the velocity field vy in (1.7)), that is
8,5Xti(a:,v) =V (t,Xti(J),U)), Xoi(a:,v) = (z,v).

In particular, we can describe a particular class of weak solutions given by patches of ions and electrons.
Considering two bounded initial domains QF C T x R and an initial datum (f$, f°) in the form

f i = 19()*7
then the corresponding weak solution is given by
fe(t, ) =1gx,  QF £ X5(%).
Due to the divergence-free property of v4 in , we have the following measure preserving property
VE>0, |Qf =0 (1.12)
Moreover, the neutrality condition becomes

20| =19 |- (1.13)



The properties (1.12)) and (1.13) mean that, at any time, the ion patch and the electron patch must have the
same area. In what follows, we shall work with a subclass of patches of ions/electrons called ions-electrons
layers for being strip shaped, i.e.

fe(tw,0) =1g=(2,0),  SF 2 XF(57),

where the strip S is delimited by two 27-periodic profiles z — u[f (t,xz) (k € {1,2}) such that

St = {(x,v) eTxR s.t. UE]( z)<v< v[i]( )}
The boundary of the strips are described by
os{ =Ti(t) + T2 (1)

where

vk € {1,2), r[f](t)z{ M (t,z) 2 4, (m B, )),xET}. (1.14)

Recall that v is the local chart introduced in ([1.5). Thanks to the transport structure ([1.10), following the
computation carried out in [40, Sec. 1.2] the dynamics of the patch interfaces is given by: for any k € {1, 2},

<atz[f]( ), J000s 2 (2, :c)> Y (\Ifi(t,zf] (t,x))). (1.15)
[k:]( (TX]R)
We fix four real numbers
a[j] < a[f] and at < o
and look for ions/electrons layer solutions so that
vk e {1,2}, ¥t 2) =l + 7P, ),

that is

Fetm,v) =Ly mg oy cocasrPeey TG0 =L m G 0 ool 42,0 (1.16)
Denoting

1 2w
/f(m)dm £ — f(x)dx,
T 21 Jo

the neutrality condition (1.3)) reads

Aia +/ (r[f] (t,x) — TE] (t,z))de = A_a+ / (r[fl (t,x) — rl! (t,z))dz, (1.17)
T T
where we have used the notation
Aia = a[j] — a[il].

Combining (1.14)), (1.6) and (1.11)), we find for any k € {1, 2},

<8tz[k]( z), Jz,,,angf}(t,x)> :<8tr[i]€](t,x)ev7Jz,v(em+8zr1€](t,x)ev)>

ngj](t,m)(TXR) Tzi(t,m)(TXR)

< tT L ( ,J?)e € Ty ( 77:)6 >Tzi(t,x)(T><R)
= 0t 2).
Putting together (1.15) and (1.18]), we find
vk e (1,2}, 9Pt z) = —az(qzi(mﬁ_f} (t,x))). (1.19)

The space derivative in the right hand-side of each equation of (1.19) implies that

Vk e {1,2}, O / T[ik](t,x)dx =0.
T

In the sequel, we make the choice
Vk € {1,2}, / K¢, 2)de = 0. (1.20)
T



x
Figure 1: Ton/electron layers
Consequently, the neutrality condition becomes
Aia=A_a, (1.21)
Inserting (|1.16]) and (1.21}) into , we infer
olt,x) = 0 ( Pit,a) - reo)) - ozt (PPt o) - it )). (1.22)
Plugging (1.9)) and ( into , we end up with the following system
ol = —@c(%(ai” o) = ozt (4l o2 (2 - 411,
o' = —0, (e + ) — 0,2 (¢ ) + 01 (0 -4, )
8trm = —0, (%(a[_l] + r[_l])Q + Ok (rf] — rE]) -0} (r[_Q] — r[_l})), .
o = _g, (%(a[_m + 7“[_2])2 + 0.} (rf] - TE]) -0} (r[_2] - r[_l])),
which can be recast in the following form
3tr[+1] + (a[ﬂ + TE])(’? rm ( ) + o071 (T[E] — TE]) =0,
aprl? + (aJr +r+) P =y o (P Iy — o, (124
8t7°[71] ( )8 rm—l—@ ( 2] rl) 8;1(r[f]—rg]) =0,
0 (@ + o, P ot (b -y o (B -y = o,

where the operator 9, ! is defined on the cosine/sine basis by

Vj € N*, 9, cos(jz) & M7 0, 'sin(jz) £ _cos(.]x).
J

The set of equations (1.23)) (or (1.24))) is a system of four coupled quasilinear transport equations. In addition
the coupling is linear and of order —1 in the unknowns.

1.3 Main results

Before presenting our main result, we mention the previous work [40]. There, the ions were assumed to have
significant inertia in order to consider them as a neutralizing uniform background field. The situation was like
if the density fy had an electron sheet form

f+(t,$,’0) = 50(1})

and therefore the system (|1.1) was reduced to the single component Vlasov-Poisson equation given by the second
equation in (1.1]). In that case, the neutrality condition is

/T/Rf’(t’xav)dvdm -1



and electron layers are solutions in the form

f-(t,x,v) = 1s,, St:{(x,v)eTxR s.t. v,(t,x)<v<v+(t,x)}.

IS |
The flat strips are homogeneous trivial solutions and the bifurcation analysis near (v_,v;) = (a,b) has been
performed in [40] finding for any fixed symmetry m € N* two velocity bifurcation points given by (adapted to
the 27-periodic setting)
2

a+b b=a) ' m?2 41

¢t (a,b) = + (52) :
2 m?

In addition, the local bifurcation diagram has a "hyperbolic” structure, namely subcritical pitchfork bifurcation
at ¢, (a,b) and supercritical pitchfork bifurcation at ¢ (a, b).

In the two-component case of interest in this paper, the positive ions are supposed to have small enough
inertia so that their motion is on a time scale comparable with that of the electrons in the plasma. Let us give
the following definition

Definition 1.1. (I/E-states or Ions-Electrons-states)
Let m € N* and ¢ € R. we say that an ions-electrons layer is

e m-symmetric if and only if
Vke{1,2}, Vee{—,+}, Vt>0, VeeT, ¥ (t,ox+2) = rifl(t, x).

o an I(ons)/E(lectrons)-state with velocity c if for any k € {1,2} and any k € {—,+}, there exists il e

L3(T) such that
V>0, VeeT, rMtz)=rF(z—ct).

Our first main result deals with the construction of local bifurcation curves of Ions-Electrons-states and
reads as follows.

Theorem 1.1. (Small amplitude Ions-Electrons-states)
Let a & (a[ﬂ,a[f],a[l] [2]) € R* with

Aa = aE] - aE] =d? —adY>0. (1.25)

(i) (Generic case) Assume that the components of a are pairwise distinct, namely

Ha[i],a[f],a[j],a[f]}‘ =4.

Then, there exists m = m (a[ﬂ, a[f], a[j],a[,z]) € N* such that for any m € N* with m > m, there ezist four
local bifurcation curves of m-symmetric Ions-Electrons-states, emerging from the trivial solution Sgat(a)
and taking the form

altlo) 2 (s 00,7l (5,0) . Jsl<o), 820, ke{l2},  we{-n)

with the asymptotics
(e 2 erl(0,0) —

m—oo

and

0 _ Jkml
(a a

( 2] _ Lk f@]

a@)
)

{supercrltlcal if clfon] (a) > aLk],

veeT, rlF(s, a)(z) ) cos(mz) + O(s?). (1.26)

— a
In addition,

the bifurcation is pitchfork . .
subcritical if c[m’ﬁ] (a) < aL].



(i) (Symmetric case) Assume that

a[_z] = ag] =

a’ =a, =a and

Then, there exist two local curves of m-symmetric lons-Electrons-states, emerging from the trivial solution
Stat(a), and taking the form

Cru(a) 2 {(cm(s,a),7m(s,a)) | |s| <6}, 6 >0,
with
£(0,a) = ¢t (a1, az) 2 ‘“"2”2 :I:;\/(ag—al) +8A—“ (1.27)

The deformation function rE, admits the same asymptotic (1.26]) with clionl (a) replaced by ¢k (a1, ay). Both
bifurcations are of pztchfork type and, asymptotically in m, the bifurcation diagram admits (locally close
to the trivial line) a ”hyperbolic” structure as represented in the Figure @

Figure 2: Local bifurcation diagram with "hyperbolic” structure in the symmetric case.

(iii) (Successive case) Assume that

alfl = [3 Kl (i.e. a[_l] = af} or aE] = a[_2]> .

K —K

Then, there exist two local curves of m-symmetric lons-FElectrons-states, emerging from the trivial solution
Stat(a), and taking the form

G 2 { (b He a0l Hea),  sl<of, 6>0,

with
ErE (0 q) = ¢ ( [3—F] a[k])’

—K

with ¢t as in . The deformation function rﬁi"{’ﬂ admits the same asymptotic with c[k F"]( )

replaced by ¢t ( [3 k], [k] ) Both bifurcations are of pitchfork-type and, asymptotzcally in m, the bifurca-

tion diagram admits (locally close to the trivial line) a "hyperbolic” structure as represented in the Figure
[3 where we denoted

my = mm( [3—k] a[k] ) and Mg x = max( [3—K] a[kL) .

—K

\Cy:l’n’l] ' lcy;;’ﬁ,*/
M, —a’[f] - > Mk,n ¢
Aa Aa

Figure 3: Local bifurcation diagram with "hyperbolic” structure in the successive case.

The proof of Theorem is performed in Section [3|and is based on the implementation of local bifurcation
theory from simple eigenvalues [14], see also Theorem We follow the duality argument given in [39] for the
scalar case and then extended to 2 x 2 matricial situations [10, 17}, 24, [34] 40]. In the present paper, the situation
is more challenging since associated with 4 x 4 matricial case. This makes difficult the explicit computation
of the spectrum (doable only in the symmetric and successive cases) and forces an asymptotic analysis in the
generic case. Actually, the proof given here should work the same in the situation with any finite number



of interfaces both for the pure electronic and the two-species equations. As mentioned at the beginning of
this subsection, the local ”hyperbolic” shape of the bifurcation diagram was already observed in [40] for single
component Vlasov-Poisson equation and seems reminiscent for these kinetic type models compared to fluid ones.

Our second main result deals with the global extension of the curves provided in the previous theorem. Its
proof is given in Section (4] and relies on the use of Theorem from global bifurcation theory.

Theorem 1.2. (Large amplitude Ions-Electrons-states) All the bifurcations of Theorem are global in

the Sobolev-analytic space H*? for s > % and o > 0. More precisely, Let a = (aE],aE],a[_l],a[E]) € R* and

m € N*. Consider a local curve

62 (a) = {(Cm(s,a),"m(s,a)), [s| <6}, 0 >0,

local

being one of the local curves constructed in Theorem[I.1l Then, there exist a global curve

€22,0(@) 2 { (@m(s.0), 7m(s. @), s €R}

corresponding to m-symmetric E-states and extending the local curves €™ (a), i.e.

ocal

(o) C €L (a).

local global

Moreover, the curve €x . (a) admits locally around each of its points a real-analytic reparametrization. In

addition, one has the following alternatives

(A1) (Loop) There exist Ty (a) > 0 such that
Vs €R, m(s+ Tm(a),a) =Cm(s,a) and Fm (s + Tm(a),a) = Fm(s, a).

(A2) Denoting

Fn(s, @) 2 (it (s,0), 72 (5, 0), 7fh (s, ), 727 (s,0) )
one of the following limits occurs (possibly simultaneously)

1

Blow-u lim =0.
° ( p) s—+oo 1 + |6m(s,a)| + ||fm(57a)||s,a
e (Collision, of the boundaries) lim  min min [F2")(s,a)(x) — 7" (s, a)(z) + al?l — afl] = 0.

s—+oo ke{—,+} z€T

i i in |#lEn] (Kl _ & —
e (Degeneracy) SErinOo (Jin min |7y (s,a)(x) + ap? —em(s,a)| = 0.
RE{—+}
Remark 1.1. It is not clear how to get rid of one of the alternatives. Actually, the situation might be quite
rich. One can immagine that the curves exchange their roles with possible formation an annihilation of loops

as we pass from
generic — successive — generic — Symmetric — generic — Successive — generic
by sliding one patch accross the other.

Acknowledgements : This work has been supported by the ERC STARTING GRANT 2021 ”Hamiltonian
Dynamics, Normal Forms and Water Waves” (HamDyWWa), Project Number: 101039762.

2 Reformulations

Here we provide two different ways of writing the system . The first one focuses on the Hamiltonian
nature of the equations. The associated Hamiltonian is the total energy (kinetic + potential). As for the second
reformulation, we show that under a suitable affine change of variables, we recover the two-component Euler-
Poisson system. As a consequence, our results translates into new solutions for the Euler-Poisson equations.



2.1 Hamiltonian structure

In this short section, our goal is to highlight the Hamiltonian nature of the system ([1.23]).
Proposition 2.1. Let us consider the energy functional
E(t) £ Enlt) + Epun (D), (2.1)

where E,(t) and &, (t) are respectively the kinetic and the electrostatic potential energies defined by

Ean(t) = /1T . %(f—i-(t,m,v) + f-(t,z,v))dzdv,

Epor(t) = —%/ (/ (f4(t,z,v) — f_(t,x,v))dv> p(t,z)dz.
T \JR
Then, the system (L.23)) is Hamiltonian in the sense that it can be written in the form
0, 0 0 0
Oyr = JVE(r), — (TE],TE],TE],T[E]), J = 0 -5 0

0
0 0 0, 0 |’
0 0 0 -0,

(2.2)

where V £ (Vr[l] , vr[zl,vrm,vr[m) denotes the L?(T) £ (LQ(T))4 gradient associated with the scalar product
+ + - -

e, n Rl e el
(400, (000
2 /T (u[i] (m)vﬂi} (x) + u[f] (m)vf} (x) + ul! (m)v[j} (x) + ul? (m)v[f} (m)) dx.
Proof. The kinetic energy writes

alfl+rP(t2) 2 ol 4r(t,2) 2
En(r)(t) = Sdv + Fdv | dr.
7 \ Ja 2 DD ’
ap +r(tx) al+r2 (t,z)

+

Let k € {1,2}. Differentiating with respect to r[f] in the direction h[f], we get
2
i _ oy [ e les)”
(V10 Eunr)(0) B (t)>L2m —(-1) /T ) ¢ 2.

This implies
(1) (o + 1, )"

5 .
Our next step is to study the potential energy term. For this aim, we recall that

/ (F(tw,0) = (e, v)do = P 2) = T 2) = P 2) + U 1, 2).
R
Therefore, using (1.22)), we can write

Epon(r)(t) = _71 /T (o) =t o) = Bie0) + ) ot (PP 2) = Pt 0) = P 0) + e 2)) da,

Vr[if] Euin (7") (t, {E) =

Differentiating with respect to r[ik] in the direction h[f] and using the self-adjointness of 9%, give
k +(—1)"*! k 12 1 2 1
(V0080 (1) (®), h[i](t)>L2(T) ==/ a0zt (rPe ey = o) = P )+ (1 0) ) da

£(—1)k+
+ % /T (TE] (t,z) — TE] (t,r) — r (t,z) + ! (tw)) 8;z1h[l’f] (t,z)dx

= 4(—1)F*! /T he(t,z)0,,} (rf] (t,x) — TE] (t,z) — rl (t,x) + pl (t,x)) dx,
which implies in turn
Vs o) (t,2) = (=110 (rP ) =P t0) = P )+ (1,0) ) (2.4)
Combining , and , we infer
V€ (k) = (1) [; (alt? 7 (t,m))z + 0, (M) — Ut w) = P2y + (t,x))] .

Comparing with (1.23)), we get (2.2). This achieves the proof of Proposition O



2.2 Link with the two-component Euler-Poisson system

Our next purpose is to expose the relation between the system ((1.23)) for the evolution of the patch boundaries
and the classical two-component Euler-Poisson system given by

Op+ + 0z (prus) =0,
O (prus) + 0z (prul) + 0. P(ps) = +p10:9, (2.5)
02,0 = 4me(py — p-).

The system ([2.5)) describes the dynamics of ions and electrons through a self-consistent electric field. Here 1+ p,
u and 0, ¢ represent the electron density, the electron velocity and the self-consistent electric field, respectively.
The thermal pressure of electrons P(p) is often assumed to follow a polytropic v law

P()=Tp', TeR, >1 (2.6)
We refer the reader to [12, [13, [35] for some literature about traveling waves for the Euler-Poisson system.

We consider the symmetric situation

a[f] =ad? =a>0 and ag] == —a.
Then, we define
2] (1] 2] (1]
— +
piéw%, uié%. (2.7)

The transformation (2.7)) is affine in r. In particular, traveling waves for (1.23]) become traveling waves for (2.5)
(and conversely). Then, from (1.23), we get

% (8,57"53] — 8tril)

=g ()" - (o))

—i@w ((2a + r[ﬁ] — r[il]) (r[ﬁ] + r?))

= —0z(pru+),

Orp+

which corresponds to the first equation in (2.5)). Besides, (1.23]) also implies

1 2 1
at’ll/:t = 5 (aﬂ‘[ﬂ:] + atrgz])

- o, <(a+rgzl)2 n (Hrgf) ot (Bl )

= —50:(pt +ul) £29, (p1 — p-).

Therefore,
O¢(p+u+) = usOrp+ + p+Opus
= —usda(psus) + pi | = 30, (0% +ul) £ 207 (01 — )|
= —u30yp+ — 2p+u0pus — pL0yps + p+0; (py — p-).
Also,

O (prul) = uldops + 2p1uspus.
Combining the foregoing calculations yields
O(prus) + Ox (p2u) F 2020, (py — p-) = —30:(p%).
This corresponds to the second (and third) equation in with the charge renormalization

1

e:%
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and a pressure term in the power law form
P(p) =& (2.8)

that is (2.6]) with
1
T = 3 and v =3.

Since the change of unknowns (2.7)) is affine we can state the following theorem whose proof is a direct conse-
quence of Theorem [1.1}(i3) and Theorem We give here an informal statement, but the interested reader
can perform the change of variables (2.7) and obtain for instance the local asymptotic expansions.

Theorem 2.1. Let a > 0 and m € N*. The two component Euler Poisson system with cubic pressure law (2.8)
admits two global curves of solutions corresponding to small and large amplitude m-symmetric traveling periodic
waves

(P, us)(t, @) = (Px, Us)(x — ct), pe, iz € LP(T), (s 0x) (2 + 25) = (pae, 0z) (),
bifurcating from the trivial state (p+,u+) = (a,0) at the speeds

2
+
== 1+ ——-
cp(a) ay/ +am2

3 Small amplitude solutions

This section is devoted to the proof of Theorem For this aim, we check the various hypothesis of Theo-
rem First, we reformulate the problem as the search of zeros for a time independant functional. Then, we
introduce the functional framework and study the linearized operator at the trivial flat solutions. At last, we
expose the asymptotic quantitative description of the local bifurcation diagram.

We shall look for solutions of in the form
By =il @ —ct), ceR,  HerXm), ke{1,2}.
In what follows, we denote
a® (a[i], a? ol a[f]) and 7= (fﬁ]jf],f[,l],f[f]) :

With this ansatz, the system ((1.24)) becomes

VreT, Fla,c)(z)=0, F=2 (FE] WALl F[2]> ,
(3.1)
Fa,e,1)(@) 2 (@) + dt! - o) o, @) 7 071 (7P @) = @) - 7 (@) + () )

We define the admissible sets
Aé{(al,ag,a3,a4)€R4 s.t. as —aq :a4—a3>0}’
Agym = {(a1,a2,a3,a4) €A st. ag=a3 and as= a4},
Ague £ {(al,ag,ag,a4) eA st. ay=ay4 or as= a3},

The set A capture the fact that the ions and electrons layers must have the same width, see (1.21). The set
Agym describes the situation where both the ions and electrons flat strips coincide. Finally, the set Agu. stands
for the case where both flat layers are successive. One can easily check from (3.1]) that

Yae A, VYceR, F(a,c0)=0. (3.2)

The relation ([3.2)) states that for any ¢ € R the flat ions/electrons strips are trivial solutions and corresponds
to the hypothesis (L1) of Theorem Now, we shall precise the functional framework. Given s,o > 0 and
m € N* we consider the following Sobolev-analytic function spaces

Xir 2{F €M) st VaeT, f@)=) fjeos(jma), f;eR, Y 22 <ocl,

j=1 j=1

o0 o0
Yo aa = {g € L*(T) st. VzeT, g(z)= Zgj sin(jmz), g; € R, ZsteQ"ngQ- < oo}.
j=1 j=1

11



Then, we consider the product spaces

X80 éXs,cr x X359 x X35 x X 59

m,even m,even m,even m,even m,even’
s,0 Ay s,0 s,0 s,0 s,0
Ym,odd - Ym,odd X Ym,odd X Ym,odd X Ym,odd'

Both spaces are complete when endowed with the norm

[eS)
1 2 1 2 . 1
[ )2 s o] e (S
s,0 ke{1,2} s,0 ’ -
re{—,+} Jj=1

Notice that these function spaces contain the zero average condition mathcing the condition . The inter-
ested reader is refered to [I] for an introduction to the general Sobolev-analytic spaces and their properties. For
later purposes, we insist on the fact that, for a fixed ¢ > 0, the Sobolev-analytic scale (H*7)s>¢ behaves like
the classical Sobolev scale (H®)s>¢. In particular, the classical estimates hold true (interpolation, product and
composition laws, compact embeddings etc...). From the structure of the equations (linear and quadratic
terms), the classical formula

Y(u,v) € R?,  sin(u) cos(v) = L (sin(u + v) + sin(u — v)),
implies that
for any o > 0 and s > 1, the function F: A x R x X&° 5 Y 1. ig well-defined and analytic. (3.3)

m,even m,odd

In the rest of this section, we fix the Sobolev-analytic regularity indices as s > 1 and ¢ > 0. The linearized
operator at 7 = (0,0,0,0) £ 0 is
‘Cc & dfF((l,C, 0) = IO + Ko,

with
() =)o 0 0 0
2
e 0 (=) o 0 0
0 0 (a[_” — c) o, 0 ’
0 0 0 (a[_Q] - c) 0, (3.4)
8_1 —6_1 —8_1 6—1
ol —ot —agt ot
Ko = 7571 3f1 8*361 7571

_afl afl 871 —871

x T x

Observe that if ¢ ¢ {ag],af],am,am} , then Iy : X%7 — — Yin_})d‘; is an isomorphism. Moreover, by continuity

— — m,even

of Ko : X802 = Y51, an application of Rellich’s Theorem implies that Ko : X5 — Yin 027 is a compact

m,even m,even

operator. As a consequence,

forc¢{a[i],a[f],a[flka[f]},U>Oands>1, (3.5)
L.:X5 5 Y5 Lo s a Fredholm operator with zero index. '

m,even m,odd

In addition, it is a Fourier multiplier whose action on an element h = (hE], h[f], p! ; h[f]) € X oven in the form

h[ik] (x) = Zhjt’k cos(ymx), hjt eR,

j=1
writes
ntt
J
— 1 el B
L.[h](z) =— —Mjm(a,c) h]_’l sin(jmz), (3.6)
j=1Jm i
2
h;
where
52 (a[i] — c) -1 1 1 -1
-1 7 (o =) +1 1 —1
Mj (CL,C) = .9 [1] (3 7)
1 1 ] (a_ — c) 1 1
1 1 1 52 (a[f] —c) +1
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In view of the application of Theorem we shall find, for a given m € N*, for which values of ¢ the matrix
My (a, ) has a non-trivial kernel and hope that in that case it is of dimension 1. Actually, this is what happens.
More precisely, we have the following result.

Lemma 3.1. Let a € A and m € N*. The matriz My (a,c) is singular for
¢ € Em(a) 2 {cl (), 2t (@), k@), i @)} c €.

(i) Assume that a € Ay £ A\ (Asym U Asue) (i-e. the components of a are pairwise distinct). Then, there
exists m £ m (a[i], a[f],am,am) € N* such that

m>m = (Em(a) C R\ {ag],afl,a[_l],a[_z]} and |En(a)| = 4).
In addition, we have the asymptotics

Vke {1,2}, Vee{—+}, dbla) — ¥ (3.8)

m—0o0

(i1) Assume that a € Agym and denote

aE} =dY 2 and a[f] =ad? 2,
Then,
Em(a) = {ahag,cr_n(al,ag),c;(ahag)} CR, |Em(a)| =4,
where we denote for a, 5 € R,
o) 2 TP u 5 (3 200 (39
We have the asymptotics
cm (e, B) {‘ min(a, 5) and et (a, B) } max(a, (). (3.10)

(i1i) Assume a € Agye more precisely that there exists k € {1,2} and k € {—,+} such that

aLk] = a[f;k].

Then,
Em(a) = {a) e (L af ) i (L af ) R, [B(a)] =3,

with ¢t defined trough (3.9). The root agc] 1s double.

(iv) For em(a) € (Em(a) N R) \ {ag],afl,a[_l], a[_zl}, one has the following one-dimensional kernel property

ker (Mm (a,Em(a))> = span(vy), vy = (3.11)

Proof. Using standard algebraic computations, we find that the determinant of My, (a,c) is

Am(a,c) £ det (Mm(a,c)) = m® H (a,[f] - c) +m° Z (=1)* H (a[gp] - c) € Ry[c]. (3.12)

ke{1,2} ke{1,2} pe{l,2},ce{—,+}
re€{—,+} re€{—,+} (p,s)#(k,k)

It is a polynomial of degree 4 in the variable ¢ so it has 4 complex roots (counted with multiplicity) collected
in the set Eu,(a). Observe that for k € {1,2} and k € {—, +},

Am (a, a,[_f}) = (~1)*m® H (agp] - a,[f]) . (3.13)
pe{l,2},ce{—,+}
(p.) £ (k,m)
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Now, we need to distinguish the cases.
(1) Assume that a € Ag, i.e. the components of a are pairwise distinct. Hence, according to (3.13)), we get

Am (a, aLk]) #0, ie. Em(a) N {ag],ag], a[f], a[f]} = Q.
Also, from (3.12)), we can write
Am(a,c) = m®Py(c), P € Ry[c] unitary.

One redily has from (3.12) that

2 (k] _
Py — P, P(e) £ H (a,{ c). (3.14)
ke{1,2}
we{—+}

Since a € Ay then, the polynomial P has simple real roots. We denote Rf) [c] the subset of Ry[c] made of
polynomials of degree 4 with simple real roots. It is a classical fact (consequence of the Intermediate Value

Theorem) that ]Rff)[c] is an open subset of Ry[c|. Since P € Ry[c], we obtain from the convergence (3.14]) that
for m large enough, Py, € Rf) [c]. This proves that, for m large enough,

Em(a) CR and [Em(a)| = 4.

Finally, the asymptotics (3.8 follow immmediately from (3.14]) and the link roots-coefficients (up to a permu-
tation of the roots).

(72) Assume that a € Agym and denote a[i] = a[_l] £ 4 and aE] = a[_z] £ gy. In that case, the determinant ([3.12)
simplifies into

Am(a,¢) =mb (¢ —a1) (¢ — a2) Qmoas .as (€), Qm.ar.a(¢) 2 m?c® — m?(a; + az)c + m?ajaz — 2(az — a).

Recall that
as —a; = Aa.

Therefore,
Qm,a1,a5(¢) =0 & m?c? — m?(a; + az)c + m?aja; — 2Aa =0
& e=H —;—ag + 2;2 \/m4(a1 + az)? — 4m? (m2a1a2 — 2Aa)
- Ca1;a2:t;\/(a2a1)2+8mA2a,
= c € {emlar, as), ¢l (ar,a2)},

with ¢t (a1, az) as in (3.9).
(#i7) Assume that a € Agy,. and more precisely that there exists k € {1,2} and k € {—, +} such that = q
In that case, the determinant (3.12)) simplifies into

[3—k]

2
Am(a,c¢) = m° (c - a,[f}> Qm kr,0(C),

with _
Qm,k7n,a(c) £ mQCZ —m? (a[;o’_k] + G,[icL) c—+ mQCLE_k]a[f] — aE_k] _ a[fL .
Observe that by construction
a2 — o | = 240 (3.15)
so that B
Qm,k,n,a = Qm,aE_k],a[fL
and

@mvk%a(c) =0 & ce {c;1 (a[_kL, aE’*k]) e (a[_kL, al[ffk]>} .

14



(iv) Let X = (21,2, 73,74) € R*. Then

Xeker( (acm(a))) & X — Ty — T3+ Ts=m

+ T2
=-m (a[_l} —Em(a)) x3
= —m? (a[_2] - Em(a)) T4
< X € span(vo).
This achieves the proof of Lemma O

The next proposition provides the remaining sufficient hypothesis for local bifurcation.

Proposition 3.1. Let a € A, m € N*. Take ty(a) € (Em(a) NR) \ {ag],a[f], al'l, [2]} that is we are in one

of the following situations

o a € Ay, m > m and there exists k € {1,2} and k € {—,+} such that
m(a) = " (a).

® a € Agym with a[i] = a[E] =a, a[f] = a[f] = ay and

{c ai,az), (al,ag)} (3.16)

k] _ [3—K]

o a € Agy with ax’ =a’, } for some k € {1,2} and k € {—,+} and

em(0) € {em (aP,a2H) i (alt], ol 4) ). (3.17)

Then, the following properties hold true concerning the linearized operator Lz, (a)-

(i) The kernel is one dimensional. More precisely,
ker (Lz,.(a)) = span(fy), 7o () = v cos(mz), (3.18)
where vq is defined in (3.11)).

.. . . . . 1 .
(ii) The range is closed and of codimension one in Y ,i0. More precisely,

)
p (3.19)
)

R (Lep(a)) = span’ (yo), yo(x) £ wo sin(mz), wo = (
—\la

where the orthogonal is understood in the sense of the scalar product

(y,7) = Z( [1 +]+y[2 ] [2 +]+y[1 ]yj[l ]er[2 ]ﬂj[?’_]).

(iii) The transversality assumption is satisfied namely

(0eLe)le=tm(a)[Fo] € R (Lom(a)) -

Proof. (i) Given ¢ & {a[i], aE],a[l],a[_Q}} , we can factorize (3.12)) and obtain

M) =m® [ (e o) fme o 32 CO

ke{1,2} pe{1,2}y C— Qg
RE{—+} ce{—.+}
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As a consequence, for ¢ ¢ {ag},af},a[_l], a[_2]} , we have

pe{1,2} S
se{—,+}

In view of ([3.20)), one has
Vi € N\{0,1}, Ajm(a,em(a)) #0.

Therefore, together with (3.6)) and (3.11)), this allows to conclude (3.18)).
(i) Applying the orthogonal supplementary theorem to the finite dimensional subspace span(yg) inside the
pre-Hilbertian space (Yo, (- ), we find

Ys—l,a _ L €
m,odd span(yo) @ span (yO)

This proves that span®(yo) is of codimension one in Yy, L Besides, the Fredholm property (3.5)) together with
the one dimensional kernel (point (i)) implies that also the range R (Lz,,(4)) is (closed and) of codimension one

in Yii 5%, Moreover, the transposed of the matrix of My(a,c) in (B.7) is

m? (alf — ) =1 -1 1 1
. 1 m? (o —c) +1 -1 -1
Men(2,0) = 1 1 m? (ol — ¢} ~1 -1

-1 -1 1 m? (a[_z] — c) +1
By construction of wg in (3.19), we have
wo € ker (Mr—,'[—1 (a, Em(a))). (3.21)

Thus, given any element y of the range in the form

y][l,-i—}
oo 1 y[‘2,+}
y(z) = — Z j—mMjm(a,Em(a))gjj sin(jmz) € R (ﬁzm(a)) , g = J[l),] e R,
j=1 Yj
y][?’ !

we have by (3.21) that

(0,50) = = (Mo (0,2 ()) 1 ¥0)

This proves the inclusion
R (Lzm(a)) C sPan™(yo).

Together with the codimension one property for both subspaces, we can apply [40, Lem. B.1] to get (3.19)).
(797) Remark that

—9, 0 0 0
0 -9, 0 0
%Le=1 o o —5, 0
0 0 0 —0y
Hence,
! -2
(40, (L) | emtm(@[Fo]) = m(vo,w0)rs =m > (=1)PT(alP — T (a)) . (3.22)
pe{l,2}
se{—,+}

Assume in view of a contradiction that (9cLe)|c=z,,(a)[0] € R (L (a)) - By virtue of (3.19) and (3.22), this is
equivalent to

() = 2m(@)) 7 + (o = 2m(0)) 7 = (@) = Em (@) + (0¥ —Em(a)) . (3.23)
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Now, we shall distinguish the cases.

Case a € A; and m large enough : The asymptotic and the the fact that the components of a are
distinct imply that the identity cannot hold since one of the members of the equation might blow up
while the other tends to a finite number as m — co. Contradiction.

Case a € Agym and m € N* : The equation is reduced to

(a1 — ¢t (ay, ag))2 = (az — ci(al,ag))z. (3.24)
Using the explicit expression and (|1.25] -7 we find
Aa 1 8Aa
al—ci(al,az):—7$§ (Aa)Q—i—F,
A X (3.25)
a 1 8Aa
ag—cﬁl(al,ag):7¥§ (Aa)2+F~

Inserting (3.25) into , we infer

This enters in contradiction with -
Case a € Agyc and m € N* : We fix the notations k € {1,2} and k € {—,+} such that all = [3 M. The

equation ([3.23) is reduced to

(aE"’“] —ct (a,[f’_k]ya[_klﬂ))_z = (a[_kL — Cm (af_k]»a[i>>_2 : (3.26)

Using the explicit expression and (3.15] -7 we find

2A
a7 — i (B, al) = ()M AT f(Aa)2 + 2

m

n (3.27)
2
a[fL -k (a,[f’_k], a[fL) = (=DFAaF 1/ (Aa)? + ?2&.
Inserting ([3.27) into (3.26)), we infer
2Aa
Aa (Aa)2 + m2 =0.

This enters in contradiction with ((1.25). The proof of Proposition is now complete. O

Putting together (3.2)), (3.3)), Proposition and Theorem provides the existence part of Theorem
We denote

€ (@) 5 € (=0,6) > (m(5,0), Fm(s,0) ) ERX XG0 00, (3.28)
the corresponding real-analytic local curve satisfying
d
m(0,a) =Tm(a) and —7m(s, a) = 7.
ds s—0

We shall now study the pitchfork bifurcation property using the second part of Theorem Notice that for
any ce R, ke {l,2}, ke {—,+}, h= (h[i],h[f], h[,l],h[f]) eXso  and h = (h[i],h[f], h[,l],ft[f]), we have

m,even

d?F,Lk](a,qO)[ ] By (h[’“h[k]) (3.29)

and
d3F = 0. (3.30)

In what follows, we denote the Hessian
Hep(a) 2 d2F (a,2m(a),0).
By construction of 7 in (3.18)) and by virtue of (3.29)), denoting

al!! —Cm(a) ’
Ea% - cm(a)g2

W 2 (a[}] _Em(a))ﬂ ; (3.31)
(a,z] — Em(a))7



we have

Ve €T, He,()[Fo,70)(z) = Wo 9 (cos®(mz)) = —mw, sin(2mz). (3.32)
The formula (3.32)) gives that the function Hz,_, (q)[70, 7o] is localized on the Fourier mode 2m. Thus, from (3.19),

we infer
(Y0, My (a)[Fo, 0] ) = 0, ie.  Hep(a)lFo,70] € R (Lep(a)) -
The Theorem [A]] allows to conclude that the bifurcation is always of pitchfork type and we have, using in

particular (3.30)), that

d_ d? _ Y0, Hep(a) [P0, O]
d—cm(s,a) =0 and 752° Cm(s,a) = { 5L ( )7 v> , (3.33)
s s=0 s=0 <y07( c C)|c=cm(a) [7’0]>
where 0y € X3 .., is a solution of
Lz, (a)[00] = Hep(a) [0, 7ol
According to (3.6) and (3.32)), we must take (up to an element of the kernel)
0o(z) = 2m?>M;,} (a,em(a))wo cos(2mz). (3.34)

Now we shall precise, asymptotically in m, if the bifurcation is supercritical of subcritical, namely if the sign of
the second term in (3.33)) is positive or negative. We take the indices k € {1,2} and x € {—, +} such that

¢ (]
¢m(a) AR

Using for instance the comatrix formula and the asymptotic (3.8)), we find that

M{ri (a,Em(a))

(“E] _ Em(a))fl 0 0 0
o 0 ( 2 Em(a))‘l 0 0
m—oco m? 0 0 (a[_l] ffm(a)>_1 0 (3.35)
0 0 0 (a[_m —Em(a))_l
[k] — Cml(a B
+0 ( : mrg( )>

Combining (3.34)), (3.31) and the asymptotic (3.35)), we infer

(i)

(a)
2 _ =
alt’ —eml(a
Oo(z) = 2 ( M ( )) _3 | cos(2mzx) + O (3.36)
m—co (a[_l] Em(a)) m
-3
(a[fl em(a))
Using one more time with and (| -7 we find
—4
(ag _ Em(a)) B y
() —em@) | (k! — ()
Hem(a)[T0, O0)(x) = -2 _4 | sin(2mz) + O
m— oo . (a[_l] —Em(a)> m
—4
(a[_Q] Em(a)>
As a consequence,
[k] Em(a) -5
(Y0, Mz (a) [P0, 00]) = -2 Z Pt (a —Em(a))f5 + ( - ) (3.37)
pe{1,2}
se{—,+}
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Finally, gathering (3.33)), (3.37) and (3.22), we get

d2

_ 2
@cm(s,a)

- _~ (aLk]—Em(a))73+O (

m—oco  m

s=0

We deduce that
supercritical, if Gy (a) > al,
the bifurcation is .
subcritical,  if ¢m(a) < a¥.

In particular, by virtue of (3.10)), (3.16]) and (3.17)), in the cases a € Asym and a € Agyc, one finds the asymptotic
local hyperbolic structure as described in Figures [2] and 3] This concludes the proof of Theorem

4 Large amplitude solutions

The aim of this section is to apply the analytic global bifurcation theorem (Theorem to extend the local
solution branches obtained in the previous section. This continuation argument allows us to follow these
branches beyond the neighborhood of the bifurcation point and to describe qualitative properties of their global
behavior. This provides the proof of the global bifurcation result stated in Theorem

We denote
m(a, c) £ min (mi(a),ma(a, c)),
where
£ i in |#[2] =0 A ’
mi(a) £ min min|#?(r) ~ () + Aal,
mz(a, c) £ min min ’f,[f] (z) + a,[f] _ c‘ )
:ee{{—l:j—}} v€T

s,0
m,even

We consider the following open subet of R x X

V(a) 2 {(c, 7 eRx X% st mla,c) > o}.

m,even

In the sequel, we shall denote for any p > 0

Bfﬁg(p) - {7z < Xf’l"l‘?‘even s.t. ||7‘V| 8,9 g p}

Let us consider the following closed and bounded set defined for any n € N* by
Kn(a) 2 {(c, 7)€ [~nyn] x B (n) st. m(a,c) > %}.
By construction, the following equality holds

V(a)= |J Knl(a).

neN*

We denote

We have the following result.
Proposition 4.1. Leta € A, s > % and o > 0. Then, the following properties hold true.
(i) We have the inclusion €™ (a) C V(a), where €™ (a) is the local curve constructed in (3.28)).

local local

1) For any (c,7) € V(a) with F(a,c,7) = 0, the operator d=F(a,c,7) : X%° — Yia Cl,d‘; is Fredholm with
y m,even ’
index zero.

(iii) For any n € N*, the set J;,(a) is compact in R x X5

m,even*
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Proof. (i) We come back to the notation (3.28) and denote

»im

Fm(s, @) 2 (Mt (s,0), 72 (5, 0), 7l (s, ), 72 (s, a) )

Since Aa > 0 and ¢y (a) & {a[i]7a[+2},a[,1],a[2]

any kK € {—,+} and any z € T,

} , then, up to taking ¢ small enough, we get for any k € {1, 2},

m

2 (s, 0)(x) — (s, a)(a) + Aa| > Aa— O3 > 0,

K

7kl (s,0)(2) + = Gun(s, )| > [al¥! — Gm(a)| — €3 > 0.

This proves the inclusion €™ (a) C V(a).

local

(73) Let (¢,7) € V(a) with F(a,c,7) = 0. Differentiating (3.1)), we can write

d;F(a,c,f) = If +K7t7

where
(7 +al = c) 0 0 0
L 0 (7 +df =) o 0 0
T 0 0 (f[_” +d-¢c)a, 0
0 0 0 (#2] + o c) 0,
and
a7 0 0 0
0o a7 o 0
K £ M; + Ko, M; £ vt )
0 0 o o,/ 0
0 0 0 9,

with Ky as in (3.4). Since (¢, 7) € V(a), then in particular

Vke {1,2}, Vee{—+}, VeeT, @) +aH —c#o.

s,0
m,even

As a consequence, the operator I : X — Yon, Lo s an isomorphism. Now, recall that the compactness of

Ky :X8o —— Yf,;(l);ﬂ has already been proved in the previou section. Let us now prove the compactness of

m,even
-1 . . .
M X507, 0 = Y oda. Take (Fp)men € (X57,..,)" bounded in X3¢ . By compactness (Rellich’s Theorem) of
the injection X357 - — X§ Lo we can find a converging subsequence, namely (m,),en € NV and 7, € X Lo
such that
~ ~ : s—1,0
Tm, p—>~>oo Too 1IN Xm,even.

For any p € N, we introduce
by £ Mylim,] € Vi ki

m,odd"*

Denoting
- (7‘57”7?‘z[;27+]a7’1[ol’7]»ﬁ[92’7]> 7 (4.2)

we can write
yp = (a7, 0, el 0, ) o, 7 Blr2 )

Given s > %, the norm || - ||s—1,, is a submultiplicative (even if the space is not a Banach algebra because of the
parity). Therefore, for any p,q € N, one has

k] ( xlk, -k,
19 = Yalls—1,, = ey Haﬂ'u (Tin:] - 7,7[%;{]) -1
KE{— 4} s—1,0
< =[F] H slk,x] _ xlk,K] 4.3
< e [ il ol 4.3
ref{—+} RE{—,+}
= ||'F||8,U||7:mp - fqustU.

m,even’ m,even®

The sequence (fmp)p N being convergent in X537 17 it is of Cauchy-type in X571 . Combined with the estimate

(4.3), we deduce that the sequence (yp)pen is of Cauchy-type (and thus convergent) in the Banach space Yf;},dg
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. —1,0 - . . .
As a consequence, the operator dyF(a,c,7) : X&7. . — Y .40 is a compact perturbation of an isomorphism.

m,even

Therefore, it is a Fredholm operator with index zero.
(ii7) Let (cm,Tm)pmen € (%fn(a))N. By construction of the set %, (a) in (4.1, we have

. 5.0 N
(Cm)mGN € [_nvn]Nv (rm)mGN € (Brﬁ (TL)) (44)
and
Vm eN, Fla,cy,fm) =0. (4.5)
From the first property in (4.4]), we can apply the Bolzano-Weierstrass Theorem and find the existence of

Coo € [—n,n] and of a subsequence (my,),en such that

lim ¢, = Coo-
p—oo P

From the second property in (4.4) and the weak compacity of By, (n), there exists 7o € X37, . such that, up
to an other extraction,

Tm, pjoo Foo 10 XP7 .-
Also, using one more time Rellich’s theorem (and uniqueness of the weak limit), we find

3 / ~ ~ : s',o
VS <s <s, T, pjc Foo in X027 .

Since s’ > %, the pointwise convergence holds. Therefore, we can pass to the limit p — oo in the corresponding
subsequence of (4.5) and obtain
F(a,co0,T00) = 0.

Our next goal is to show that the sequence (7,,)pen is of Cauchy-type (and thus convergent) in the Banach
space X5 . Let p,q € N. By virtue of (4.5) we have

m,even
F (a,cmp,fmp) =0=F (a,cmq,fmq) .

From ({3.1)), using the notation (4.2)), substracting the equations, we get for any k € {1,2} and any x € {—, 4},
9, (ﬂ)k,n] _ f([]k,ﬂ]) — Ilk’fﬁlhq _~_I2’€,H7P7q7

where

(cmq — Cm,, + e — flﬁ’“])

k,k,p,q A ? _1)29— Lilas]
L eorl K] _ lonl K] _ 2 s(1atE,
p + ag Cm, | | Tq + ak Cm, | ae{1,2}
se{—,+}
—1 (xSl _ o]
Thrpa s Z (71)04896 (rp — T .
2 -n N (k] | TH]
ae{1,2} Tq +ax —Cm,
se{—.+}
By construction of %, (a), we have
; in [7[kon] (k] _ 1
Vp € N,  min - min ‘rp () +ap! —cm,| = 5.
REl— ot}
Hence, given s —1 < s’ < s
k,k,p,q slk,w] _ kK] —1x[a]
T < _ ’ _
H 1 1o SE <|Cmp Cmq| +{|7p Ty o aeren{(?)%}) o, Ty s
< _ wlki] _ lkr] H #loss]
~n,a (‘Cmp CmrJ| + Tp Tq Py argl{??g} p 5,0

se{—,+}

,,,vgc,n] . fc[lk,n]

Sn,a |Cm,] - Cmq’ +

s',o
and
k,k,p,q —1 (xlo,s] _ o]
T < max HB (r ol
H 2 s—1,0 ~a aef{l,2} ® p a s—1,0
se{—,+}

Swa e [k gl
ae{1,2}
se{—,+}
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The sequences (cmp) and (7, )pen being convergent in R and Xsho . respectively, in particular they are of

peEN m,eve
Cauchy-type in the corresponding spaces. This gives the desired result. Thus, for any n € N*, the set %, (a) is
compact in R x X3, . This ends the proof of Proposition O

With this in hand, we can conclude.

Proof of Theorem[I.3 The Proposition [I.1] allows to apply the Theorem [A-2] which provides the existence of a

global continuation curve €3, | (a) satisfying

E™ (a) CE™ (a) 2 {(zm(s,a),fm(w)), s € R} C V(a) N F(a,- )" ({0}).

local global

Moreover, the curve €5, . (a) admits locally around each of its points a real-analytic reparametrization. In

addition, one of the following alternatives occurs

(A1) (Loop) There exists Tyy(a) > 0 such that

Vs €R, Tm(s+Tm(a),a) =Cm(s,a) and Fm (s + Tm(a),a) = Fm(s, a).

(A2) One the following limits holds (possibly simultaneously)

1
Bl ) 1. = O-
e (Blow-up) sotbe T+ [em (s, a)| + [|[Fm(s, a)||s,0

e (Collision of the boundaries) lim  min min |72 (s,a)(z) — #lL*)(s, a)(x) + Aa| = 0.
s—+oo ke{—,+} z€T

. N . [ _ % _
e (Degeneracy) slirinoo k%{l}%}} min ‘rm (s,a)(x) + ap! —Cm(s,a)| = 0.
re{—,

This achieves the proof of Theorem O

A Toolkit in bifurcation

This appendix summarizes the bifurcation theory underlying our analysis. We begin with the classical Cran-
dall-Rabinowitz local bifurcation theorem [14] (see also [26] p. 15]), stated here in an analytic framework that
is better suited to our purposes. In addition, we incorporate supplementary hypotheses that guarantee the
occurrence of a pitchfork-type bifurcation and the effective orientation of the branch. For further background
and detailed discussions, we refer the reader to the works of Shi [42] and Liu-Shi [31].

Theorem A.l. (Analytic local bifurcation + pitchfork property)
Let X andY be two Banach spaces. Let (pg, o) € Rx X andV be a neighborhood of (po,xo) in Rx X. Consider
a real-analytic function F': V —'Y and denote for (p,xo) € V,

L, = d.F(p, o), H, & d2F(p,x0), Cp 2 d3F(p,x).
Assume the following hypothesis.
(L1) ¥(p,w0) €V, F(p,z0) =0.
(L2) The operator Ly, is a Fredholm with zero index and one dimensional kernel

dim (ker(Lp,)) = 1 = codim(R(L,,)), ker(Lp,) = span(vy).

(L3) Transversality:
(OpLp)lp=po [Vo] & R(Lp,)-

If we decompose
X = span(vg) @ Z,

then there exist two real-analytic functions
p:(—0,0) = R and z:(—0,0) = Z, with 6 >0,

such that
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and the set of zeros of F' in'V is the union of two curves
VOF{0}) = {(p,z0) € V}UGcar  Glocw = {(p(s), w0 + sv0 + 52(s)), |s| <d}.

Assume in addition that
Hpo [Vo, Vo] S R(;Cpo) .

Then p'(0) = 0 and if we denote
R(Ly,) = ker(l) for some [ € Y,

then we have
_ 3(1, Hpy[vo,00]) — (L, Cpy[vo, vo,vo])

3<l7 (ap‘cp)lp:po [V0]> 7

»"(0)
where Oy is a solution of
Ly, [00] = Hp [vo, vo]-

If p"(0) # 0, we say that the bifurcation is of pitchfork-type. More precisely, the condition p”(0) > 0 (resp.
p"(0) < 0) is called supercritical (resp. subcritical) bifurcation.

We conclude by recalling a global bifurcation result that complements the preceding local analysis and allows
the continuation of solution branches beyond the small-amplitude regime. More precisely, we state a classical
global bifurcation theorem, originally due to Dancer [I5] and later developed in the monograph of Buffoni
and Toland [9 Thm. 9.1.1]. This result provides a framework for extending locally constructed branches and
characterizes the possible global behaviors of the solution set, such as unbounded growth or the occurrence of
loops. For convenience, we adopt the formulation given in [IT, Thm. 4], which is particularly well suited to our
setting.

Theorem A.2. (Analytic global bifurcation) Let X,Y,V, F as in Theorem such that the assumptions
(L1), (L2) and (L3) are satisfied. Assume also the following additional properties.

(G1) For any (p,x) € V such that F(p,x) =0, the operator d, F(p,x) is a Fredholm operator of index 0.
(G2) There exists (Kp)nen such that

e FEzhaustive property

V= UKH.

neN
e For any n € N, the set K, is bounded and closed in R x X.
e For any n € N, the set K, N F~'({0}) is compact in R x X.

Then there exists a unique (up to reparametrization) continuous curve €y opa such that

Grocal C Crrova = {(p(S),x(S)), s € R} c VnF{o}).

Moreover, €yop. admits locally around each of its points a real-analytic parametrization. In addition, one of
the following alternatives occurs

(A1) there exists T > 0 such that
Vs eR, p(s+T)=np(s) and x(s+T) = z(s).
(A2) for any n € N, there exists s, > 0 such that

Vs >s,, (p(s),x(s)) & Kn.
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