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Abstract
We consider the Kelvin-Helmholtz system describing the evolution of a vortex-sheet near the circular

stationary solution. Answering previous numerical conjectures in the 90s physics literature, we prove an
almost global existence result for small-amplitude solutions. We first establish the existence of a linear
stability threshold for the Weber number, which represents the ratio between the square of the back-
ground velocity jump and the surface tension. Then, we prove that for almost all values of the Weber
number below this threshold any small solution lives for almost all times, remaining close to the equi-
librium. Our analysis reveals a remarkable stabilization phenomenon: the presence of both non-zero
background velocity jump and capillarity effects enables to prevent nonlinear instability phenomena,
despite the inherently unstable nature of the classical Kelvin-Helmholtz problem. This long-time exis-
tence would not be achievable in a setting where capillarity alone provides linear stabilization, without
the richer modulation induced by the velocity jump. Our proof exploits the Hamiltonian nature of the
equations. Specifically, we employ Hamiltonian Birkhoff normal form techniques for quasi-linear sys-
tems together with a general approach for paralinearization of non-linear singular integral operators.
This approach allows us to control resonances and quasi-resonances at arbitrary order, ensuring the
desired long-time stability result.
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1 Presentation of the problem and main result

The Kelvin-Helmholtz (KH) equations is a classic of fluid dynamics, modeling the intricate behavior of vor-
tex sheets at the interface between fluids with different velocities. Since their introduction by Lord Kelvin
and Hermann von Helmholtz in the nineteenth century [44,45,65,66], these equations have provided crucial
insights into fundamental hydrodynamic phenomena, from the formation of ocean waves to atmospheric
turbulence. The classic KH problem addresses the instability of a plane vortex sheet, where the jump in
tangential velocity across an interface drives the system linearly, generating the well-known instability that
defines Kelvin-Helmholtz phenomena. Of particular interest is the interplay between background velocity
jump (b) and capillarity effects (γ), which together determine critical stability thresholds and equilibrium
states. This work explores the mathematical structures emerging from these interactions, with special focus
on the Weber number β≜ b2/γ, which naturally emerges in the equilibrium spectrum and governs the sys-
tem’s stabilization properties.

We consider a planar Euler system for two irrotational fluids with same density (constant equal to 1)
separated by an interface Γ(t ) homeomorphic to a circle and parametrized by z(t , ·) :T→R2. This interface
divides the plane into two open components Ω±(t ) with Ω−(t ) bounded and Ω+(t ) unbounded. Given two
functions f ± :Ω± (t ) →Rwe define �

f ±�
≜ f −− f +.

The evolutionary system is thus composed of the following equations

u±
t +u± ·∇u±+∇p± = 0, inΩ±(t ),(

zt −u±|Γ(t )
) ·zx = 0, at Γ(t ),�

p±�∣∣
Γ(t ) = γk (z) , at Γ(t ),

u+(t , x) → 0, as |x |→+∞,

∇·u± = 0, inΩ±(t ),

∇⊥ ·u± = 0, inΩ±(t ).

(1.1)

In the above set of equations, the quantities u±, p± are respectively the velocity field and pressure inside the
domainΩ±. The parameter γ⩾ 0 is the surface tension coefficient and k (z) is the curvature defined by

k (z)≜−z⊥
x ·zxx

|zx |3
·

The last equation in (1.1) implies that the vorticity distribution ω is localized on the curve Γ(t ) at time t ,
namely

ω(t , x) =ω(t , x)δ
(
x −z(t , x)

)
, ω≜

�
u±� ·zx , x ∈R2, x ∈T. (1.2)

In the case in which

z (t , x) = r (t , x)

[
cos(x +Ωt )
sin(x +Ωt )

]
, (t , x,Ω) ∈ I ×T×R, r (t , x)≜

√
1+2η (t , x), (1.3)
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where I is a given interval of time, the system (1.1) was recast, in [59], as the Contour Dynamic Equation
(CDE) 

ηt =Ωηx − 1

2
H

(
η
)
ω,

ωt =Ωωx −
(ω

2
D0

(
η
)
ω

)
x
−γ(

K
(
η
))

x ,
(1.4)

with

H
(
η
)
ω≜

∫
T

ηx (x)

[
1−

√
1+2η(y)
1+2η(x) cos

(
x − y

)]+√
1+2η (x)

√
1+2η

(
y
)

sin
(
x − y

)
1+η (x)+η(

y
)−√

1+2η (x)
√

1+2η
(
y
)

cos
(
x − y

) ω
(
y
)

dy,

D0
(
η
)
ω≜

∫
T

1−
√

1+2η(y)
1+2η(x) cos

(
x − y

)
1+η (x)+η(

y
)−√

1+2η (x)
√

1+2η
(
y
)

cos
(
x − y

) ω(
y
)

dy,

K
(
η
)
≜
ηxx − (1+2η)−3

(
ηxp
1+2η

)2

(
1+2η+

(
ηxp
1+2η

)2) 3
2

·

(1.5)

Throughout the document, we use the notation∫
T

f (x)dx ≜
1

2π
p.v.

∫ π

−π
f (x)dx.

We refer the reader to [59] for a derivation of (1.4) from (1.1). We also warn the reader with the change of
notation for the surface tension and mean vorticity with respect to [59]. Also, here we write the system in a
rotating frame with angular velocityΩ but one can easily follow the changes. An explicit computation shows
that

for any b ∈R,
(
η,ω

)= (0,b) is a solution of (1.4). (1.6)

Let us define the background velocity jump

b≜
∫
T
ω (x)dx,

which is time independent according to (1.4). We can define the invertible change of variables

ψx ≜ω−b, ψ= ∂−1
x (ω−b) . (1.7)

The change of variables (1.7) allows us to determine the evolution equation for ψ modulo a real, time-
dependent constant, which is

ψt =−ψx +b

2
D0

(
η
)[
ψx +b

]−γK
(
η
)+ c (t ) . (1.8)

Since the system (1.4) depends only on
(
η,ψx

)
, the projection onto the zero-th mode in (1.8), which includes

the constant c (t ), does not influence its dynamics. Therefore, we disregard c (t ) and we impose that ψ
belongs to the homogeneous Sobolev space Ḣ s (T;R)≜ H s (T;R)

/
R , where H s (T;R) denotes the classical

Sobolev space of periodic real-valued functions, see Section 3. We can now rewrite the system (1.4) in terms
of the variables

(
η,ψ

)
using (1.8) and get

ηt =Ωηx − 1

2
H

(
η
)[
ψx +b

]
,

ψt =Ωψx −
(
ψx +b

2
D0

(
η
)[
ψx +b

])−γK
(
η
)

.
(1.9)
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Notice that
H (η)[ω](x) = 2BR(z)[ω] ·z⊥

x (x)

= 2
∫
T

(z(x)−z(y))⊥ ·z⊥
x (x)

|z(x)−z(y)|2 ω(y)dy

= 2
∫
T

(z(x)−z(y)) ·zx (x)

|z(x)−z(y)|2 ω(y)dy

=
∫
T
∂x

[
log

(|z(x)−z(y)|2)]ω(y)dy.

(1.10)

Therefore, the first equation of (1.9) preserves the average and the natural phase space for η is

H s
0 (T;R)≜

{
η ∈ H s(T;R) s.t.

∫
T
η(x)dx = 0

}
.

In the absence of capillarity (γ = 0), it is now understood that the problem is ill-posed in Sobolev reg-
ularity [28, 53, 68], but it admits weak solutions [35], while one has to require at least analytic regularity
on the initial data in order to have a satisfactory local well-posedness theory [47, 63, 64]. It is also well-
established [54, Chap. 9.3] that the presence of a background velocity jump (b) across the interface drives
linear instability in the system, generating the classical Kelvin-Helmholtz phenomena. Conversely, surface
tension (γ) exerts a stabilizing effect at the linear level, enabling local-in-time solutions to the full nonlinear
equations [3–5, 32, 51]. When stabilization is induced solely by capillarity, the existence time is limited to
T ∼ ϵ−1, where ϵ represents the magnitude of the initial datum. Besides, in the physics literature [48] the
authors perform several numerical simulations for (1.4) varying the Weber number W e which corresponds,
up to a period factor of 2π, with the parameter

β≜
b2

γ

that captures the interplay between the previous two mentioned opposite phenomena. In particular, de-
spite the slightly different geometry considered, it is numerically conjectured in [48] that the behavior of the
system below a critical Weber number, which is very close to (1.11), "...is quite predictable by linear theory,
even over long times...", [48, p. 1939]. The aim of our work is to give a rigorous mathematical proof of this nu-
merical conjecture. To do so, we exploit the Hamiltonian nature of the quasi-linear system (1.9). Conversely
to the classical formulations using the Dirichlet-Neumann operator, here the system is quite explicit and
related to singular integral operators, see (1.5). By introducing a novel framework that combines the Hamil-
tonian Birkhoff normal form procedure for quasi-linear Hamiltonian systems [25] with a generalization of
the paralinearization method for singular integral operators developed in [17], we prove that the lifespan
extends to T ∼ ϵ−(N+1) for any N ∈ N. This result enables us to establish stability way beyond the classical
local lifespan results of [3–5, 32, 51], leading to what we refer to as almost global well-posedness. The precise
statement is given in the following theorem.

Theorem 1.1 (Almost global existence of nearly circular vortex-sheets). Let

0 <β1 <β2 < 4
(
2+p

3
)

. (1.11)

There exists a zero measure set B ⊂ [
β1,β2

]
such that for any values γ ∈ (0,∞) of the surface tension and b ∈R

of the background velocity jump with
b2

γ
∈ [
β1,β2

]
\B,

for any N ∈ N, there exists s0 > 0 such that for any s ⩾ s0 there exist ε0,c,C > 0, such that for any 0 < ε < ε0

and any initial datum(
η0,ψ0

) ∈ H
s+ 1

4
0 (T;R)× Ḣ s− 1

4 (T;R) , with
∥∥η0

∥∥
H

s+ 1
4

0 (T;R)
+∥∥ψ0

∥∥
Ḣ s− 1

4 (T;R)
⩽ ε,

the system (1.9) admits a unique classical solution(
η,ψ

) ∈C 0
(
[−Tε,Tε] ; H

s+ 1
4

0 (T;R)× Ḣ s− 1
4 (T;R)

)
, Tε⩾ cε−(N+1),
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with initial datum
(
η0,ψ0

)
and size

sup
t∈[−Tε,Tε]

(∥∥η (t , ·)∥∥
H

s+ 1
4

0 (T;R)
+∥∥ψ (t , ·)∥∥

Ḣ s− 1
4 (T;R)

)
⩽Cε.

Remark 1.2. Let us make the following remarks about the previous theorem.

1. The almost-global well-posedness result of Theorem 1.1 cannot be achieved in settings where capillarity
serves only a stabilizing parameter, i.e. when β= 0. The Weber number β, which emerges naturally in
the equilibrium spectrum

{
ωγ,b( j )

}
j∈Z∗ (see (1.12)), captures the interplay between capillarity stabi-

lization and Kelvin-Helmholtz instability. Remarkably, the incorporation of the (physically relevant)
interplay between background velocity jump and capillarity is the key factor that generates stability,
in particular we can pass from a Sobolev ill-posed problem (γ= 0) to a almost-global well-posed one
when γ is arbitrarily small and b2 is comparable. The Weber number β modulates the linear frequen-
cies ωγ,b( j ) in a non-trivial fashion and enables us to exclude resonances

ωγ,b( j1)± . . .±ωγ,b( jN ) ̸= 0

taking β outside a suitable zero-measure resonant set B. The non-resonance condition is a fun-
damental requirement for implementing the Hamiltonian Birkhoff normal form procedure in PDEs
[7–11, 14–16, 25, 27, 37, 38, 49].

2. Referring again to the work [48] the authors notice, at page 1939, that

We had hoped to see some repartition of energy from the k = 1 mode to smaller scales over large times. How-
ever, for W e = 10.0 only a very slow increase is observed, if any, of the width of the active spatial spectrum.

This unexpected localization phenomenon is consistent with our analysis. Indeed we prove that, after
a suitable change of variables, each Fourier mode u j can exchange energy only with u− j for very
long times, as we shall explain later. This is a consequence of the non-resonance conditions and the
Hamiltonian structure of the equation which gives the conservation of super-actions (see (1.19)).

3. We identify a threshold for the linear stability in (1.11).

This constraint is imposed to ensure that the spectrum of the linearized equation at the trivial state(
η,ψ

)= (0,0) is purely imaginary (see Section 2.2), a necessary condition for implementing the Hamil-
tonian Birkhoff normal form argument. While this condition can be relaxed by restricting the phase
space to m-fold solutions for sufficiently large m, such a restriction significantly narrows the class
of admissible solutions. For more details, we refer the reader to Section 2.2 and [59]. Although one
could adapt the following analysis by verifying the m-fold preserving properties of the transforma-
tions along the scheme, following a similar approach to [42].

4. The parameter Ω in (1.4) represents the speed of rotation of the reference frame. Since the Kelvin-
Helmholtz problem is invariant under rotations, Ω can be chosen arbitrarily without altering the
shape of the solutions. We choose Ω as in (2.21). This choice simplifies some computations and
does not affect generality.

5. Global-in-time solutions with specific structures can be constructed, as demonstrated in [59], where
we identified families of globally defined, uniformly rotating solutions. We also refer to [29, 30, 40, 56,
57, 59, 60, 67] for the construction of families of steady solutions in slightly different settings. How-
ever, it remains unclear whether the almost global existence solutions stated in Theorem 1.1 are ac-
tually global in time. The quasi-linear structure of the Kelvin-Helmholtz system, combined with the
absence of dispersion due to the periodic boundary conditions, makes the global existence of the
Cauchy problem currently out of reach.
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Ideas of the proof While the Dirichlet-Neumann operator approach pioneered by Zakharov, Craig, and
Sulem in [34, 69] has become standard for Water-Waves problems-and also employed to the two phase set-
ting [51]- we employ an alternative formulation. Following previous works such as [31, 33], we utilize the
Birkhoff-Roth integral operator formulation, which exploits the Dirac-δ structure of the vorticity (1.2) in
conjunction with the Biot-Savart law to express the KH equations as a CDE. A crucial aspect of our ap-
proach is establishing that the KH equations thus derived possess a Hamiltonian structure (Section 2.1),
which is the following [

ηt

ψt

]
= J∇H(η,ψ), J =

[
0 −1
1 0

]
,

where the Hamiltonian is related to the pseudo kinetic energy Eb, the length L of the free boundary and the
angular momentum M through

H(η,ψ)≜Eb(η,ψ)+γL(η)+ΩM (η,ψ).

In different geometrical contexts the Hamiltonian structure of the KH system was already presented by
Benjamin-Bridges [12, 13]. Once this Hamiltonian formulation is established, we are methodologically
committed to working with the specific equations that arise from it, as any deviation would compromise
the Hamiltonian property, which is essential for our analysis. This Hamiltonian structure is a fundamen-
tal requirement for obtaining the almost global well-posedness result Theorem 1.1 using the Hamiltonian
Birkhoff normal form of [25]. Since we are looking for a stability result near the trivial state

(
η,ψ

) = (0,0), a
quantity of interest is the linearization at this stationary solution. The linearized KH system there writes

[
ηt

ψt

]
= Lγ,b (D)

[
η

ψ

]
, Lγ,b (ξ)≜

 0 − |ξ|
2

γ |ξ|2 − b2

2 |ξ|− (
γ−b2

)
0

 .

The associated spectrum is given by λ±
γ,b(ξ) =±iωγ,b (ξ) , with

ωγ,b (ξ) =
√
γ |ξ|

2

√
|ξ|2 − β

2
|ξ|+β−1, β≜

b2

γ
· (1.12)

Here we see appearing the parameter β that modulates the equilibrium frequencies. This parameter is ho-
mogeneous to a wave number (inverse of a length). The modulation is fundamental for avoiding resonances
later in the Hamiltonian Birkhoff normal form. Let us mention that the modulation of the linear frequencies
by an external or geometrical parameter has been used to avoid resonances and construct quasi-periodic
solutions for fluid models, see [6,20–22,26,41–43,46,61]. Observe thatωγ,b(ξ) is real for any |ξ|⩾ 1 provided
that

0 <β< 4
(
2+p

3
)

.

There emerges our linear stability threshold.This means that one gets linear stability for typically small os-
cillations at small scales where the stabilizing effects of the surface tension are dominant. Also notice that
the asymptotic of the linear frequencies is superlinear, namely as |ξ|→∞

ωγ,b(ξ) ∼
√
γ

2
|ξ| 3

2 .

Our purpose is to prove a nonlinear stability result near the circular interface corresponding to
(
η,ψ

)= (0,0).
To do so, we are able to obtain a suitable energy estimate of the form, for any N ∈N,

∥∥(
η,ψ

)
(t )

∥∥2
s ⩽C (s)

(∥∥(
η,ψ

)
(0)

∥∥2
s +

∫ t

0

∥∥(
η,ψ

)
(τ)

∥∥N+1
s0

∥∥(
η,ψ

)
(τ)

∥∥2
s dτ

)
, ∀0 < t < T, (1.13)

where we used the notation ∥∥(
η,ψ

)∥∥
s ≜

∥∥η∥∥
H

s+ 1
4

0 (T;R)
+∥∥ψ∥∥

Ḣ s− 1
4 (T;R)

.

Then, a bootstrap argument allows us to get an existence time of the form T ⩾ cε−N−1 where ε is the size of
the initial datum. Notice that the above estimate is highly non-trivial for two reasons:
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1. The right-hand side contains the same number of derivatives as the left-hand side, which is particu-
larly delicate given the quasi-linear nature of the equations.

2. The integral term exhibits high homogeneity, a non-trivial property considering the quadratic non-
linearity of the equations.

To address the first obstacle, we perform a paralinearization of the Kelvin-Helmholtz system (1.9) together
with a paradifferential reduction procedure to remove the space dependance in the positive order part,
which allows to remain at the same level of regularity. The paralinearization result is given in Theorem 4.2
and writes as follows[
ηt

ψt

]
= OpBW (

Qγ,b
(
η,ψ; x,ξ

)+Bb

(
η,ψ; x

) |ξ|− iVb

(
η,ψ; x

)
IdR2 ξ+ A[0]

(
η,ψ; x,ξ

))[η
ψ

]
+R

(
η,ψ

)[η
ψ

]
, (1.14)

where OpBW (·) denotes the Bony-Weyl quantization in (3.9). Each term of positive order has an explicit
formula with

Qγ,b
(
η,ψ; x,ξ

)
≜

[
0 − |ξ|

2

γ
(
1+f

(
η; x

))(|ξ|2 −1
)− (

b2

2 +wb

(
η,ψ; x

)) |ξ|+ b2

(1+2η) 0

]
,

f
(
η; x

)
≜

(
1+2η(

1+2η
)2 +η2

x

) 3
2

−1 wb

(
η,ψ; x

)
≜

1

2

(((
ψx +b

) 1+2η(
1+2η

)2 +η2
x

)2

−b2

)
,

Bb

(
η,ψ; x

)
≜

1

2

[
Bb

(
η,ψ; x

)
0

B 2
b

(
η,ψ; x

) −Bb

(
η,ψ; x

) ]
, Bb

(
η,ψ; x

)
≜

(
ψx +b

) 2ηx(
1+2η

)2 +η2
x

,

Vb

(
η,ψ; x

)
≜

1

2
D0

(
η
)[
b+ψx

]− b

2
·

(1.15)

The matrix operator A[0] is of order zero and R is a regularizing matrix operator up to a sufficiently large or-
der. We believe that this paralinearization result is itself of interest for maybe future purposes. In our equa-
tions, the Dirichlet-Neumann operator does not explicitly appear, contrary to what occurs in the one-phase
flat Water-Waves problem, see [34] and [52, Chap. 1]. Instead, the equation derived in (2.5) features non-
linearities of convolution type with nonlinear singular convolution kernels. This fundamental difference in
structure necessitates the development of a specialized paralinearization technique adapted to these con-
volution operators—a technique we develop in this work (Section 4) building on the previous work of the
last author and collaborators in [17] for the less challenging case of α-SQG patches. Let us now expose
our method to paralinearize the KH system. The key insight of our approach is that terms that resist stan-
dard paralinearization techniques (i.e. paraproducts, Bony paralinearization formula and composition of
paradifferential operators) share a common structure of convolution type in the form

H
(
η
)

g (x)≜ p.v.
∫ π

−π
K

(
η; x, z

) g (x − z)

z
dz,

where the function K
(
η; x, z

)
exhibits regularity at z = 0 comparable to η. By Taylor expanding the function

z 7→ K
(
η; x, z

)
at z = 0 and applying paraproduct expansions, we derive

H
(
η
)

g (x) =
J∑
j=0

OpBW (
Kj

(
η; x

))
p.v.

∫ π

−π
z j−1g (x − z)dz (1.16a)

+
∫ π

−π
OpBW (

R
(
η; x, z

))
g (x − z)dz + l.o.t., (1.16b)

with J ∈N, for any j ∈ {0, ..., J }, K j being a z-independant function of x and R being a remainder satisfying∣∣R (
η : x, z

)∣∣=O
(
zJ+1

)
. This transformation reduces our analysis to two specific categories of terms, namely

• Terms in the right-hand side of (1.16a): Classical theory (see [62, p. 355]) establishes that for any
j ∈ {0, ...,J},

p.v.
∫ π

−π
z j−1g (x − z)dz = mj (D) g ,

7



where mj represents a Fourier multiplier of order j . Thus, through composition theorems for parad-
ifferential operators, we obtain

OpBW (
Kj

(
η; x

))
p.v.

∫ π

−π
z j−1g (x − z)dz = OpBW (

Kj

(
η; x

)
mj (ξ)

)
g + bounded terms.

• Terms in (1.16b): We leverage the decay properties of R as z → 0 to establish that these terms consti-
tute paradifferential operators of order − (J+1) modulo smoothing operators, as detailed in Proposi-
tion 3.28.

The methodology outlined above is elaborated in detail in Section 4 and formalized in Theorem 4.2, rep-
resenting one of the manuscript’s principal contributions. Our work demonstrates that effective paralin-
earization is possible even when using the Birkhoff-Roth formulation rather than the Dirichlet-Neumann
operator approach. The recovered paradifferential structure in (1.14) exhibits similarities with pure-capillarity
one-phase Water-Waves equations, which allows us to derive several established results concerning vor-
tex sheets, including the necessity of capillarity for system stabilization (cf. [3]). Furthermore, we identify
purely nonlinear, unstable terms characteristic of the KH equations (cf. the term wb in (1.15), which is non-
nil even when b = 0), highlighting the enhanced instability of KH compared to Water-Waves systems. For
further analysis of these distinctive unstable terms, we direct the interested reader to Remark 4.3.
Once the paralinearization obtained, our goal is to remove the x-dependence of the positive order terms in
order to run an energy estimate in the same Sobolev space, namely without loss of derivatives. This is done
through a classical paradifferential reduction procedure requiring to reformulate the problem with complex
variables. Defining the complex coordinates

U =
[

u
ū

]
, u≜mγ,b(D)−1η+ imγ,b(D)ψ, mγ,b (ξ)≜

√
|ξ|

2ωγ,b (ξ)
,

the paralinearized KH system is equivalent to the complex Hamiltonian system

Ut = JC OpBW
(

A 3
2

(U ; x) ωγ,b (ξ)+ A1 (U ; x,ξ)+ A 1
2

(U ; x) |ξ| 1
2 + A[0] (U ; x,ξ)

)
U +R (U )U . (1.17)

In the above system, each Am corresponds a matrix of x-dependent symbols of order m, while R is a ma-
trix of regularizing operators up to any fixed order. Then we follow the Hamiltonian method developed by
the first author and collaborators [25] (see also [17, 18, 24, 39, 55, 58] for non Hamiltonian approach) which
consists to perform a series of transformations:

i we first perform an Alinhac Good Unknown transformation—a nilpotent matrix-valued paradifferential
change of variable introduced in [2, 50]. This transformation eliminates the unbounded terms Bb in
(1.15), which constitute the only unbounded contributions in the one-phase gravity water wave system,
thus proving essential for developing local well-posedness theory in the pure gravity setting;

ii we then diagonalize and reduce to constant coefficients the resulting system at arbitrary order, modulo
smoothing operators (whose regularizing effects depend on the initial data’s regularity). This technique,
initially developed in [18], has become standard for implementing normal-form techniques in quasi-
linear systems [19, 25, 58]. The method involves conjugation with flows generated by paradifferential
operators, where generators are selected based on desired cancellations. We reduce the equation to a
diagonal, paradifferential constant-coefficient form by iterative application on the degrees of the parad-
ifferential operators.

At the end of such procedure we are able to define a transformed, equivalent (in Sobolev) variable

W ≜B (U )U , W =
[

w
w̄

]
that satisfies a constant-coefficient, scalar equation given by

Wt = OpBW
vec

(
i
((

1+v(U ; t )
)
ωγ,b(ξ)+Vb(U ; t )ξ+b 1

2
(U ; t )|ξ| 1

2 +b0(U ; t ,ξ)
))

W +RRR(U ; t )W, (1.18)
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up to a smoothing remainder RRR (see Proposition 6.1 and (3.11) for the definition of OpBW
vec (·)). The trans-

formed equation (1.18) has the crucial property that its para-differential part is in constant-coefficient form.
To overcome the second obstacle Item 2, we aim to implement a Hamiltonian Birkhoff normal form up to
homogeneity degree N . However, unlike the original complex system (1.17), (1.18) no longer possesses the
fundamental Hamiltonian structure. This structure is essential to ensure that certain non-trivial resonant
terms do not contribute to energy estimates, as explained below. Recovering this structure is the purpose
of the Darboux symplectic corrector as designed in [25]. To understand why this correction is needed, we
first examine the role of non-resonance conditions. The non-resonance conditions in Section 2.3 ensure
the exclusion of resonances, meaning that

σ1ωγ,b( j1)+·· ·+σNωγ,b( jN ) ̸= 0

unless the indices (σ1, . . . ,σN ) ∈ {±}N and ( j1, . . . , jN ) ∈ ZN are super-action preserving (see Definition 2.5).
This can happen when N = 2p is even, with

σ1 = ·· · =σp =+, σp+1 = ·· · =σ2p =−,

and either

(i) jℓ = jp+ℓ or (ii) jℓ =− jp+ℓ.

Case (i) corresponds to trivial resonances. The associated monomials in the vector fields of (1.18) take the
form

|u j1 |2 . . . |u jp−1 |2u jp e i jp x .

Proving that these terms do not contribute to Sobolev energy estimates is typically straightforward, as it
suffices to show that their coefficients are purely imaginary. In contrast, case (ii) involves monomials of the
form

u j1 u− j1 . . .u jp−1 u− jp−1 u jp e−i jp x .

These terms couple different Fourier modes, making it more challenging to show that they do not affect
energy estimates. However, if the vector field possesses the strong algebraic property of being Hamiltonian,
these monomials—called super-action preserving—automatically admit infinitely many conservation laws,
known as super-actions. Specifically, for any n ∈N, the quantities

Jn(u)≜ |un |2 +|u−n |2 (1.19)

are conserved. As a consequence, a Hamiltonian, super-action preserving vector field remains transparent
to any Sobolev energy estimate. However, the system (1.18) for W lacks this Hamiltonian structure, pre-
venting direct application of these conservation laws. To overcome this issue, we introduce the Darboux
symplectic correction, as detailed in Proposition 7.1, restoring the necessary structure and allowing us to
exploit these properties effectively. Since the map B (U ) satisfies the hypotheses of [25, Theorem 7.1], we
apply it to obtain a new constant-coefficient equation:

∂t Z0 = iωγ,b(D)Z0 +OpBW
vec

(
i(d 3

2
)⩽N (Z0;ξ)+ i(d 3

2
)>N (U ; t ,ξ)

)
Z0 +RRR⩽N (Z0)Z0 +RRR>N (U ; t )U . (1.20)

This equation is Hamiltonian up to homogeneity N , meaning that

OpBW
vec

(
i(d 3

2
)⩽N (Z0;ξ)

)
Z0 +RRR⩽N (Z0)Z0 = JC∇H⩽N

for some real Hamiltonian function H⩽N . At this point, we begin the algorithmic procedure of reducing the
degrees of homogeneity (see Proposition 7.9). The final outcome is a super-action preserving Hamiltonian
equation of the form

∂t Z = iωγ,b(D)Z + JC∇H (SAP)
3
2

(Z )+ JC∇H (SAP)
−ϱ (Z )+OpBW

vec

(
i(d 3

2
)>N (U ; t ,ξ)

)
Z +RRR>N (U ; t )U . (1.21)

Since the super-action preserving Hamiltonian terms iωγ,b(D)Z , JC∇H (SAP)
3
2

(Z ), and JC∇H (SAP)
−ϱ (Z ) do not

contribute to the energy estimate, we obtain, for small solutions ∥Z∥ ∼ ∥U∥s ≲ ε, the energy bound

d

dt
∥Z∥2

s ≲ ε
N+3,

which allows us to prove Theorem 1.1.
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Structure of the manuscript The Hamiltonian formulation can be found in Section 2.1 while the non-
resonance conditions are proved in Section 2.3. The paralinearization of the system (1.9) is carried out in
Section 4 and the final result is stated in Theorem 4.2. The next step is to reformulate the results using the
complex notation, see Section 5. Then, we implement a reducibility procedure to get rid of the space depen-
dence of the positive order part. This part is now rather classical and the corresponding final result is given
in Proposition 6.1. With this in hand, one can perform the Hamiltonian Birkhoff normal form. It is done in
Section 7.2 and requires non-resonance conditions for frequency vectors composed with the equilibrium
spectrum. Such conditions are checked in Section 2.3 and are the reasons for the introduction of the zero
measure set B.
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mal Forms and Water Waves” (HamDyWater-Wavesa), Project Number: 101039762. ER is supported by PRIN
2020 ”Hamiltonian and Dispersive PDEs” project number: 2020XB3EFL. SS is supported by PRIN 2022 ”Tur-
bulent effects vs Stability in Equations from Oceanography” (TESEO), project number: 2022HSSYPN.

2 Hamiltonian structure and non-resonance conditions

Here we highlight the Hamiltonian nature of the system (1.9). Then, we study the associated linearization at
the trivial solution

(
η,ψ

)= (0,0) and discuss the non-resonance property of the corresponding eigenvalues.
This latter fact is crucial for implementing the Birkhoff normal form in Section 7.

2.1 Derivation of the Hamiltonian formulation

Let us now exhibit the Hamiltonian nature of the Kelvin-Helmholtz system (1.9).

Proposition 2.1. The system (1.9) is Hamiltonian. More precisely, let us consider

H(η,ψ)≜Eb(η,ψ)+γL(η)+ΩM (η,ψ), (2.1)

where Eb(η,ψ), L(η) and M (η,ψ) are the pseudo kinetic energy, the length of the free boundary and the angu-
lar momentum, respectively defined by

Eb(η,ψ)≜−1

4

∫
T

∫
T

(
ψx (x)+b

)(
ψx (y)+b

)
log

(|z(x)−z(y)|2)dydx, (2.2)

L(η)≜
∫
T
|zx (x)|dx, (2.3)

M (η,ψ)≜
∫
T
ψx (x)η(x)dx. (2.4)

Then, the equations (1.9) are equivalent to[
ηt

ψt

]
=

[−∇ψH(η,ψ)
∇ηH(η,ψ)

]
= J ∇H

(
η,ψ

)
, J ≜

[
0 −1
1 0

]
. (2.5)

In addition, the Hamiltonian H is resversible and invariant under translations, namely defining the transfor-
mations

S

[
η

ψ

]
(x) =

[
η

−ψ
]

(−x), tς

[
η

ψ

]
(x) =

[
η

ψ

]
(x +ς),

we have
H ◦S= H = H ◦ tς, ∀ς ∈T. (2.6)

Proof. ▶ The pseudo kinetic part:
We compute the variation of Eb(η,ψ) with respect to ψ. Using integration by parts and (1.10), we get

dψEb(η,ψ)[ψ̂] = 1

2

∫
T

(∫
T

(
ψy (y)+b

)
∂x log

(|z(x)−z(y)|2)dy

)
ψ̂(x)dx
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= 1

2

∫
T

H (η)[∂xψ+b](x)ψ̂(x)dx (2.7)

From (2.7), we deduce

∇ψEb(η,ψ) = 1

2
H (η)[∂xψ]+ b

2
H (η)[1]. (2.8)

Now we turn to the differentiation of Eb(η,ψ) with respect to η. Recall the notation in (1.3). Differentiating
(2.2) with respect to η, we infer

dηEb(η,ψ)[η̂] =−1

2

∫
T

∫
T

(
ψx (x)+b

)(
ψx (y)+b

) η̂(x)+ η̂(y)− (
η̂(x) r (y)

r (x) + η̂(y) r (x)
r (y)

)
cos(x − y)

|z(x)−z(y)|2 dxdy.

By symmetry, we can reduce this expression to

dηEb(η,ψ)[η̂] =−
∫
T

(
ψx (x)+b

)∫
T

(
ψx (y)+b

)1− r (y)
r (x) cos(x − y)

|z(x)−z(y)|2 η̂(x)dy

dx

=−
∫
T

1

2

(
ψx (x)+b

)
D0(η)[∂xψ+b](x)η̂(x)dx,

which implies in turn

∇ηEb(η,ψ) =−ψx +b

2
D0(η)[∂xψ+b]. (2.9)

▶ The length part:
Recall that z(x) = (

1+h(x)
)
e ix with h =√

1+2η−1. Therefore,

zx (x) =
(
hx (x)+ i

(
1+h(x)

))
e ix , |zx (x)|2 = h2

x (x)+ (
1+h(x)

)2.

Thus,

L(η) =
∫
T

√
h2

x (x)+ (
1+h(x)

)2dx ≜ L̃(h).

Differentiating, we obtain

dhL̃(h)[ĥ] =
∫
T

hx (x)ĥx (x)+ (
1+h(x)

)
ĥ(x)√

h2
x (x)+ (

1+h(x)
)2

dx.

Integrating by parts, we get

dhL̃(h)[ĥ] =
∫
T

 (
1+h(x)

)√
h2

x (x)+ (
1+h(x)

)2
−∂x

 hx (x)√
h2

x (x)+ (
1+h(x)

)2


 ĥ(x)dx

=−
∫
T

(
1+h(x)

) (
1+h(x)

)(
hxx (x)−1−h(x)

)−2h2
x (x)(

h2
x (x)+ (

1+h(x)
)2

) 3
2

ĥ(x)dx.

It is easy to see that

(1+h)(hxx −1−h)−2h2
x(

h2
x + (1+h)2

) 3
2

=
ηxx − (1+2η)−3

(
ηxp
1+2η

)2

(
1+2η+

(
ηxp
1+2η

)2) 3
2

= K (η).

As a consequence,
∇hL̃(h) =−(1+h)K (η).

Applying the chain rule, we deduce that

∇ηL(η) =∇hL̃(h) ·∇ηh =−(1+h)K (η) · 1

1+h
=−K (η). (2.10)
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▶ The momentum part:
One readily has

dηM (η,ψ)[η̂] =
∫
T
ψx (x)η̂(x)d x

and, via integration by parts

dψM (η,ψ)[ψ̂] =
∫
T
ψ̂x (x)η(x)d x =−

∫
T
ηx (x)ψ̂(x)dx.

Hence,
∇ηM (η,ψ) =ψx , ∇ψM (η,ψ) =−ηx . (2.11)

Gathering (2.1), (2.8) and (2.11), we get

∇ψH(η,ψ) =∇ψEb(η,ψ)+Ω∇ψM (η,ψ)

=−Ωηx + 1

2
H (η)[∂xψ+b]. (2.12)

Putting together (2.1), (2.9), (2.10) and (2.11) yields

∇ηH(η,ψ) =∇ηEb(η,ψ)+γ∇ηA(η)+Ω∇ηM (η,ψ)

=Ωψx − ψx +b

2
D0(η)[∂xψ+b]−γK (η). (2.13)

Comparing (1.9) with (2.12) and (2.13) concludes the desired result.
▶ Invariances : The properties (2.6) are easily obtained by changes of variables x 7→ −x and x 7→ x +ς. This
ends the proof of Proposition 2.1.

2.2 Analysis of the linearization of (1.9)

Definition 2.2. Let m ∈R, we define the space of Fourier multipliers of order m, Γ̃m
0 , as the space of smooth

functions from R\ {0} to C of the form ξ 7→ a (ξ) such that∣∣∣∂αξ a (ξ)
∣∣∣⩽Cβ 〈ξ〉m−α , ∀α ∈N, |ξ|⩾ 1/2.

Following [59], the linearization of (1.9) around
(
η,ψ

)= (0,0) is given by
ηt =

(
Ω− b

2

)
ηx −

|D|
2
ψ,

ψt =
(
γ |D|2 − b2

2
|D|− (

γ−b2)) η+(
Ω− b

2

)
ψx .

(2.14)

Namely, we can write (2.14) as[
ηt

ψt

]
= Lγ,b (D)

[
η

ψ

]
, Lγ,b (ξ)≜

 i
(
Ω− b

2

)
ξ − |ξ|

2

γ |ξ|2 − b2

2 |ξ|− (
γ−b2

)
i
(
Ω− b

2

)
ξ

 . (2.15)

The eigenvalues of Lγ,b (ξ) are given by

λ±
γ,b (ξ)≜ i

(
Ω− b

2

)
ξ±

√
−|ξ|

2

(
γ |ξ|2 − b2

2
|ξ|− (

γ−b2
)) ∈ Γ̃3/2

0 . (2.16)

We want the eigenvalues in (2.16) to be purely imaginary, this happens if and only if

γ |ξ|2 − b2

2
|ξ|− (

γ−b2)> 0, (2.17)

The condition (2.17) is satisfied for any |ξ|⩾ 1 if

β≜
b2

γ
∈ [0,β+), β+≜ 4(2+p

3) ≈ 14,928...
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Indeed, for |ξ| ∈ [1,2], one has

γ |ξ|2 − b2

2
|ξ|− (

γ−b2)⩾min

{
b2

2
,2γ

}
> 0

for any β> 0. While, for |ξ| > 2, it reduces to

β< min
|ξ|>2

(
|ξ|2 −1
|ξ|
2 −1

)
= 4(2+p

3). (2.18)

Remark 2.3. We consider the restriction in (2.17) for |ξ|⩾ 1. If we further restrict to ξ ∈Z∗, we can improve
β+ from 4(2+p

3) to β+ = 15. However, in Section 2.3, we extend the function λ±
γ,b(ξ) to apply the Delort-

Szeftel Theorem 2.7. We believe that the argument in Proposition 2.8 could be modified to maintain the
slightly less restrictive condition β+ = 15. Nevertheless, to preserve the simplicity of our approach, we do
not pursue this further analysis.

Then we obtain that

λ±
γ,b (ξ) = i

(
Ω− b

2

)
ξ± i ωγ,b (ξ) , ωγ,b (ξ)≜

√
|ξ|
2

(
γ

(|ξ|2 −1
)−b2

( |ξ|
2

−1

))
∈ Γ̃3/2

0 . (2.19)

Notice that we can expand ωγ,b (ξ) and obtain that

ωγ,b (ξ) =
√
γ

2
|ξ| 3

2 − 1√
2γ

(
b

2

)2

|ξ| 1
2 +ωγ,b;− 1

2
(ξ) , ωγ,b;− 1

2
(ξ) ∈ Γ̃−

1
2

0 . (2.20)

In the sequel, we make the following natural choice forΩ

Ω≜
b

2
· (2.21)

Remark 2.4. Already at linear level standard computations show that in order to close energy estimates for
the system (2.14) we need a discrepancy in regularity between η and ψ, namely we can close the energy

estimates on (2.14) in the case in which η ∈ H
s+ 1

4
0 (T;R) and ψ ∈ Ḣ s− 1

4 (T;R), such regularity gap shall persist
at nonlinear level as well. This is not unexpected, and the same behavior is present for the one-phase water
waves problem, both at linear and nonlinear level, cf. [1].

2.3 Non-resonance conditions

In this subsection, we study the non-resonances between the frequencies. This is needed in the application
of the normal form algorithm performed in Section 7.2. Specifically, we prove that there are no resonances
between linear frequencies, except for the super-action-preserving ones, as defined below.

Definition 2.5 (SAP multi-index). A multi-index (α,β) ∈NZ∗ ×NZ∗
is super-action preserving if

αn +α−n =βn +β−n , ∀n ∈N . (2.22)

A super-action preserving multi-index (α,β) satisfies |α| = |β| where |α| ≜ ∑
j∈Z∗α j . If a multi-index

(α,β) ∈NZ∗ ×NZ∗
is not super-action preserving, then the set

N(α,β)≜
{

n ∈N s.t. αn +α−n −βn −β−n ̸= 0
}

(2.23)

is not empty and, since

N(α,β) ⊂
{

n ∈N s.t. αn +α−n +βn +β−n ̸= 0
}

,

its cardinality satisfies
|N(α,β)|⩽ |α+β| = |α|+ |β| . (2.24)

The main result of the present section is the following:
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Proposition 2.6. Let M ∈ N∗ and 0 < β1 < β2 < 4
(
2+p

3
)

. Then, there exist τ,δ > 0 and a zero measure set
B ⊂ [

β1,β2
]

such that for any β ∈ [
β1,β2

]
\B the following holds: there is ν> 0 such that for any multi-index(

α,α′) ∈ (N∗)Z
∗×(N∗)Z

∗
of length

∣∣α+α′∣∣⩽M , which is not super-action preserving (in the sense of Definition
2.5), one has ∣∣ω⃗γ,b ·

(
α−α′)∣∣⩾ ν(

max
j∈supp(α∪α′)

| j |
)τ ,

where
ω⃗γ,b≜

(
ωγ,b

(
j
))

j∈Z∗ .

The rest of Section 2.3 is dedicated to the proof of Proposition 2.6. This latter is a consequence of the
Delort-Szeftel Theorem that we recall here for the convenience of the reader. For its proof, we refer to [36,
Theorem 5.1].

Theorem 2.7. Let d ∈ N∗, r0 > 0 and β1,β2 ∈ R. We denote Br0

(
Rd

) ⊂ Rd the ball centered at the origin and
of radius r0. Consider f : Br0

(
Rd

)× [
β1,β2

] → R a continuous sub-analytic function and ρ : Br0

(
Rd

) → R a
non-zero real-analytic function. We assume the following facts.

1. The function f is real-analytic on {x ∈ Br0

(
Rd

)
s.t. ρ(x) ̸= 0}× [

β1,β2
]

.

2. For any x̄ ∈ B(0,r0) with ρ(x̄) ̸= 0, the equation f (x̄,β) = 0 admit finitely many solutions in
[
β1,β2

]
.

Then, there exist N0 ∈N and α0,δ,C > 0 such that for any α ∈ (0,α0], any integer N ⩾N0 and any x ∈ B(0,r0)
with ρ(x) ̸= 0, we have ∣∣∣{β ∈ [

β1,β2
]

s.t.
∣∣ f (x, y)

∣∣⩽α ∣∣ρ(x)
∣∣N

}∣∣∣⩽Cαδ
∣∣ρ(x)

∣∣Nδ .

First observe that we can write

ωγ,b (ξ) =
√
γ |ξ|

2

√
|ξ|2 − β

2
|ξ|+β−1, β≜

b2

γ
· (2.25)

Notice that ωγ,b(2) =√
3γ is independent of β and that

ωγ,b(5)−p
5ωγ,b(3) ≡ 0.

The above relation shows that there no resonance between the modes 3 and 5. However, the couple (3,5) ap-
pears to be singular in the analysis of the non-degeneracy for the application of the Delort-Szeftel Theorem.
That’s why we need to treat it separately.

Application of Theorem 2.7

The application of Theorem 2.7 allows us to control quasi-resonances at arbitrary order via polynomial
bounds, thus inducing a finite, but recoverable, loss of derivatives. The result we obtain is the following one:

Proposition 2.8. Fix 0 < β1 < β2 < 4
(
2+p

3
)
, A ∈ N and M ∈ N∗. Then, there exist ν0,τ,δ > 0, depending

on A and M, such that for any ν̃ ∈ (0,ν0), there exists a set Bν̃ ⊂ [
β1,β2

]
of measure O(ν̃δ) such that for any

β ∈ [
β1,β2

]
\Bν̃, the following holds: denote n0 = 2, n1 = 3 and for any distinct integers n2, ...,nA ∈N \ {2,3,5}

and any c⃗ = (c0,c1, ...,cA) ∈RA+1 \ {0} with maxa=0,...,A |ca |⩽ M, we have∣∣∣∣ A∑
a=0

caωγ,b(na)

∣∣∣∣⩾ ν̃( A∑
a=0

na

)−τ
. (2.26)

Proof. We denote n⃗ = (n0,n1, ...,nA) ∈ (N∗)A+1 with n2, ...,nA ̸∈ {2,3,5} and distinct, we introduce the nota-
tions

x0 (n⃗)≜
( A∑

a=0
na

)−1

, xa (n⃗)≜ x0 (n⃗)
√

na −1. (2.27)

14



We note that
0⩽ |xa (n⃗) |⩽ 1, for any a = 0, . . . ,A. (2.28)

The condition (2.26) is equivalent to∣∣ f c⃗ (x,β)
∣∣⩾ ν̃p

γ
xτ+3

0 , x = (x0(n⃗), x1(n⃗), . . . , xA(n⃗)) (2.29)

where

f c⃗ (x,β)≜
A∑

a=1
raλ(xa , x0,β)+ c0

p
3x3

0 , x = (x0, x1, . . . , xA) ∈ B1
(
RA+1) , (2.30)

with

ra ≜ ca

√
x2

a +x2
0 , λ(y, x0,β)≜

√
y4 +

(
2− β

2

)
x2

0 y2 + β

2
x4

0 .

The function f c⃗ : B1
(
RA+1

)× [
β1,β2

]→R is continuous and sub-analytic. Remark that for any l ∈N∗,

∂l
βλ(y, x0,β) =

(
1
2

l

)
µl (y, x0,β)λ(y, x0,β), µ(y, x0,β)≜

x2
0

(
x2

0 − y2
)

x2
0

(
x2

0 − y2
)
β+2y2

(
y2 +2x2

0

) · (2.31)

Note that, since 0 <β<β2 < 4(2+p
3), the denominator in (2.31) satisfies

x2
0

(
x2

0 − y2)β+2y2 (
y2 +2x2

0

)> 0 for any y ∈ [0,1], x0 ∈ (0,1]. (2.32)

We introduce the polynomial function ρ : [−1,1]A+1 →R

ρ(x0, x1, ..., xA)≜ x0

A∏
a=1

(
x2

a −x2
0

) ∏
1⩽a<b⩽A

((
x2

0 −x2
a

)
x2

b

(
x2

b +2x2
0

)− (
x2

0 −x2
b

)
x2

a

(
x2

a +2x2
0

))
.

The condition (2.32) implies that the function f c⃗ is real-analytic on {ρ ̸= 0} × [
β1,β2

]
. We fix now x̄ =

(x̄0, . . . x̄A) such that ρ(x̄) ̸= 0. Then x̄0 ̸= 0 and, in view also of (2.32), one has

µ
(
x̄a , x̄0,β

) ̸=µ(
x̄b , x̄0,β

)
, for any β ∈

(
0,4(2+p

3)
)

. (2.33)

The following Lemma ensures that the function f c⃗ (x,β) fullfills the second assumption of Delort-Szeftel
Theorem 2.7.

Lemma 2.9. The solutions of the equation
f c⃗

(
x̄,β

)= 0,

if any, are finitely many.

Proof. Since the function β → f c⃗
(
x̄,β

)
is analytic for β ∈ [β1,β2], we are only left to prove that it is not

identically zero. To do so we fix β̄ ∈ (β1,β2) and we note that

∀l = 1, ...,A, ∂l
β f

(
x̄, β̄

)= 0 ⇔ A (x̄) r⃗ = 0,

where r⃗ ≜ (r1, ...,rA) and

A (x̄)≜


µ

(
x̄1, x̄0, β̄

)
λ

(
x̄1, x̄0, β̄

)
... µ

(
x̄A, x̄0, β̄

)
λ

(
x̄A, x̄0, β̄

)
µ2

(
x̄1, x̄0, β̄

)
λ

(
x̄1, x̄0, β̄

)
... µ2

(
x̄A, x̄0, β̄

)
λ

(
x̄A, x̄0, β̄

)
...

...
µA

(
x̄1, x̄0, β̄

)
λ

(
x̄1, x̄0, β̄

)
... µA

(
x̄A, x̄0, β̄

)
λ

(
x̄A, x̄0, β̄

)
 .

Since c⃗ ̸= 0 and ρ(x̄) ̸= 0 we have also x̄0 ̸= 0 and r⃗ ̸= 0. Then β 7→ f (x̄,β) ≡ 0 implies that det(A(x̄)) = 0.
Besides, by A-linearity of the determinant and recognizing a Vandermonde determinant, we find

det(A (x̄)) =
A∏

a=1
µ

(
x̄a , x̄0, β̄

)
λ

(
x̄a , x̄0, β̄

) ∏
1⩽a<b⩽A

(
µ

(
x̄a , x̄0, β̄

)−µ(
x̄b , x̄0, β̄

))
.

By construction, since x̄ ∈ {ρ ̸= 0}, one has that det(A (x̄)) ̸= 0 at the given β. So β 7→ f (x̄,β) cannot be
identically zero proving Lemma 2.9.
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We thus conclude that there are N0 ∈N∗, α0,δ,C > 0, such that for any α ∈ (0,α0], any N ∈N∗, N ⩾ N0,
any x ∈ X with ρ(x) ̸= 0,∣∣∣{β ∈ [

β1,β2
]

s.t.
∣∣ f c⃗ (x,β)

∣∣⩽α ∣∣ρ(x)
∣∣N

}∣∣∣⩽Cαδ
∣∣ρ(x)

∣∣Nδ . (2.34)

To conclude the proof we need the following:

Lemma 2.10. Let τ1≜ 2A+1+8
(A

2

)
. Then( A∑

a=1
na

)−τ1

≲
∣∣ρ (x(n⃗))

∣∣≲ ( A∑
a=1

na

)−1

. (2.35)

Proof. By definition (2.27), we have(
(x2

0 −x2
a)x2

b(x2
b +2x2

0)− (x2
0 −x2

b)x2
a(x2

a +2x2
0)

)
|x0=x0(n⃗), xa=xa (n⃗), xb=xb (n⃗)

= x8
0 (n⃗)

[
(2−na)

(
n2

b −1
)− (2−nb)

(
n2

a −1
)]

.

The equation
(2−na)

(
n2

b −1
)= (2−nb)

(
n2

a −1
)

is equivalent to

(2−na) (nb −na)

(
nb −

2na −1

na −2

)
= 0. (2.36)

Since na ̸= 2 and nb ̸= na , we must have nb = 2na−1
na−2 · But

2na −1 = 2(na −2)+3.

Hence
2na −1 ≡ 3 mod. [na −2].

Therefore
na −2|2na −1 ⇔ na ∈ {3,5}.

We conclude that the only non-trivial couples of integers solutions to (2.36) are

(3,5) and (5,3).

However, we have excluded the possibility na = 5 or nb = 5. This implies that the equation (2.36) is not
solved with our choice of n⃗. Thus,∣∣∣((x2

0 −x2
a

)
x2

b

(
x2

b +2x2
0

)− (
x2

0 −x2
b

)
x2

a

(
x2

a +2x2
0

))
|x0=x0(n⃗), xa=xa (n⃗), xb=xb (n⃗)

∣∣∣⩾ x8
0(n⃗). (2.37)

Moreover, since na ̸= 2 for a = 1, . . . ,A, one has∣∣x2
a (n⃗)−x2

0 (n⃗)
∣∣⩾ x2

0 (n⃗) . (2.38)

Gathering Equations (2.37) and (2.38) we obtain the lower bound in (2.35). To prove the upper bound it is
sufficient to use the bounds in (2.28).

Consider the set

B(α, N )≜
⋃

n⃗=(n2,...,nA)∈NA,1⩽n1<...<nA

c⃗∈(Z∗)A, |⃗c|∞⩽M

Bc⃗,n⃗(α, N ) ⊂ [
β1,β2

]
,

Bc⃗,n⃗(α, N )≜
{
β ∈ [

β1,β2
]

s.t.
∣∣ f c⃗

(
x(n⃗),β

)∣∣⩽α ∣∣ρ (x(n⃗))
∣∣N

}
.

(2.39)

We fix now N ∈N such that N̄δ> 1 and Bα≜B(α, N ). Then we get

|Bα|⩽C (A,M)αδ
∑

n2,...,nA∈N

( A∑
a=0

na

)−Nδ

⩽C ′(A,M)αδ (2.40)
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In conclusion, for any β ∈ [
β1,β2

]
\Bα, for any n⃗ = (n0,n1, . . . ,nA) as in the hypothesis, any c⃗ ∈ (Z∗)A with

|⃗c |∞⩽ M, it results, by (2.39) and (2.35), that

∣∣ f c⃗
(
x(n⃗),β

)∣∣>α ∣∣ρ (x(n⃗))
∣∣N ⩾ c(A)α

( A∑
a=1

na

)−τ1N

. (2.41)

Recalling the definition of f c⃗ in (2.30) and x0(n⃗) in (2.27), the lower bound (2.41) implies (2.8) with τ ≜
τ1N −3 (cfr. (2.29)) and re-denoting ν̃≜αc(A).

Proof of Proposition 2.6

Fix a multi-index
(
α,α′) ∈ (N∗)Z

∗ × (N∗)Z
∗

of length
∣∣α+α′∣∣⩽M . We denote N

(
α,α′) as in (2.23). Since the

couple (α,α′) is not super-action preserving, then

N(α,α′) ̸=∅. (2.42)

Then, we can write

ω⃗γ,b ·
(
α−α′)= ∑

j∈Z∗
ωγ,b

(∣∣ j
∣∣)(α j −α′

j

)
= ∑

n∈N∗
ωγ,b(n)

(
αn +α−n −α′

n −α′
−n

)
= ∑

n∈N(α,α′)
ωγ,b(n)

(
αn +α−n −α′

n −α′
−n

)
.

We use the notation
A≜

∣∣N(
α,α′)\ {2,3,5}

∣∣+1.

We also denote
N(α,α′) \ {2,3,5} = {n2, ...nA}.

Therefore,

ω⃗γ,b ·
(
α−α′)= A∑

a=2
caωγ,b(na)+ c0ωγ,b(2)+ c1ωγ,b(3),

with
c0≜α2 +α−2 −α′

2 −α′
−2, c1≜

(
α3 +α−3 −α′

3 −α′
−3

)+p
5
(
α5 +α−5 −α′

5 −α′
−5

)
and for any a = 2, ...,A,

ca ≜αna +α−na −α′
na

−α′
−na

.

Observe that for any a = 0, ...,A, |ca |⩽ 4M , where M is defined in Proposition 2.6. Let us assume the absurd
hypothesis c⃗ ≜ (c0,c1,c2, ...,cA) = 0. By definition, under such absurd hypothesis, we obtain that N(α,α′) ⊂
{3,5}. But c1 ∈Z[

p
5] so c1 = 0 implies also that 3,5 ̸∈N(α,α′). Hence, N(α,α′) =∅ which is a contradiction

with (2.42), thus we can safely assume c⃗ ̸= 0. We consider the set

B≜
⋂

ν̃∈(0,ν0)
Bν̃,

where ν0 and Bν̃ are introduced in Proposition 2.8. Hence, for any β ∈ [
β1,β2

]
\B there is ν̃ ∈ (0,ν0) such

that β ∈ [
β1,β2

]
\Bν̃ and, applying Proposition 2.8 we get the desired result with ν≜ ν̃

Mτ .

3 Functional setting

Throughout the document, we shall use the notations

N≜ {0,1,2, ...}, N∗≜N\ {0}, Z≜N∪ (−N), Z∗≜Z\ {0}.

Along the paper we deal with real parameters

s⩾ s0 ≫ K ≫ ϱ≫ N ⩾ 0, (3.1)
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where N ∈N. The values of s, s0,K and ϱ may vary from line to line while still being true the relation (3.1).
We expand a 2π-periodic function u ∈ L2(T;C) in Fourier series as

u(x) = ∑
j∈Z

û
(

j
)

e i j x , û
(

j
)
≜Fx→ j

(
j
)
≜ u j ≜

∫
T

u(x)e−i j x dx.

The function u is real-valued if and only if u j = u− j , for any j ∈Z. For any s ∈R, we define the Sobolev space
H s ≜H s(T;C) with norm

∥u∥s ≜ ∥u∥H s =
(∑

j∈Z

〈
j
〉2s ∣∣û (

j
)∣∣2

) 1
2

,
〈

j
〉
≜max

{
1,

∣∣ j
∣∣} .

We defineΠ0u≜ u0 the average of u and
Π⊥

0 ≜ Id−Π0.

We define H s
0 the subspace of zero average functions of H s for which we also denote ∥u∥s = ∥u∥H s = ∥u∥H s

0
,

and with Ḣ s ≜ H s
/
C endowed with the norm ∥u∥Ḣ s ≜

∥∥Π⊥
0 u

∥∥
s . We define, on L̇2(T;C) ≜ Ḣ 0(T;C), the

complex scalar product 〈· | ·〉C and the real symmetric bilinear form 〈· | ·〉R as follows: for any u, v ∈ L̇2(T;C),

〈u | v〉C≜
∫
T
Π⊥

0 u(x)Π⊥
0 v(x)dx, 〈u | v〉R≜

∫
T
Π⊥

0 u(x)Π⊥
0 v(x)dx . (3.2)

Moreover we define the real subspace of Ḣ s(T;C2)

Ḣ s
R(T;C2)≜

{
U =

[
u+

u−
]
∈ Ḣ s(T;C2) s.t. u− = u+

}
.

We also denote
Ḣ∞(T;C2)≜

⋂
s∈R

Ḣ s(T;C2), Ḣ∞
R (T;C2)≜

⋂
s∈R

Ḣ s
R(T;C2).

Given an interval I ⊂R symmetric with respect to t = 0 and s ∈R, we define the space

C K
∗

(
I ; Ḣ s (

T;C2))≜ K⋂
k=0

C k
(
I ; Ḣ s− 3

2 k (
T;C2)) ,

endowed with the norm

sup
t∈I

∥U (t , ·)∥K ,s where ∥U (t , ·)∥K ,s ≜
K∑

k=0

∥∥∥∂k
t U (t , ·)

∥∥∥
Ḣ s− 3

2 k . (3.3)

We also consider its subspace

C K
∗R

(
I , Ḣ s (

T,C2))≜ {
U ∈C K

∗
(
I , Ḣ s (

T,C2)) s.t. U =
(
u
ū

)}
.

Given r > 0 we set B K
s (I ;r ) the ball of radius r in C K∗

(
I , Ḣ s

(
T,C2

))
and by B K

s,R(I ;r ) the ball of radius r in

C K
∗R

(
I , Ḣ s

(
T,C2

))
.

A vector field X (u) is translation invariant if

X ◦ tς = tς ◦X , ∀ς ∈R,

where the translation operator tς is defined by

tς : u(x) 7→ u(x +ς).

Given a linear operator R(u)[·] acting on L2
0(T;C)≜H 0

0 (T;C) we associate the linear operator defined by the

relation R(u)v ≜R(u)v for any v ∈ L2
0(T;C). An operator R(u) is real if R(u) = R(u) for any u real.
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3.1 Paradifferential calculus

We introduce the para-differential calculus developed in [18, 25].

Classes of symbols. Roughly speaking the class Γ̃m
p contains symbols of order m and homogeneity p in u,

whereas the class Γm
K ,K ′,p contains non-homogeneous symbols of order m that vanish at degree at least p

in u and that are (K −K ′)-times differentiable in t . We can think the parameter K ′ like the number of time
derivatives of u that are contained in the symbols.

Definition 3.1 (Symbols). Let m ∈R, p, N ∈N, K ,K ′ ∈Nwith K ′⩽K , and ϵ0 > 0.

i) p-Homogeneous symbols. We denote by Γ̃m
p the space of p-linear symmetric maps from

(
Ḣ∞ (

T;C2
))p

to C∞(T×R;C) , (x,ξ) 7→ ap (U1, . . . ,Up ; x,ξ) whose associated polynomial has the form

ap (U ; x,ξ)≜ ap (U , . . . ,U ; x,ξ)≜
∑
ȷ⃗∈Zp

σ⃗∈{±}p

aσ⃗ȷ⃗ (ξ)uσ⃗
ȷ⃗ e i(σ⃗·⃗ ȷ)x , (3.4)

where aσ⃗
ȷ⃗

(ξ) are complex valued Fourier multipliers, satisfying

aσ⃗ȷ⃗ (ξ)≜ a
σ1,...,σp

j1,..., jp
(ξ) = a

σπ(1),...,σπ(p)

jπ(1),..., jπ(p)
(ξ) for any π permutation of {1, . . . , p} ,

and for some µ⩾ 0,

|∂β
ξ

aσ⃗ȷ⃗ (ξ)|⩽Cβ

〈⃗
ȷ
〉µ 〈ξ〉m−β, ∀ ȷ⃗ ∈Zp , σ⃗ ∈ {±}p , β ∈N. (3.5)

We have used the following notations for given ȷ⃗ = ( j1, . . . , jp ) ∈Zp and σ⃗= (σ1, . . . ,σp ) ∈ {±}p ,

〈⃗ ȷ〉≜max(1, |⃗ ȷ|), |⃗ ȷ|≜max(| j1|, . . . , | jp |), uσ⃗
ȷ⃗ ≜ uσ1

j1
. . .u

σp

jp
,

where for a fixed u ∈C, we denote

u+≜ u and u−≜ u.

We denote by Γ̃m
0 the space of constant coefficients symbols ξ 7→ a(ξ) which satisfy (3.5) with µ= 0.

ii) Non-homogeneous symbols. We denote by Γm
K ,K ′,p [ϵ0] the space of functions a(U ; t , x,ξ), defined for

U ∈ B K ′
s0

(I ;ϵ0) for some s0 large enough, with complex values, such that for any 0 ⩽ k ⩽ K −K ′, any

s ⩾ s0, there is 0 < ϵ0(s) < ϵ0 such that for any β ∈N the following holds. There is C ≜Cs,β > 0 such that

for any U ∈ B K ′
s0

(I ;ϵ0(s))∩C k+K ′
∗

(
I ; Ḣ s (T;C)

)
and α ∈N, with α⩽ s − s0 one has the estimate∣∣∣∂k

t ∂
α
x ∂

β

ξ
a (U ; t , x,ξ)

∣∣∣⩽C〈ξ〉m−β∥U∥p−1
k+K ′,s0

∥U∥k+K ′,s . (3.6)

If p = 0 the right hand side has to be replaced by C〈ξ〉m−β.

We say that a non-homogeneous symbol a(U ; x,ξ) is real if it is real valued for any U ∈ B K ′
s0,R (I ;ϵ0).

iii) Symbols. We denote by ΣΓm
K ,K ′,p [ϵ0, N ] the space of symbols

a(U ; t , x,ξ) =
N∑

q=p
aq (U ; x,ξ)+a>N (U ; t , x,ξ) (3.7)

where aq , q = p, . . . , N are homogeneous symbols in Γ̃m
q and a>N is a non-homogeneous symbol in

Γm
K ,K ′,N+1.

We say that a symbol a(U ; t , x,ξ) is real if it is real valued for any U ∈ B K ′
s0,R(I ;ϵ0).

We shall also denote with ΣN
p Γ

m
q the subspace of ΣΓm

K ,K ′,p [ϵ0, N ] made of pluri-homogeneous symbols,
namely symbols which expand as in (3.7) with a>N ≡ 0.

Remark 3.2. Let us make the following remarks.
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• Given a p-homogeneous symbol ap ∈ Γ̃m
p , we shall often, with a slight abuse of notation, identify the

associated p-homogeneous polynomial with the p-linear symbol itself

ap (U1, . . . ,Up ; x,ξ) ↭ ap (U ; x,ξ)≜ ap (U , . . . ,U ; x,ξ).

This identification is harmless due to the standard correspondence between p-homogeneous polynomi-
als and symmetric p-linear maps.

• If a(U ; ·) is a homogeneous symbol in Γ̃m
p then it belongs to the class of non-homogeneous symbols

Γm
K ,0,p [ϵ0], for any ϵ0 > 0.

• The classical properties expected for a symbol hold: if a is a symbol in ΣΓm
K ,K ′,p [ϵ0, N ] then ∂x a is in

ΣΓm
K ,K ′,p [ϵ0, N ] and ∂ξa belongs to ΣΓm−1

K ,K ′,p [ϵ0, N ]. If in addition b is a symbol in ΣΓm′
K ,K ′,p ′ [ϵ0, N ] then

their product ab is a symbol in ΣΓm+m′
K ,K ′,p+p ′ [ϵ0, N ].

We also define classes of functions in analogy with our classes of symbols.

Definition 3.3 (Functions). Let p, N ∈N, K ,K ′ ∈N with K ′ ⩽ K , ϵ0 > 0. We denote by F̃p , resp. FK ,K ′,p [ϵ0],
ΣFK ,K ′,p [ϵ0, N ], the subspace of Γ̃0

p , resp. Γ0
K ,K ′,p [ϵ0], resp. ΣΓ0

K ,K ′,p [ϵ0, N ], made of those symbols which

are independent of ξ. We write F̃R
p , resp. FR

K ,K ′,p [ϵ0], ΣFR
K ,K ′,p [ϵ0, N ], to denote functions in F̃p , resp.

FK ,K ′,p [ϵ0], ΣFK ,K ′,p [ϵ0, N ], which are real valued for any u ∈ B K ′
s0

(I ;ϵ0).

Paradifferential quantization. Given p ∈N, we consider functions χp ∈C∞(Rp ×R;R) and χ ∈C∞(R×R;R),
even with respect to each of their arguments, satisfying, for 0 < δ0⩽ 1

10 ,

suppχp ⊂ {(ξ′,ξ) ∈Rp ×R s.t. |ξ′|⩽ δ0〈ξ〉}, χp (ξ′,ξ) ≡ 1 for |ξ′|⩽ 1
2δ0〈ξ〉,

suppχ⊂ {(ξ′,ξ) ∈R×R s.t. |ξ′|⩽ δ0〈ξ〉}, χ(ξ′,ξ) ≡ 1 for |ξ′|⩽ 1
2δ0〈ξ〉.

(3.8)

For p = 0, we set χ0 ≡ 1. We assume moreover that

|∂ℓξ∂
β

ξ′χp (ξ′,ξ)|⩽Cℓ,β〈ξ〉−ℓ−|β|, ∀ℓ ∈N, β ∈Np ,

|∂ℓξ∂
β

ξ′χ(ξ′,ξ)|⩽Cℓ,β〈ξ〉−ℓ−β, ∀ℓ, β ∈N.

If a(x,ξ) is a smooth symbol we define its Weyl quantization as the operator acting on a 2π-periodic function
u as

OpW (a)u(x) = ∑
k∈Z

( ∑
j∈Z

â
(
k − j , k+ j

2

)
u j

)
e ikx ,

where â(k,ξ) is the k th−Fourier coefficient of the 2π−periodic function x 7→ a(x,ξ).

Definition 3.4. (Bony-Weyl quantization) If a(U ; x,ξ) is a symbol in Γ̃m
p , respectively in Γm

K ,K ′,p [ϵ0], we set

aχp (U ; x,ξ)≜
∑

ȷ⃗∈(Z∗)p

σ⃗∈{±}p

χp (⃗ ȷ ,ξ)aσ⃗ȷ⃗ (ξ)uσ⃗
ȷ⃗ e i(σ⃗·⃗ ȷ)x ,

aχ(U ; x,ξ)≜
∑

j∈Z∗
χ( j ,ξ)â(U ; j ,ξ)e i j x ,

where in the last equality â(U ; j ,ξ) stands for j th Fourier coefficient of a(U ; x,ξ) with respect to the x vari-
able, and we define the Bony-Weyl quantization of a(U ; ·) as

OpBW (a(U ; ·))v(x)≜OpW (aχp (U ; ·))v(x) = ∑
(⃗ ȷ , j ,k)∈(Z∗)p+2

σ⃗∈{±}p

σ⃗·⃗ ȷ+ j=k

χp

(⃗
ȷ ,

j +k

2

)
aσ⃗ȷ⃗

(
j +k

2

)
uσ⃗
ȷ⃗ v j e ikx , (3.9)

OpBW (a(U ; ·))v(x)≜OpW (aχ(U ; ·))v(x) = ∑
( j ,k)∈(Z∗)2

χ

(
k − j ,

j +k

2

)
â

(
U ;k − j ,

k + j

2

)
v j e ikx . (3.10)
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Note that if χ
(
k − j , k+ j

2

)
̸= 0 then |k − j |⩽ δ0〈 j+k

2 〉 and therefore, for δ0 ∈ (0,1),

1−δ0

1+δ0
|k|⩽ | j |⩽ 1+δ0

1−δ0
|k| , ∀ j ,k ∈Z .

This relation shows that the action of a paradifferential operator does not spread much the Fourier support
of functions.
If a is a symbol in ΣΓm

K ,K ′,p [ϵ0, N ], we define its Bony-Weyl quantization

OpBW (a(U ; ·)) =
N∑

q=p
OpBW (

aq (U ; ·))+OpBW (a>N (U ; ·)).

We define as well

OpBW
vec (a (U ; x,ξ))≜OpBW

([
a (U ; x,ξ) 0

0 a∨ (U ; x,ξ)

])
, a∨ (U ; x,ξ)≜ a (U ; x,−ξ) . (3.11)

Remark 3.5. • The operator OpBW (a) maps functions with zero average in functions with zero average,
andΠ⊥

0 OpBW (a) = OpBW (a)Π⊥
0 .

• If a is a homogeneous symbol, the two definitions of quantization in (3.9)-(3.10) differ by a smoothing
operator according to Definition 3.11 below, see [18, page 50].

• Definition 3.4 is independent of the cut-off functions χp , χ, up to smoothing operators (Definition
3.11).

• The action of OpBW (a) on the spaces Ḣ s only depends on the values of the symbol a(u; t , x,ξ) for
|ξ|⩾ 1. Therefore, we may identify two symbols a(u; t , x,ξ) and b(u; t , x,ξ) if they agree for |ξ|⩾ 1/2.
In particular, whenever we encounter a symbol that is not smooth at ξ = 0, such as, for example,
a = g (x)|ξ|m for m ∈ R∗, or sgnξ, we will consider its smoothed out version

(
1−χ(ξ)

)
a (x,ξ), where χ

is defined in (3.8). Similarly for p-homogeneous symbols.

Remark 3.6. Given a paradifferential operator A = OpBW (a(x,ξ)) it results

A = OpBW
(
a(x,−ξ)

)
, A⊺ = OpBW (a(x,−ξ)), A∗ = OpBW

(
a(x,ξ)

)
,

where A⊺ is the transposed operator with respect to the real scalar product 〈· | ·〉R in (3.2), and A∗ denotes
the adjoint operator with respect to the complex scalar product 〈· | ·〉C on L̇2 in (3.2). It results A∗ = A

⊺
.

• A paradifferential operator A = OpBW (a(x,ξ)) is real (i.e. A = A) if

a(x,ξ) = a(x,−ξ) . (3.12)

• It is symmetric (i.e. A = A⊺) if
a(x,ξ) = a(x,−ξ).

We now provide the action of a paradifferential operator on Sobolev spaces, cf. [18, Prop. 3.8].

Lemma 3.7 (Action of a paradifferential operator). Let m ∈R.

i) If p ∈N, there is s0 > 0 such that for any symbol a in Γ̃m
p , there is a constant C > 0, depending only on s

and on (3.5) with b=β= 0, such that, for any (U1, . . . ,Up ), for p ⩾ 1,∥∥OpBW (
a(U1, . . . ,Up ; ·))up+1

∥∥
Ḣ s−m ⩽C ∥U1∥Ḣ s0 · · ·

∥∥Up
∥∥

Ḣ s0

∥∥up+1
∥∥

Ḣ s .

If p = 0 the above bound holds replacing the right hand side with C
∥∥up+1

∥∥
Ḣ s .

ii) Let ϵ0 > 0, p ∈N, K ′ ⩽ K ∈N, a in Γm
K ,K ′,p [ϵ0]. There is s0 > 0, and a constant C , depending only on s, ϵ0,

and on (3.6) with 0⩽α⩽ 2,β= 0, such that, for any t in I , any 0⩽ k ⩽K −K ′, any U in B K
s0

(I ;ϵ0),∥∥∥OpBW
(
∂k

t a(U ; t , ·)
)∥∥∥

L(Ḣ s ,Ḣ s−m)
⩽C∥U (t , ·)∥p

k+K ′,s0
, (3.13)

so that
∥∥OpBW (a(U ; t , ·))v(t )

∥∥
K−K ′,s−m ⩽C∥U (t , ·)∥p

K ,s0
∥v(t )∥K−K ′,s .
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Classes of m-Operators and smoothing Operators. Given integers
(
n1, . . . ,np+1

) ∈ (N∗)p+1 we denote by
max2

{
n1, . . . ,np+1

}
the second largest among n1, . . . ,np+1. We now define m-operators which include the

class of paradifferential operators of order m (see Remark 3.12) and allow to define the smoothing remain-
ders when the order m is negative (see Definition 3.11). The class M̃m

p denotes multilinear operators that
lose m derivatives and are p-homogeneous in u, while the class Mm

K ,K ′,p contains non-homogeneous oper-

ators which lose m derivatives, vanish at degree at least p in u, satisfy tame estimates and are (K −K ′)-times
differentiable in t . The constant µ in (3.15) takes into account possible loss of derivatives in the “low" fre-
quencies.

The following definition is taken from [25, Def. 2.5] (see also its Fourier characterization in [25, Lemma
2.9].

Definition 3.8 ( Classes of m-operators). Let m ∈R, p, N ∈N, K ,K ′ ∈Nwith K ′⩽K , and ϵ0 > 0.

i) p-homogeneous m-operators. We denote by M̃m
p the space of (p + 1)-linear symmetric translation

invariant operators from
(
Ḣ∞ (

T;C2
))p × Ḣ∞ (T;C) to Ḣ∞ (T;C), whose associated polynomial has the

form
M(U )v ≜M (U , . . . ,U ) v = ∑

σ⃗∈{±}p

k− j=σ⃗·⃗ ȷ

M σ⃗
ȷ⃗ , j ,k uσ⃗

ȷ⃗ v j e ikx (3.14)

with coefficients M σ⃗
ȷ⃗ , j ,k symmetric in ( j1,σ1), . . . , ( jp ,σp ), satisfying the following: there are µ⩾ 0, C > 0

such that, for any ȷ⃗ = ( j1, . . . , jp ) ∈ (Z∗)p , j ,k ∈Z∗, it results∣∣∣M σ⃗p

ȷ⃗p , j ,k

∣∣∣⩽C max2
{∣∣ j1

∣∣ , . . . ,
∣∣ jp

∣∣ ,
∣∣ j

∣∣}µ max
{∣∣ j1

∣∣ , . . . ,
∣∣ jp

∣∣ ,
∣∣ j

∣∣}m , (3.15)

If p = 0 the right hand side of (3.14) must be substituted with
∑

j∈Z M j v j e i j x with
∣∣M j

∣∣⩽C
∣∣ j

∣∣m .

ii) Non-homogeneous m-operators. We denote byMm
K ,K ′,p [ϵ0] the space of operators (U , t , v) 7→ M(U ; t )v

defined on B K ′
s0

(I ;ϵ0) for some s0 > 0, which are linear in the variable v and such that the following holds

true. For any s ⩾ s0 there are C > 0 and ϵ0(s) ∈]0,ϵ0[ such that for any U ∈ B K ′
s0

(I ;ϵ0)∩C K∗
(
I , Ḣ s(T;C)

)
,

any v ∈C K−K ′
∗

(
I , Ḣ s(T;C)

)
, any 0⩽ k ⩽K −K ′, t ∈ I , we have that∥∥∥∂k

t (M(U ; t )v)
∥∥∥

s− 3
2 k−m

⩽C
∑

k ′+k ′′=k

(
∥v∥k ′′,s∥U∥p

k ′+K ′,s0
+∥v∥k ′′,s0∥U∥p−1

k ′+K ′,s0
∥U∥k ′+K ′,s

)
. (3.16)

In case p = 0 we require the estimate ∥∂k
t (M(U ; t )v)∥s− 3

2 k−m ⩽C∥v∥k,s . We say that a non-homogeneous

m-operator M (U ; t ) is real if it is real valued for any u ∈ B K ′
s0

(I ;ϵ0).

iii) m-Operators. We denote by ΣMm
K ,K ′,p [ϵ0, N ] the space of operators

M(U ; t )v =
N∑

q=p
Mq (U )v +M>N (U ; t )v, (3.17)

where Mq are homogeneous m-operators in M̃m
q , q = p, . . . , N and M>N is a non–homogeneous m-

operator in Mm
K ,K ′,N+1[ϵ0]. We say that a m-operator M (u; t ) is real if it is real valued for any u ∈

B K ′
s0

(I ;ϵ0). We shall also denote with ΣN
p M̃m

q the subspace of
ΣMm

K ,K ′,p [ϵ0, N ] made of pluri-homogeneous m-operators, namely symbols which expand as in (3.7)
with M>N ≡ 0.

Remark 3.9. By [25, Lemma 2.8], if M(U1, . . . ,Up ) is a p–homogeneous m-operator in M̃m
p then M(U ) =

M(U , . . . ,U ) is a non-homogeneous m-operator in Mm
K ,0,p [ϵ0] for any ϵ0 > 0 and K ∈ N. We shall say that

M(u) is in M̃m
p .

Notation 3.10. • If M(U1, . . . ,Up ) is a p-homogeneous m-operator, we shall often denote by M(U ) the

associated p-homogeneous polynomial, as in (3.14), and write M(U ) ∈M̃m
p . Conversely, a p-homogeneous

polynomial can be represented by a (p +1)-linear form of the type M(U1, . . . ,Up )Up+1, which may not
be symmetric in the first p variables. If this form satisfies the symmetric estimate (3.15), then it cor-
responds to an m-operator in M̃m

p obtained by symmetrizing the internal variables. In the sequel, we
adopt this identification without further comment.
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• given an operator M(U ; t ) in ΣMm
K ,K ′,p [r, N ] of the form (3.17) we denote by

P⩽N [M(U ; t )]≜
N∑

q=p
Mq (U ) , resp. Pq [M(U ; t )]≜Mq (U ) , (3.18)

the projections on the pluri-homogeneous, resp. homogeneous, operators in ΣN
p M̃m

q , resp. in M̃m
q .

Given an integer p ⩽ p ′⩽N we also denote

P⩾p ′ [M(U ; t )]≜
N∑

q=p ′
Mq (U ), P⩽p ′ [M(U ; t )]≜

p ′∑
q=p

Mq (U ) .

The same notation will be also used to denote pluri-homogeneous/homogeneous components of
symbols.

If m⩽ 0 the operators in ΣMm
K ,K ′,p [ϵ0, N ] are referred to as smoothing operators.

Definition 3.11 (Smoothing operators). Let ϱ ⩾ 0. A (−ϱ)-operator R(U ) belonging to ΣM−ϱ
K ,K ′,p [ϵ0, N ] is

called a smoothing operator. We also denote

R̃−ϱ
p ≜M̃−ϱ

p , R−ϱ
K ,K ′,p [ϵ0]≜M−ϱ

K ,K ′,p [ϵ0] , ΣR−ϱ
K ,K ′,p [ϵ0, N ]≜ΣM−ϱ

K ,K ′,p [ϵ0, N ] , ΣN
p R̃

−ϱ
q ≜Σ

N
p M̃

−ϱ
q .

Remark 3.12. • Lemma 3.7 implies that, if a(U ; t , ·) is a symbol inΣΓm
K ,K ′,p [ϵ0, N ], m ∈R, then the associated

paradifferential operator OpBW (a(U ; t , ·)) defines a m-operator in ΣMm
K ,K ′,p [ϵ0, N ].

• The composition of smoothing operators R1 ∈ ΣR−ϱ
K ,K ′,p1

[ϵ0, N ] and R2 ∈ ΣR−ϱ
K ,K ′,p2

[ϵ0, N ] is a smooth-

ing operator R1R2 in ΣR−ϱ
K ,K ′,p1+p2

[ϵ0, N ]. This is a particular case of Proposition 3.17-(i ) below.

Definition 3.13 (Homogeneous vector fields). Let m ∈ R and p, N ∈ N. We denote by X̃m
p+1 the space of

(p +1)-homogeneous vector fields of the form X (U ) = M(U )U where M(U ) is a matrix of p-homogeneous

m-operators in
(
M̃m

p

)2×2
. In particular, one has the Fourier expansion

X (U ) =
[

X (U )+

X (U )−
]

, X (U )σ≜
∑

(⃗ ȷ ,k ,⃗σ,−σ)∈Tp+2

X σ⃗,σ
ȷ⃗ ,k uσ⃗

ȷ⃗ e iσk ,

where the Fourier restriction Tp+2 is the set of momentum preserving indices, defined, for a given q ∈N∗,
as

Tq ≜
{(⃗
ȷ , σ⃗

) ∈Zq × {±}q s.t. σ⃗ · ȷ⃗ = 0
}

. (3.19)

We denote ΣN+1
p+1 X̃

m
q the class of pluri-homogeneous vector fields. The vector fields in X̃

−ϱ
p+1, ϱ⩾ 0, are called

smoothing.

Symbolic calculus. Let σ(Dx ,Dξ,D y ,Dη) ≜ DξD y −Dx Dη where Dx ≜ 1
i ∂x and Dξ,D y ,Dη are similarly

defined. The following is Definition 3.11 in [18].

Definition 3.14 (Asymptotic expansion of composition symbol). Let p, p ′ inN, K ,K ′ ∈Nwith K ′⩽K , ϱ⩾ 0,
m,m′ ∈R, ϵ0 > 0. Consider symbols a ∈ΣΓm

K ,K ′,p [ϵ0, N ] and b ∈ΣΓm′
K ,K ′,p ′ [ϵ0, N ]. For U in B K

σ (I ;ϵ0) we define,
for ϱ<σ− s0, the symbol

(a#ϱb) (U ; t , x,ξ)≜
ϱ∑

k=0

1

k !

(
i

2
σ

(
Dx ,Dξ,D y ,Dη

))k [
a(U ; t , x,ξ)b(U ; t , y,η)

]
|x=y,ξ=η

modulo symbols in ΣΓm+m′−ϱ
K ,K ′,p+p ′ [ϵ0, N ].

The symbol a#ϱb belongs to ΣΓm+m′
K ,K ′,p+p ′ [ϵ0, N ]. Moreover

a#ϱb = ab + 1

2i
{a,b}
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up to a symbol in ΣΓm+m′−2
K ,K ′,p+p ′ [ϵ0, N ], where

{a,b}≜ ∂ξa ∂x b −∂x a ∂ξb

denotes the Poisson bracket. The following result is proved in Proposition 3.12 in [18].

Proposition 3.15 (Composition of Bony-Weyl operators). Let p, q, N ,K ,K ′ ∈Nwith K ′⩽K , ϱ⩾ 0, m,m′ ∈R,
ϵ0 > 0. Consider symbols a ∈ΣΓm

K ,K ′,p [ϵ0, N ] and b ∈ΣΓm′
K ,K ′,q [ϵ0, N ]. Then

OpBW (a(U ; t , x,ξ))◦OpBW (b(U ; t , x,ξ))−OpBW (
(a#ϱb)(U ; t , x,ξ)

)
is a smoothing operator in ΣR−ϱ+m+m′

K ,K ′,p+q [ϵ0, N ].

We have the following result, see e.g. Lemma 7.2 in [18].

Lemma 3.16 (Bony paraproduct decomposition). Let u1,u2 be functions in Hσ(T;C) with σ> 1
2 . Then

u1u2 = OpBW (u1)u2 +OpBW (u2)u1 +R1(u1)u2 +R2(u2)u1

where for j= 1,2, Rj is a homogeneous smoothing operator in R̃−ϱ
1 for any ϱ⩾ 0.

We now state other composition results for m-operators which follow as in [25, Proposition 2.15].

Proposition 3.17 (Compositions of m-operators). Let p, p ′, N ,K ,K ′ ∈N with K ′⩽K and ϵ0 > 0. Let m,m′ ∈
R. Then

1. If M(U ; t ) is in ΣMm
K ,K ′,p [ϵ0, N ] and M ′(U ; t ) is in ΣMm′

K ,K ′,p ′ [ϵ0, N ] then the composition M(u; t ) ◦
M ′(U ; t ) is in ΣMm+max(m′,0)

K ,K ′,p+p ′ [ϵ0, N ].

2. If M(U ) is a homogeneous m-operator in M̃m
p and M (ℓ)(U ; t ), ℓ = 1, . . . , p + 1, are matrices of mℓ-

operators in ΣMmℓ

K ,K ′,qℓ
[ϵ0, N ] with mℓ ∈R, qℓ ∈N, then

M
(
M (1)(U ; t )u, . . . , M (p)(U ; t )U

)
M (p+1)(U ; t )

belongs to ΣMm+m̄
K ,K ′,p+q̄ [ϵ0, N ] with m̄≜

∑p+1
ℓ=1 max(mℓ,0) and q̄ ≜

∑p+1
ℓ=1 qℓ.

3. Let a be a symbol in ΣΓm
K ,K ′,p [ϵ0, N ] with m⩾ 0 and R a smoothing operator in ΣR−ϱ

K ,K ′,p ′ [ϵ0, N ]. Then

OpBW (a(U ; t , ·))◦R(U ; t ) , R(U ; t )◦OpBW (a(U ; t , ·)) ∈ΣR−ϱ+m
K ,K ′,p+p ′ [ϵ0, N ].

4. If ap is in Γ̃m
p and M(U ) ∈ΣMm′

K ,K ′,p ′ [r, N ] then ap (M(U ),U , . . . ,U ; x,ξ) ∈ΣΓm
K ,K ′,p+p ′ [r, N ] and

OpBW (a(W,U , . . . ,U ; x,ξ))|W =M(U ) = OpBW (
ap (M(U ),U , . . . ,U ; x,ξ)

)+R(U )

where R(U ) ∈ΣR−ϱ
K ,K ′,p+p ′ [r, N ], for any ϱ> 0. In particular if a ∈ΣΓm

K ,K ′,p [r, N ] then

If ∂tU = M0(U )U , M0(U ) ∈ΣMm′
K ,K ′,0[r, N ],

then ∂t OpBW (a(U ; x,ξ)) = OpBW (
a[1](U ; x,ξ)

)+R(U ),

where a[1] ∈ΣΓm
K ,K ′+1,p [r, N ] and R(U ) ∈ΣR−ϱ

K ,K ′,p ′ [r, N ]

Notation 3.18. In the sequel if K ′ = 0 we denote a symbol a(U ; t , x,ξ) in Γm
K ,0,p [ϵ0] simply as a(U ; x,ξ), and a

smoothing operator in R(U ; t ) in ΣR−ϱ
K ,0,p [ϵ0, N ] simply as R(U ), without writing the t-dependence.

We finally provide the Bony paralinearization formula of the composition operator whose proof is a
combination of [18, Lemma 3.19].

Lemma 3.19 (Bony Paralinearization formula). Let F be a smooth C-valued function defined on a neighbor-
hood of zero in C, vanishing at zero at order q ∈ N. Then there are s0,ϵ0 > 0 such that if u ∈ BH s0 (T;R)(ε0),
then

F (u) = OpBW (
F ′ (u)

)
u +R (u)u,

where R (u) is a smoothing operator in ΣR−ϱ
K ,0,q ′ [ϵ0, N ], q ′≜max(q −1,1), for any ϱ⩾ 0.
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3.2 Spectrally localized maps

In this section we introduce the class of spectrally localized map, needed to apply the Darboux symplectic
correction (see Proposition 7.1). This class was introduced first in [25, Def. 2.15]

Definition 3.20 (Spectrally localized maps). Let m ∈R, p, N ∈N,K ,K ′ ∈Nwith K ′⩽K and r > 0.

i) Spectrally localized p-homogeneous maps. We denote by S̃m
p the subspace of m-operators S(U ) in

M̃m
p whose coefficients Sσ⃗

ȷ⃗ , j ,k (see (3.14)) satisfying the following spectral condition: there are δ> 0,C >
1 such that

Sσ⃗ȷ⃗ , j ,k ̸= 0 =⇒ |⃗ ȷ|⩽ δ| j |, C−1|k|⩽ | j |⩽C |k|.

We denote S̃ ≜ ⋃
p S̃m

p and by ΣN
p S̃m

q the class of pluri-homogeneous spectrally localized maps of the

form
∑N

q=p Sq with Sq ∈ S̃m
q and Σp S̃m

q ≜
⋃

N∈NΣN
p S̃m

q . For p ⩾N +1 we mean that the sum is empty.

ii) Non-homogeneous spectrally localized maps. We denote Sm
K ,K ′,p [ϵ0] the space of maps (U , t ,V ) 7→

S(U ; t )V defined on B K ′
K (I ;r )× I ×C 0(I , H s0 (T,C)) for some s0 > 0, which are linear in the variable V

and such that the following holds true. For any s ∈ R there are C > 0 and r (s) ∈ [0,ϵ0] such that for any
U ∈ B K ′

K (I ;r (s))∩C∗(I , H s(T ;C2)), any V ∈C∗
K−K ′(I , H s(T,C)), any 0⩽ k ⩽K −K ′, t ∈ I , we have that

∥∂k
t (S(U ; t )V )(t , ·)∥

H s− 3
2 k−m ⩽C

∑
k ′+k ′′=k

∥U∥p
k ′,s0

∥V ∥H k′′ ,s , if p ⩾ 1,

∥∂k
t (S(U ; t )V )∥

H s− 3
2 k−m ⩽C∥V ∥k,s , if p = 0.

We denote Sm
K ,K ′,N [ϵ0]≜

⋃
p Sm

K ,K ′,p [ϵ0].

iii) Spectrally localized Maps. We denote by ΣSm
K ,K ′,p [r, N ], the space of maps (U , t ,V ) 7→ S(U ; t )V of the

form

S(U ; t )V =
N∑

q=p
Sq (U )V +S>N (U ; t )V ,

where Sq are spectrally localized homogeneous maps in S̃m
q , q = p, . . . , N and S>N is a non-homogeneous

spectrally localized map in Sm
K ,K ′,N+1[ϵ0]. We denote by

(
Σm

K ,K ′,p [r, N ]
)2×2

the space of 2× 2 matrices

whose entries are spectrally localized maps in Σm
K ,K ′,p [r, N ]. We will use also the notation Σm

K ,K ′,p [r, N ]≜⋃
l⩾0Σ

m
K ,K ′,p [r, N + l ].

3.3 z-dependent paradifferential calculus

The following “Kernel-functions", that depend on the "convolutive 2π-periodic variable" z, have to be con-
sidered as Taylor remainders of functions K (u; x, z) at z = 0 which are smooth in u and which have finite
regularity in x and z. A Kernel function is a z-dependent family of functions (cfr. Definition 3.3) with coef-
ficients of size proportional to |z|n

T
. For n >−1 such singularity is integrable in z.

Definition 3.21 (Kernel functions). Let n ∈R, p, N ∈N, K ∈N, and ϵ0 > 0.

i) p-homogeneous Kernel-functions. If p ∈Nwe denote K̃Fn
p the space of z-dependent, p-homogeneous

maps from Ḣ∞ (T;C) to the space of x-translation invariant real functions κ(u; x, z) of class C∞ in
(x, z) ∈T2 with Fourier expansion

κ(u; x, z) = ∑
j1,..., jp∈Z∗

κ j1,..., jp (z)u j1 · · ·u jp e i( j1+···+ jp )x , z ∈T\ {0} ,

with coefficients κ j1,..., jp (z) of class C∞ (T;C), symmetric in ( j1, . . . , jp ), satisfying the reality condition
κ j1,..., jp (z) = κ− j1,...,− jp (z) and the following: for any l ∈ N, there exist µ > 0 and a constant C > 0 such
that ∣∣∣∂l

zκ j1,..., jp (z)
∣∣∣⩽C

∣∣⃗ ȷp
∣∣µ |z|n−l

T , ∀ ȷ⃗p = (
j1, . . . , jp

) ∈ (Z∗)p . (3.20)

For p = 0 we denote by K̃Fn
0 the space of maps z 7→ κ(z) which satisfy

∣∣∂l
zκ(z)

∣∣⩽C |z|n−l
T

.
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ii) Non-homogeneous Kernel-functions. We denote by KFn
K ,0,p [ϵ0] the space of z-dependent, real func-

tions κ(u; x, z), defined for u ∈ B 0
s0

(I ;ϵ0) for some s0 large enough, such that for any 0⩽ k ⩽ K and l ⩽
max

{
0,⌈1+n⌉}, any s ⩾ s0, there are C > 0, 0 < ϵ0(s) < ϵ0 and for any u ∈ B K

s0
(I ;ϵ0(s))∩C k∗

(
I , Ḣ s (T;C)

)
and any b ∈N, with α⩽ s − s0, one has the estimate∣∣∣∂k

t ∂
α
x ∂

l
zκ (u; x, z)

∣∣∣⩽C∥u∥p−1
k,s0

∥u∥k,s |z|n−l
T , z ∈T\ {0} . (3.21)

If p = 0 the right hand side in (3.21) has to be replaced by |z|n−l
T

.

iii) Kernel-functions. We denote by ΣKFn
K ,0,p [ϵ0, N ] the space of real functions of the form

κ(u; x, z) =
N∑

q=p
κq (u; x, z)+κ>N (u; x, z),

where κq (u; x, z), q = p, . . . , N are homogeneous Kernel functions in K̃Fn
q , and κ>N (u; x, z) is a non-

homogeneous Kernel function in KFn
K ,0,N+1[ϵ0].

A Kernel function κ(u; x, z) is real if it is real valued for any u ∈ B 0
s0,R(I ;ϵ0).

We list some properties of the Kernel functions. In view of the second point of Remark 3.2, a homoge-
neous Kernel function κ(u; x, z) in K̃Fn

p defines a non-homogeneous Kernel function in KFn
K ,0,p [ϵ0] for any

ϵ0 > 0.

Remark 3.22. Let us make the following remarks.

• Let κ (u; x, z) be a Kernel function in ΣFn
K ,0,p [ϵ0, N ] with n ⩾ 0, which admits a continuous extension in

z = 0. Then its trace κ (u; x,0) at z = 0 is a function in ΣFR
K ,0,p [ϵ0, N ].

• If κ(u; x, z) is a homogeneous Kernel function K̃Fn
p , the two definitions of quantization in (3.9) differ by a

Kernel smoothing operator in K̃R−ϱ,n
p , for any ϱ> 0, according to Definition 3.25 below.

• (Sum and product of Kernel functions) If κ1(u; x, z) is a Kernel function in ΣKFn1
K ,0,p1

[ϵ0, N ] and κ2(u; x, z)

in ΣKFn2
K ,0,p2

[ϵ0, N ], then the sum (κ1 +κ2)(u; x, z) is a Kernel function in ΣKFmin{n1,n2}
K ,0,min{p1,p2} [ϵ0, N ] and the

product (κ1κ2)(u; x, z) is a Kernel function in ΣKFn1+n2
K ,0,p1+p2

[ϵ0, N ].

• (Integral of Kernel functions) Let κ (u; x, z) be a Kernel function in ΣKFn
K ,0,p [ϵ0, N ] with n > −1. Then

–
∫
κ (u; x, z)dz is a function in ΣFR

K ,0,p [ϵ0, N ]. This follows directly integrating (3.20) and (3.21) in z.

The m-Kernel-operators defined below are a z-dependent family of m-operators (cfr. Definition 3.8)
with coefficients of size proportional to |z|n

T
. For n > −1 such singularity is integrable in z. A family of z-

dependent paraproduct operators associated to Kernel functions defines a 0-Kernel operator, see Remark
3.24. The kind of operators will appear only in case m < 0, as smoothing operators in the composition of
Bony-Weyl quantizations of Kernel-functions (see Definition 3.25).

Definition 3.23. Let m,n ∈R, p, N ∈N, K ∈Nwith ϵ0 > 0.

i) p-homogeneous m-Kernel-operator. We denote by �KMm,n
p the space of z-dependent, x-translation

invariant homogeneous m-operators according to Definition 3.8, Item i, in which the constant C is
substituted with C |z|n

T
, equivalently

M(u; z)v (x) =
∑

(⃗ ȷp , j ,k)∈Zp+2

j1+...+ jp+ j=k

M ȷ⃗p , j ,k (z)u j1 . . .u jp v j e ikx , z ∈T\ {0} , (3.22)

with coefficients satisfying

|M ȷ⃗p , j ,k (z) |⩽C max2
{∣∣ j1

∣∣ , . . . ,
∣∣ jp

∣∣ ,
∣∣ j

∣∣}µ max
{∣∣ j1

∣∣ , . . . ,
∣∣ jp

∣∣ ,
∣∣ j

∣∣}m |z|nT . (3.23)

If p = 0 the right hand side of (3.22) is replaced by
∑

j∈Z M j (z) v j e i j x with |M j (z) |⩽C
∣∣ j

∣∣m |z|n
T

.
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ii) Non-homogeneous m-Kernel-operator. We denote by KMm,n
K ,0,p [ϵ0] the space of z-dependent, non-

homogeneous operators M(u; z)v defined for any z ∈T\ {0}, such that for any 0⩽ k ⩽K∥∥∥∂k
t (M(u; z)v)

∥∥∥
s−αk−m

⩽C |z|nT
∑

k ′+k ′′=k

(
∥v∥k ′′,s∥u∥p

k ′,s0
+∥v∥k ′′,s0∥u∥p−1

k ′,s0
∥u∥k ′,s

)
. (3.24)

iii) m-Kernel-Operator. We denote by ΣKMm,n
K ,0,p [ϵ0, N ] the space of operators of the form

M(u; z)v =
N∑

q=p
Mq (u)v +M>N (u; z)v (3.25)

where Mq are homogeneous m-Kernel operators in �KMm,n
q , q = p, . . . , N and M>N is a non–homogeneous

m-Kernel-operator inMm,n
K ,0,N+1[ϵ0]. We denote byΣN

p M̃m
q the space pluri-homogeneous m-Kernel op-

erators of the form (3.25) with M>N = 0.

Remark 3.24. Given a Kernel function κ (u; x, z) in ΣKFn
K ,0,p [ϵ0, N ] then OpBW (κ (u; x, z)) is 0- Kernel oper-

ator in ΣKM0,n
K ,0,p [ϵ0, N ].

Definition 3.25 (Kernel-smoothing operators). Givenϱ> 0 we define the homogeneous and non-homogeneous
Kernel-smoothing operators as

K̃R−ϱ,n
p ≜�KM−ϱ,n

p , KR−ϱ,n
K ,0,p [ϵ0]≜KM−ϱ,n

K ,0,p [ϵ0] , ΣKR−ϱ,n
K ,0,p [ϵ0, N ]≜ΣKM−ϱ,n

K ,0,p [ϵ0, N ] .

In view of [25, Lemma 2.8], if M (u, . . . ,u; z) is a homogeneous m-Kernel operator in �KMm,n
p then M (u, . . . ,u; z)

defines a non-homogeneous m-Kernel operator in KMm,n
K ,0,p [ϵ0] for any ϵ0 > 0 and K ∈N.

The classes of paraproducts associated to Kernel functions and m-Kernel-operators are closed w.r.t.
compositions as we list below, cf. [17].

Proposition 3.26 (Composition of z-dependent operators). Let m,n,m′,n′ ∈ R, and integers K , p, p ′, N ∈N
with p, p ′⩽N .

1. Let κ (u; x, z) ∈ΣKFn
K ,0,p [ϵ0, N ] and κ′ (u; x, z) ∈ΣKFn′

K ,0,p ′ [ϵ0, N ] be Kernel functions. Then

OpBW (κ (u; x, z))◦OpBW (
κ′ (u; x, z)

)= OpBW (
κ κ′ (u; x, z)

)+R (u; z) ,

where R (u; z) is a Kernel-smoothing operator in ΣKR−ϱ,n+n′

K ,0,p+p ′ [ϵ0, N ] for any ϱ⩾ 0;

2. Let M (u; z) be a m-Kernel operator in ΣKMm,n
K ,0,p [ϵ0, N ] and M ′ (u; z) be an m′-operator belonging to

ΣKMm′,n′
K ,0,p ′ [ϵ0, N ]. Then M (u; z)◦M ′ (u; z) belongs to ΣKMm+max(m′,0),n+n′

K ,0,p+p ′ [ϵ0, N ];

3. Let κ (u; x, z) be a Kernel function in ΣKFn
K ,0,p [ϵ0, N ] and R (u; z) be a Kernel smoothing operator in

ΣKR−ϱ,n′

K ,0,p ′ [ϵ0, N ] then OpBW (κ (u; x, z))◦R (u; z) and R (u; z)◦OpBW (κ (u; x, z)) are a Kernel smoothing

operator in ΣKR−ϱ,n+n′

K ,0,p+p ′ [ϵ0, N ];

4. Let M (u; z) be an homogeneous m-Kernel operator in �KMm,n
1 , and M ′ (u; z) in ΣKM0,0

K ,0,0 [ϵ0, N ] then

M
(
M ′ (u; z)u; z

) ∈ΣKMm,n
K ,0,1 [ϵ0, N ].

Finally integrating (3.23) and (3.24) in z we deduce the following lemma.

Lemma 3.27 (Integrals of Kernel smoothing operators). Let R (u; z) be a Kernel smoothing operator belonging
to ΣR−ϱ,n

K ,0,p [ϵ0, N ] with n >−1. Then∫
T

R (u; z) g (x − z)dz = R1 (u) g ,
∫
T

R (u; z)dz = R2 (u) ,

where R1 (u), R2 (u) are smoothing operators in ΣR−ϱ
K ,0,p [ϵ0, N ].
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The following proposition will be crucial in Section 4, and is proved in [17].

Proposition 3.28. Let n >−1 and κ (u; x, z) be a Kernel-function in ΣKFn
K ,0,p [ϵ0, N ]. Let us define the opera-

tor, for any g ∈ Ḣ s(T;R), s ∈R, (
Tκg

)
(x)≜

∫
T

OpBW (κ (u;•, z))g (x − z)dz .

Then there exists

• a symbol a (u; x,ξ) in ΣΓ−(1+n)
K ,0,p [ϵ0, N ] satisfying (3.12);

• a pluri-homogeneous smoothing operator R (u) in ΣN
p R̃

−ϱ
q for any ϱ> 0;

such that Tκg = OpBW (a (u; x,ξ))g +R (u) g .

4 Paralinearization of the Kelvin-Helmholtz system

Notation 4.1. In the present section we use the following notation

B K
s,R (I ;r )≜BC K∗ (I ;Ḣ s (T;R)) (0,r ) .

We warn the reader that such notation is conflictive with the notation introduced at page 18, but we think
that in the restricted context of the paralinearization procedure outlined here there is no risk of confusion
and it helps to streamline the mathematical statements that we present.

In the present section we paralinearize the system Eq. (1.9) in the (η,ψ)-variables. The result we obtain
is the following one.

Theorem 4.2. Let N ∈ N, γ ⩾ 0, b ∈ R and ϱ ⩾ 0, for any K ∈ N there exists s0 > 0 and ϵ0 > 0 such that if
η,ψ ∈ B K

s0,R (I ;ϵ0) is a solution of Eq. (1.9) then
(
η,ψ

)
solves the paradifferential equation[

ηt

ψt

]
= OpBW (

Qγ,b
(
η,ψ; x,ξ

)+Bb

(
η,ψ; x

) |ξ|− iVb

(
η,ψ; x

)
IdR2 ξ+ A[0]

(
η,ψ; x,ξ

))[η
ψ

]
+R

(
η,ψ

)[η
ψ

]
, (4.1)

where

• The matrix of symbols Qγ,b satisfy (3.12) and is given by

Qγ,b
(
η,ψ; x,ξ

)
≜

[
0 − |ξ|

2

γ
(
1+f

(
η; x

))(|ξ|2 −1
)− (

b2

2 +wb

(
η,ψ; x

)) |ξ|+ b2

(1+2η) 0

]
∈ (
ΣΓ2

K ,0,0 [ϵ0, N ]
)2×2

,

(4.2)
with

f
(
η; x

)
≜

(
1+2η(

1+2η
)2 +η2

x

) 3
2

−1 ∈ΣFR
K ,0,1 [ϵ0, N ] ,

wb

(
η,ψ; x

)
≜

1

2

(
W 2

b

(
η,ψ; x

)−b2) ∈ΣFR
K ,0,1 [ϵ0, N ] ,

Wb

(
η,ψ; x

)
≜

(
ψx +b

) 1+2η(
1+2η

)2 +η2
x

∈ΣFR
K ,0,0 [ϵ0, N ] .

(4.3)

In particular, Wb (0,0; x) ≡ b;

•

Bb

(
η,ψ; x

)
≜

1

2

[
Bb

(
η,ψ; x

)
0

B 2
b

(
η,ψ; x

) −Bb

(
η,ψ; x

) ]
∈ (
ΣFR

K ,0,1 [ϵ0, N ]
)2×2

, (4.4)

where

Bb

(
η,ψ; x

)
≜

(
ψx +b

) J0
(
η; x

)
1+2η

∈ΣFR
K ,0,1 [ϵ0, N ] , J0 (

η; x
)
≜

2ηx
(
1+2η

)(
1+2η

)2 +η2
x

∈ΣFR
K ,0,1 [ϵ0, N ] .

In particular Bb satisfy (3.12);
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• Vb

(
η,ψ; x

) ∈ΣFR
K ,0,1 [ϵ0, N ] and is explicitly defined as

Vb

(
η,ψ; x

)
≜

1

2
D0

(
η
)[
b+ψx

]− b

2
, (4.5)

where D0
(
η
)

is defined in (1.5);

• A[0]
(
η,ψ; x,ξ

) ∈ (
ΣΓ0

K ,0,1 [ϵ0, N ]
)2×2

satisfies (3.12) and is explicitly defined as

A[0]
(
η,ψ; x,ξ

)
≜

[
Aη

[0]

(
η,ψ; x,ξ

)
Aη

[−1]

(
η,ψ; x,ξ

)
Aψ

[0]

(
η,ψ; x,ξ

)
Aψ

[−1]

(
η,ψ; x,ξ

) ]
,

with Au
[m]

(
η,ψ; x,ξ

) ∈ΣΓm
K ,0,1 [ϵ0, N ] for u= η,ψ and m ∈R;

• R
(
η,ψ

) ∈ (
ΣR−ϱ

K ,0,1 [ϵ0, N ]
)2×2

and is real-valued.

Remark 4.3. Notice that the quasilinear contribution −
(
b2

2 +wb

(
η,ψ; x

)) |ξ| = W 2
b (η,ψ;x)

2 |ξ| is not nil when

b= 0, as it is evident from Eqs. (4.68) and (4.69). This term, in particular, is an unstable contribution that is
not present in the one-phase version of the present system, cf. [1, 18, 25].

Notation 4.4. Along this section, for η ∈ B K
s0,R (I ;ϵ0) and W ≜

[
w1

w2

]
∈

(
B K

s0,R (I ;ϵ0)
)2

, we use the notation

1. For any x, z ∈T (cf. (1.3))

r = r (x) = r
(
η; x

)=√
1+2η (x) ∈ΣFR

K ,0,1 [ϵ0, N ] , δzη≜ η (x)−η (x − z) ∈ K̃F 1
1 ; (4.6)

2. V (W ; x) is a generic element in ΣFR
K ,0,1 [ϵ0, N ] (cf. Definition 3.3) and V n (W ; x, z) is a generic element

in ΣFn
K ,0,1 [ϵ0, N ], n >−1 (cf. Definition 3.21);

3. A[m] (W ; x,ξ) is a generic element in ΣΓm
K ,0,1 [ϵ0, N ] for m ∈R that satisfies (3.12) and A[m] (W ; x,ξ) is a

generic element in
(
ΣΓm

K ,0,1 [ϵ0, N ]
)2×2

for m ∈Rwhose entries satisfy (3.12);

4. R (W ) is a generic element in ΣR−ϱ
K ,0,1 [ϵ0, N ] which is real-valued and R (W ; z) is a generic element in

ΣR−ϱ,n
K ,0,1 [ϵ0, N ], n >−1 which is real-valued. Similarly R (W ) is a generic element in

(
ΣR−ϱ

K ,0,1 [ϵ0, N ]
)2×2

which is real-valued and R (W ; z) is a generic element in ΣR−ϱ,n
K ,0,1 [ϵ0, N ], n >−1 which is real-valued.

Remark 4.5. Accordingly to the notation introduced in Notation 4.4 we write

R (W )W ·
[

1
1

]
= R1 (W ) w1 +R2 (W ) w2,

where R1 and R2 are elements of the space ΣR−ϱ
K ,0,1 [ϵ0, N ]. The same holds when we write R (W ; z)W ·

[
1
1

]
.

Notice that from Equation (1.5) we derive the relation

H
(
η
)
ω= ηx D0

(
η
)
ω+H0

(
η
)
ω, (4.7)

where

H0
(
η
)
ω≜

∫
T

√
1+2η (x)

√
1+2η

(
y
)

sin
(
x − y

)
1+η (x)+η(

y
)−√

1+2η (x)
√

1+2η
(
y
)

cos
(
x − y

) ω(
y
)

dy. (4.8)
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4.1 Paralinearization of H0
(
η
)

The present section is dedicated to paralinearize the nonlocal operator H0(η) given in (4.8).

Proposition 4.6. Let N ∈N and ϱ⩾ 0, for any K ∈N there exist s0 > 0 and ϵ0 > 0 such that if η, g ∈ B K
s0,R (I ;ϵ0),

the nonlinear operator H0
(
η
)

in (4.8) admits the following paralinearization

1.
H0

(
η
)

g = OpBW (−i
(
1+K0 (

η; x
))

sgnξ+ A[−2]
(
η; x,ξ

))
g

+OpBW
(

g

1+2η
K′0 (

η; x
) |ξ|+ A[0]

(
η, g ; x,ξ

))
η+R

(
η, g

)[η
g

]
·
[

1
1

]
,

(4.9)

where

K0 (
η; x

)
≜− 2η2

x(
1+2η

)2 +η2
x

∈FR
K ,0,1 [ϵ0, N ] ,

K′0 (
η; x

)
≜− 4ηx

(
1+2η

)3((
1+2η

)2 +η2
x

)2 ∈FR
K ,0,1 [ϵ0, N ] ,

(4.10)

A[m]
(
η, g ; x,ξ

) ∈ΣΓm
K ,0,1 [ϵ0, N ] satisfies (3.12) and R

(
η, g

) ∈ (
ΣR−ϱ

K ,0,1 [ϵ0, N ]
)2×2

is real-valued.

2.

H0
(
η
)

[1] = OpBW

(
K′0 (

η; x
)

1+2η
|ξ|+ A[0]

(
η; x,ξ

))
η+R

(
η
)
η, (4.11)

where

• K′0 (
η; x

) ∈FR
K ,0,1 [ϵ0, N ] and is explicitly defined in (4.10);

• A[m]
(
η; x,ξ

) ∈ΣΓm
K ,0,1 [ϵ0, N ] satisfying (3.12);

• R
(
η
) ∈ΣR−ϱ

K ,0,1 [ϵ0, N ] and is real-valued.

Proof.

Part 1 (Proof of Item 1). With the notation introduced in (4.6) we can rewrite (4.8) as

H0
(
η
)

g =
∫
T
Gz

(
δzη

r 2

)
g (x − z)dz = H g +

∫
T

(
Gz

(
δzη

r 2

)
−Gz (0)

)
g (x − z)dz, (4.12)

where

Gz (X)≜

p
1−2Xsin z

1−X−p
1−2Xcos z

·

Let us now define the desingularization of Gz

Kz (X)≜Gz (X 2sin(z/2)) 2tan(z/2) =
√

1−4X sin(z/2)(2sin(z/2))2

1−2X sin(z/2)−
√

1−4X sin(z/2)cos z
, (4.13)

so that (
Gz

(
δzη

r 2

)
−Gz (0)

)
g (x − z) =

(
Kz

(
∆zη

r 2

)
−2

)
g (x − z)

2tan(z/2)
· (4.14)

Notice that from (4.13) we derive

K′
z (X) =− X (2sin(z/2))4(

1−2Xsin(z/2)−
√

1−4Xsin(z/2)cos(z)
)2√

1−4Xsin(z/2)
· (4.15)

We need the following technical result whose proof is postponed at page 34:
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Lemma 4.7. Let Kz (X), be as in Eq. (4.13). Then

Kz

(
∆zη

1+2η

)
−2 ∈ΣKF0

K ,0,1 [ϵ0, N ] , K′
z

(
∆zη

1+2η

)
∈ΣKF0

K ,0,1 [ϵ0, N ] , (4.16)

are Kernel functions, which admit the expansions

Kz

(
∆zη

1+2η

)
−2 =K0 (

η; x
)+K1 (

η; x
)

2tan(z/2)+V 2 (
η; x, z

)
,

K′
z

(
∆zη

1+2η

)
=K′0 (

η; x
)+K′1 (

η; x
)

sin z +V 2 (
η; x, z

)
,

(4.17)

where K0
(
η; x

)
and K′0 (

η; x
)

are functions in FR
K ,0,1 [ϵ0, N ] having the expressions (4.10).Then, K1

(
η; x

)
and

K′1 (
η; x

)
are functions in ΣFR

K ,0,1 [ϵ0, N ] while V 2
(
η; x, z

)
are Kernel-functions in ΣKF2

K ,0,1 [ϵ0, N ] as per No-
tation 4.4.

Bony paraproduct decomposition (cf. Lemma 3.16) give us that(
Kz

(
∆zη

r 2

)
−2

)
g (x − z) = OpBW

(
Kz

(
∆zη

r 2

)
−2

)
g (x − z)+OpBW (

g (x − z)
)[
Kz

(
∆zη

r 2

)
−2

]
+R1

(
Kz

(
∆zη

r 2

)
−2

)
g (x − z)+R2

(
g (x − z)

)[
Kz

(
∆zη

r 2

)
−2

]
.

(4.18)

In view of (4.16) we can apply Proposition 3.26, Items 2 and 4 and obtain that

R1

(
Kz

(
∆zη

r 2

)
−2

)
g (x − z) = R

(
η; z

)
g , R2

(
g (x − z)

)[
Kz

(
∆zη

r 2

)
−2

]
= R

(
η; z

)
g , (4.19)

for suitable R (•; z) ∈ΣKR−ϱ,0
K ,0,1 [ϵ0, N ]. We use now Bony paralinearization formula of Lemma 3.19 and Bony

paraproduct decomposition and obtain that

Kz

(
∆zη

r 2

)
−2

= OpBW
(
K′

z

(
∆zη

r 2

))[
OpBW (

r−2)∆zη+OpBW (
∆zη

)[
r−2 −1

]+R1
(
r−2 −1

)
∆zη+R2

(
∆zη

)[
r−2 −1

]]
+R

(
∆zη

r 2

)
∆zη

r 2 ·

(4.20)

Then, we apply again Lemma 3.19, Proposition 3.26, Items 2 and 4 in order to get that

OpBW
(
K′

z

(
∆zη

r 2

))(
R1

(
r−2 −1

)
∆zη+R2

(
∆zη

)[
r−2 −1

])= R
(
η; z

)
η, (4.21)

R

(
∆zη

r 2

)
∆zη

r 2 = R
(
η; z

)
η. (4.22)

Besides, combining Proposition 3.26, Item 1 and Lemma 3.19 we obtain that

OpBW
(
K′

z

(
∆zη

r 2

))(
OpBW (

r−2)∆zη+OpBW (
∆zη

)[
r−2 −1

])
= OpBW

(
r−2K′

z

(
∆zη

r 2

))
∆zη+OpBW (

Ṽ 0 (
η; x, z

))
η+R

(
η, g ; z

)
η,

(4.23)

where
Ṽ 0(η; x, z)≜ r−2(K ′

z (X )X
)|X= ∆zη

r 2
.

We plug Eqs. (4.21) and (4.23) in Eq. (4.20) and the resulting equation and Eq. (4.19) in Eq. (4.18) and obtain,
after using ∫

T

1

tan(z/2)
dz = 0
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and applying Proposition 3.26, Item 1, that(
Kz

(
∆zη

r 2

)
−2

)
g (x − z) = OpBW

(
Kz

(
∆zη

r 2

)
−2

)
g (x − z)+OpBW

(
g (x − z)

r 2 K′
z

(
∆zη

r 2

))
∆zη

+OpBW (
V 0 (

η, g ; x, z
))
η+R

(
η, g ; z

)[η
g

]
·
[

1
1

]
,

(4.24)

where
V 0(η, g ; x, z)≜ Ṽ 0(η; x, z)g (x − z).

We Taylor expand in z

V 0(η, g ; x, z) =V 0(η, g ; x)+V 1(η, g ; x, z), V 1 ∈ΣKF1
K ,0,1 [ϵ0, N ] .

We thus plug (4.24) in (4.14) and insert the resulting equation in (4.12) and, after application of Remark 3.22
and Lemma 3.27 we obtain that

H0
(
η
)

g = H g +
∫
T

OpBW
(
Kz

(
∆zη

r 2

)
−2

)
g (x − z)

2tan(z/2)
dz

+
∫
T

OpBW
(

g (x − z)

r 2 K′
z

(
∆zη

r 2

))
δzη

4sin(z/2) tan(z/2)
dz

+OpBW (
V

(
η, g ; x

))
η+R

(
η, g ; z

)[η
g

]
·
[

1
1

]
,

(4.25)

where

V (η, g ; x)≜
∫
T

V 1(η, g ; x, z)

2tan(z/2)
dz.

We use now the identity 1
4sin(z/2) tan(z/2) = 1

4sin2(z/2)
− 1

8cos2(z/4) and Proposition 3.28 and Remark 3.22 in order
to transform∫

T
OpBW

(
g (x − z)

r 2 K′
z

(
∆zη

r 2

))
δzη

4sin(z/2) tan(z/2)
dz

=
∫
T

OpBW
(

g (x − z)

r 2 K′
z

(
∆zη

r 2

))
δzη

4sin2 (z/2)
dz +OpBW (

V
(
η, g ; x

)+ A[−2]
(
η, g ; x,ξ

))
η+R

(
η, g

)
η, (4.26)

so that plugging (4.26) in (4.25) we obtain that

H0
(
η
)

g = H g +
∫
T

OpBW
(
Kz

(
∆zη

r 2

)
−2

)
g (x − z)

2tan(z/2)
dz

+
∫
T

OpBW
(

g (x − z)

r 2 K′
z

(
∆zη

r 2

))
δzη

4sin2 (z/2)
dz

+OpBW (
V

(
η, g ; x

)+ A[−2]
(
η, g ; x,ξ

))
η+R

(
η, g ; z

)[η
g

]
·
[

1
1

]
.

(4.27)

Now, we can use the Taylor-like expansions (4.17), Proposition 3.28 and the fact that g has zero average and
obtain that∫

T
OpBW

(
Kz

(
∆zη

r 2

)
−2

)
g (x − z)

2tan(z/2)
dz = OpBW (

K0 (
η; x

))
H g +OpBW (

A[−2]
(
η; x,ξ

))
g +R

(
η, g

)
g . (4.28)

Next, denoting

K̃
(
η, g ; x, z

)
≜

g (x − z)

1+2η
K′

z

(
∆zη

1+2η

)
− g

1+2η
K′0 (

η; x
) ∈ΣKF1

K ,0,1 [ϵ0, N ] ,

we Taylor-expand z 7→ K̃
(
η, g ; x, z

)
obtaining

K̃
(
η, g ; x, z

)= K̃1 (
η, g ; x

)
sin z +V 2 (

η, g ; x, z
)

,
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so that applying Remark 3.22 and Proposition 3.28 we obtain that∫
T

OpBW
(

g (x − z)

r 2 K′
z

(
∆zη

r 2

))
δzη

4sin2 (z/2)
dz

= OpBW
(

g

1+2η
K′0 (

η; x
)) |D|η+OpBW (

K̃1 (
η, g ; x

))
H η+OpBW (

V
(
η, g ; x

)+ A[−2]
(
η, g ; x,ξ

))
η+R

(
η, g

)
η.

(4.29)
We plug Eqs. (4.28) and (4.29) in Eq. (4.27) and use Proposition 3.15 and obtain the desired quasi-linear
expansion

H0
(
η
)

g = OpBW (
1+K0 (

η; x
))

H g +OpBW
(

g

1+2η
K′0 (

η; x
)) |D|η

+OpBW (
A[0]

(
η, g ; x,ξ

))
η+OpBW (

A[−2]
(
η; x,ξ

))
g +R

(
η, g ; z

)[η
g

]
·
[

1
1

]
,

(4.30)

thus (4.9) can be derive applying Proposition 3.15 to (4.30) combined with H = OpBW
(−isgnξ

)
.

Part 2 (Proof of Item 2). From Eqs. (4.12) and (4.14) we have that

H0
(
η
)

[1] =
∫
T

(
Kz

(
∆zη

r 2

)
−2

)
dz

2tan(z/2)
· (4.31)

Thus, we apply Lemma 3.19 and obtain that

Kz

(
∆zη

r 2

)
−2 = OpBW

(
K′

z

(
∆zη

r 2

))[
∆zη

r 2

]
+R

(
∆zη

r 2

)[
∆zη

r 2

]
. (4.32)

Notice that from Proposition 3.26, Item 4 we have that R
(
∆zη

r 2

)
∈ ΣKR−ϱ,0

K ,0,1 [ϵ0, N ] and by Taylor expansion

we have that

R̃
(
η; x, z

)
≜R

(
∆zη

r 2

)
−R

(ηx

r 2

)
∈ΣKR−ϱ,1

K ,0,1 [ϵ0, N ] ,

and, since ∆z

r 2 ∈ΣKM1,0
K ,0,1 [ϵ0, N ] applying Proposition 3.26, Item 2 we obtain that

R̃
(
η; x, z

)◦ ∆z

r 2 ∈ΣKR−ϱ+1,1
K ,0,1 [ϵ0, N ] , (4.33)

so that, thanks to (4.33), we have that∫
T

R

(
∆zη

r 2

)[
∆zη

r 2

]
dz

2tan(z/2)
= R

(ηx

r 2

)[
1

r 2

∫
T

δzη

4sin(z/2)tan(z/2)
dz

]
+

∫
T

R
(
η; x, z

)
dz η.

Next we use the fact that∫
T

δzη

4sin(z/2)tan(z/2)
dz = m1 (D)η, with m1 (ξ) ∈ Γ̃1

0,

the fact that r−2m1 (D) ∈ΣKM1,0
K ,0,1 [ϵ0, N ], Proposition 3.26, Item 2 and Lemma 3.27 to obtain that∫

T
R

(
∆zη

r 2

)[
∆zη

r 2

]
dz

2tan(z/2)
= R

(
η
)
η. (4.34)

Next, computations similar to the ones performed in Eqs. (4.20) and (4.23) allow us to deduce that∫
T

OpBW
(
K′

z

(
∆zη

r 2

))[
∆zη

r 2

]
dz

2tan(z/2)
=

∫
T

OpBW
(
r−2K′

z

(
∆zη

r 2

))[
δzη

4sin(z/2)tan(z/2)

]
dz

+OpBW (
V

(
η; x

))
η+R

(
η
)
η.

(4.35)

Taylor-expanding as in (4.29) and using Proposition 3.15 we obtain that∫
T

OpBW
(
r−2K′

z

(
∆zη

r 2

))[
δzη

4sin(z/2)tan(z/2)

]
dz

= OpBW (
r−2K′0 (

η; x
)) |D|η+OpBW (

A[0]
(
η; x,ξ

))
η+R

(
η
)
η

= OpBW (
r−2K′0 (

η; x
) |ξ|+ A[0]

(
η; x,ξ

))
η+R

(
η
)
η.

(4.36)

Combining Equations (4.32) and (4.34) to (4.36) we obtain (4.11).
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Proof of Lemma 4.7. Let us prove at first (4.16). We prove the result for Kz only being the procedure for
K′

z the same. Notice that from Eq. (4.13) we immediately have that the map (z,X) 7→ Kz (X) is analytic in
T× (−1

4 , 1
4

)
. Let us now define

Kz
(
x,y

)
≜Kz

( y

1+2x

)
,

which is again analytic for |x| , |y| < ε1 small. By analyticity we have that

Kz
(
x,y

)= ∞∑
p1,p2=0

∂
p2
x ∂

p1
y Kz (0,0)

p1!p2!︸ ︷︷ ︸
≜kp1,p2 (z)

xp2yp1 ,

with ∣∣∣∂p2
x ∂

p1
y Kz (0,0)

∣∣∣⩽C p1!p2! ε
−(p1+p2)
1 .

From Eq. (4.13) it is immediate that
Kz (0) = 2,

so that

Kz

(
∆zη

1+2η

)
=Kz

(
η,∆zη

)= 2+ ∑
p⩾1

∑
p1⩾1

p1+p2=p

kp1,p2 (z) ηp2
(
∆zη

)p1

︸ ︷︷ ︸
=:K̃p ( f ;x,z)

= 2+
N∑

p=1
K̃p (

η; x, z
)+ ∑

p>N
K̃p (

η; x, z
)

︸ ︷︷ ︸
=:K>N (η;x,z)

.

We claim that for any p ∈N and ℓ= 0, . . . ,7,

∂ℓz K̃
p (
η; x, z

) ∈ K̃F0
p , (4.37)

∂ℓzK
>N (

η; x, z
) ∈ KF0

K ,0,N+1 [ϵ0] . (4.38)

The proof of Eqs. (4.37) and (4.38) is the same as the one performed in order to prove [17, Eqs. (4.34) and

(4.35)] and is thus omitted. The proof for (4.16) for K′
z

(
∆zη

1+2η

)
is the same as the one performed for Kz

(
∆zη

1+2η

)
with the sole difference that K′

z (0) = 0.
The proof of (4.17) follows the lines of the proof of [17, Eq. (4.23)], and is generic enough to be applied in
the present case. It remains to prove Eq. (4.10), we can Taylor-expand in z = 0 and obtain that

Kz (X) =K0 (X)+ ∂zKz (X)|z=0 z +R1 (K;X) (z) ,

K′
z (X) =K′

0 (X)+ ∂zK
′
z (X)

∣∣
z=0 z +R1

(
K′;X

)
(z) .

Explicit computations show that

K0 (X)≜ 2− 2X2

1+X2 , ∂zKz (X)|z=0≜− 4X3(
1+X2

)2 ,

K′
0 (X)≜ − 4X(

1+X2
)2 , ∂zK

′
z (X)

∣∣
z=0≜ − 4X2

(
3−X2

)(
1+X2

)3 ·
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Hence setting X≜ ∆zη
1+2η and Taylor expanding we obtain that

K0

(
∆zη

1+2η

)
= 2−2

η2
x(

1+2η
)2 +η2

x︸ ︷︷ ︸
≜K0(η;x)

+4

(
1+2η

)2
ηxηxx((

1+2η
)2 +η2

x

)2 z +V 2 (
η; x, z

)
,

K′
0

(
∆zη

1+2η

)
= − 4

(
1+2η

)
ηx((

1+2η
)2 +η2

x

)2

︸ ︷︷ ︸
≜K′0(η;x)

+2

((
1+2η

)2 −3η2
x

)(
1+2η

)3
ηxx((

1+2η
)2 +η2

x

)3 z +V 2 (
η; x, z

)
,

∂zKz

(
∆xη

1+2η

)∣∣∣∣
z=0
≜− 4

(
1+2η

)
η3

x((
1+2η

)2 +η2
x

)2 +R0

(
∂zKz

(
∆xη

1+2η

)∣∣∣∣
z=0

; x

)
(z) ,

∂zK
′
z

(
∆xη

1+2η

)∣∣∣∣
z=0
≜ −

4
(
1+2η

)2
η2

x

(
3
(
1+2η

)2 −η2
x

)
((

1+2η
)2 +η2

x

)3 +R0

(
∂zK

′
z

(
∆xη

1+2η

)∣∣∣∣
z=0

; x

)
(z) ,

so that defining

K1 (
η; x

)
≜

4
(
1+2η

)2
ηxηxx((

1+2η
)2 +η2

x

)2 − 4
(
1+2η

)
η3

x((
1+2η

)2 +η2
x

)2 = 4
(
1+2η

)
ηx

((
1+2η

)
ηxx −η2

x

)((
1+2η

)2 +η2
x

)2 ,

K′1 (
η; x

)
≜

2
((

1+2η
)2 −3η2

x

)(
1+2η

)3
ηxx −4

(
1+2η

)2
η2

x

(
3
(
1+2η

)2 −η2
x

)
((

1+2η
)2 +η2

x

)3 ,

which are analytic applications w.r.t. η small in W 2,∞, proving (4.17) and (4.10).

4.2 Paralinearization of D0
(
η
)

Here we perform the paralinearization of the nonlinear operator D0(η) introduced in (1.5).

Proposition 4.8. Let N ∈N and ϱ⩾ 0, for any K ∈N there exists s0 > 0 and ϵ0 > 0 such that if η, g ∈ B K
s0,R (I ;ϵ0)

and D0
(
η
)

be as in (1.5), we have that

1.

D0
(
η
)

g = OpBW

(
−i

J0
(
η; x

)
r 2 sgnξ+ A[−2]

(
η; x,ξ

))
g

+OpBW
( g

r 4 J
′0 (
η; x

) |ξ|+ A[0]
(
η, g ; x,ξ

))
η+R

(
η, g

)[η
g

]
·
[

1
1

]
,

(4.39)

where

J0 (
η; x

)
≜

2ηx
(
1+2η

)(
1+2η

)2 +η2
x

∈FR
K ,0,1 [ϵ0, N ] , (4.40)

J′0
(
η; x

)
≜

2
(
1+2η

)2
((

1+2η
)2 −η2

x

)
((

1+2η
)2 +η2

x

)2 ∈FR
K ,0,0 [ϵ0, N ] , (4.41)

A[m]
(
η, g ; x,ξ

) ∈ΣΓm
K ,0,1 [ϵ0, N ] and R

(
η, g

) ∈ (
ΣR−ϱ

K ,0,1 [ϵ0, N ]
)2×2

.

2.

D0
(
η
)

[1] = 1+OpBW

(
− 2(

1+2η
)2 + J′0

(
η; x

)
r 4

|ξ|+ A[0]
(
η; x,ξ

))
η+R

(
η
)
η , (4.42)

where
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• J′0
(
η; x

)
is explicitly defined in (4.41), and is such that J′0 (0; x) ≡ 2;

• A[0]
(
η; x,ξ

) ∈ΣΓ0
K ,0,1 [ϵ0, N ];

• R
(
η
) ∈ΣR−ϱ

K ,0,1 [ϵ0, N ].

Proof.

Part 1 (Proof of Proposition 4.8, Item 1). Let us recall that D0
(
η
)

is defined in (1.5). We proceed analogously
as in the previous section. We have, using the auxiliary functions defined in (4.6) and the fact that g is of
zero average, that

D0
(
η
)

g =
∫
T

1

r 2

(
Hz

(
δzη

r 2

)
−Hz (0)

)
g (x − z)

2sin(z/2)
dz , (4.43)

where

Hz (X)≜
1−p

1−2Xcos z

1−X−p
1−2Xcos z

2sin(z/2) .

We define
Jz (X)≜Hz (X 2sin(z/2)) . (4.44)

We have the following technical result:

Lemma 4.9. Let Jz (X), be as in Eq. (4.44). Then

Jz

(
∆zη

1+2η

)
⩾1
≜ Jz

(
∆zη

1+2η

)
−2sin(z/2) ∈ΣKF0

K ,0,1 [ϵ0, N ] , J′z
(
∆zη

1+2η

)
∈ΣKF0

K ,0,0 [ϵ0, N ] , (4.45)

are Kernel functions, which admit the expansion

Jz

(
∆zη

1+2η

)
−2sin(z/2) = J0 (

η; x
)+J1 (

η; x
)

2sin(z/2)+V 2 (
η; x, z

)
,

J′z
(
∆zη

1+2η

)
= J′0

(
η; x

)+J′1
(
η; x

)
sin z +V 2 (

η; x, z
)

,
(4.46)

where J0
(
η; x

)
,J′0

(
η; x

)
are defined in (4.40)-(4.41) and J1

(
η; x

)
,J′1

(
η; x

) ∈ΣFR
K ,0,1 [ϵ0, N ] .

The proof of Lemma 4.9 follows exactly the same lines of the proof of Lemma 4.7 (cf. page 34) and is
thus omitted for the sake of brevity.

We apply Lemma 3.16 and obtain that

1

r 2 Jz

(
∆zη

r 2

)
⩾1

g (x − z) = OpBW
(

1

r 2 Jz

(
∆zη

r 2

))
⩾1

g (x − z)+OpBW (
g (x − z)

)[ 1

r 2 Jz

(
∆zη

1+2η

)
⩾1

]

+R1

(
1

r 2 Jz

(
∆zη

1+2η

)
⩾1

)
g (x − z)+R2

(
g (x − z)

)[ 1

r 2 Jz

(
∆zη

1+2η

)
⩾1

]
.

(4.47)

In view of (4.45) we can apply Proposition 3.26, Items 2 and 4 and obtain that

R1

(
1

r 2 Jz

(
∆zη

1+2η

)
⩾1

)
g (x − z) = R

(
η, g ; z

)
g , R2

(
g (x − z)

)[ 1

r 2 Jz

(
∆zη

1+2η

)
⩾1

]
= R

(
η, g ; z

)
η. (4.48)

Then, we apply Lemmas 3.16 and 3.19 and Proposition 3.15 in a similar fashion to the procedure detailed in
the previous section and obtain that

OpBW (
g (x − z)

)[ 1

r 2 Jz

(
∆zη

1+2η

)
⩾1

]
= OpBW

(
g (x − z)

r 4 J′z
(
∆zη

r 2

))
∆zη+OpBW (

V 0 (
η, g ; x, z

))
η+R

(
η, g ; z

)
η.

(4.49)
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Next, we use the expansions of Lemma 4.9 and obtain that

OpBW

(
1

r 2 Jz

(
∆zη

1+2η

)
⩾1

)
g (x − z) = OpBW

(
J0

(
η; x

)
r 2 +V 1 (

η, g ; x, z
))

g (x − z) ,

OpBW
(

g (x − z)

r 4 J′z
(
∆zη

r 2

))
∆zη= OpBW

( g

r 4 J
′0 (
η; x

))
∆zη+OpBW (

V
(
η, g ; x

)+V 1 (
η, g ; x, z

))
δzη,

OpBW (
V 0 (

η, g ; x, z
))
η= OpBW (

V
(
η, g ; x

)+V 1 (
η, g ; x, z

))
η.

(4.50)

We plug the results in Eqs. (4.44) and (4.47) to (4.50) into Eq. (4.43) and obtain, after an application of Propo-
sition 3.28, that

D0
(
η
)

g = OpBW

(
J0

(
η; x

)
r 2

)∫
T

g (x − z)

2sin(z/2)
dz +OpBW

( g

r 4 J
′0 (
η; x

))∫
T

δzη

4sin2 (z/2)
dz

+OpBW (
A[0]

(
η, g ; x,ξ

))
η+OpBW (

A[−2]
(
η; x,ξ

))
g +R

(
η, g ; z

)[η
g

]
·
[

1
1

]
,

from which we conclude after standard symbolic manipulations the identity in (4.39).

Part 2 (Proof of Proposition 4.8, Item 2). Arguing similarly as it was done in order to deduce (4.43) and using
Eqs. (4.44) and (4.46) we have that

D0
(
η
)

[1] = r−2 +
∫
T

1

r 2 Jz

(
∆zη

r 2

)
⩾1

dz

2sin(z/2)
· (4.51)

We apply Lemma 3.19 and obtain that

D0
(
η
)

[1] = r−2 +
∫
T

1

r 2

{
OpBW

(
J′z

(
∆zη

r 2

))[
∆zη

r 2

]
+R

(
∆zη

r 2

)[
∆zη

r 2

]}
dz

2sin(z/2)
· (4.52)

Thus, computations similar to the ones that lead to (4.34) give us that∫
T

1

r 2 R

(
∆zη

r 2

)[
∆zη

r 2

]
dz

2sin(z/2)
= R

(
η
)
η. (4.53)

Next, similar computations to the ones that lead to (4.35) give us that∫
T

1

r 2 OpBW
(
J′z

(
∆zη

r 2

))[
∆zη

r 2

]
dz

2sin(z/2)
=

∫
T

OpBW
(
r−4J′z

(
∆zη

r 2

))[
δzη

(2sin(z/2))2

]
dz

+OpBW (
V

(
η; x

))
η+R

(
η
)
η,

(4.54)

so that arguing as in order to deduce (4.36)∫
T

OpBW
(
r−4J′z

(
∆zη

r 2

))[
δzη

(2sin(z/2))2

]
dz

= OpBW (
r−4J′0

(
η; x

)) |D|η+OpBW (
A[0]

(
η; x,ξ

))
η+R

(
η
)
η

= OpBW (
r−4J′0

(
η; x

) |ξ|+ A[0]
(
η; x,ξ

))
η+R

(
η
)
η.

(4.55)

Thus, combining Eqs. (4.51) to (4.55) and the paralinearization r−2 = 1+OpBW
(
− 2

(1+2η)2

)
η+R

(
η
)
η derived

using Lemma 3.19 we obtain Eq. (4.42).

4.3 Paralinearization of H
(
η
)

In view of (4.7), putting together the paralinearizations of Sections 4.1 and 4.2, we prove the following.

Lemma 4.10. Let N ∈ N, b ∈ R and ϱ ⩾ 0, for any K ∈ N there exists s0 > 0 and ϵ0 > 0 such that if η, g ∈
B K

s0,R (I ;ϵ0), let H
(
η
)

be as in (4.7) then we have that
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1.

H
(
η
)

g = OpBW (−i sgnξ+ A[−2]
(
η; x,ξ

))
g

+OpBW
(
− g

1+2η
J0 (

η; x
) |ξ|+2V0

(
η, g ; x

)
iξ+ A[0]

(
η, g ; x,ξ

))
η+R

(
η, g

)[η
g

]
·
[

1
1

]
, (4.56)

where

• J0
(
η; x

) ∈FR
K ,0,1 [ϵ0, N ] and is explicitly defined in (4.40);

• V0
(
η,∂−1

x g ; x
)
≜ 1

2 D0
(
η
)

g ∈ΣFR
K ,0,1 [ϵ0, N ], cf. (1.5);

• A[m]
(
η, g ; x,ξ

) ∈ΣΓm
K ,0,1 [ϵ0, N ];

• R
(
η, g

) ∈ΣR−ϱ
K ,0,1 [ϵ0, N ].

2.

H
(
η
)

[1] = OpBW

(
−J0

(
η; x

)
1+2η

|ξ|+ i Ṽ
(
η; x

)
ξ+ A[0]

(
η; x,ξ

))
η+R

(
η
)[
η
]

, (4.57)

where

• J0
(
η; x

) ∈FR
K ,0,1 [ϵ0, N ] and is explicitly defined in (4.40);

• Ṽ
(
η; x

)
≜D0

(
η
)

[1] ∈ΣFR
K ,0,0 [ϵ0, N ] with Ṽ (0; x) ≡ 1;

• A[0]
(
η; x,ξ

) ∈ΣΓ0
K ,0,1 [ϵ0, N ];

• R
(
η
) ∈ΣR−ϱ

K ,0,1 [ϵ0, N ].

Proof. We use now the expression in Eq. (4.7) and Propositions 4.6 and 4.8 as well as Proposition 3.15 and
obtain that

H
(
η
)

g = OpBW
(
−i

(
1+K0 (

η; x
)+ ηx

r 2 J0 (
η; x

))
sgnξ+ A[−2]

(
η; x,ξ

))
g

+OpBW
( g

r 2

(
K′0 (

η; x
)+ ηx

r 2 J′0
(
η; x

)) |ξ|+ i V0
(
η,∂−1

x g ; x
)
ξ+ A[0]

(
η, g ; x,ξ

))
η+R

(
η, g

)[η
g

]
·
[

1
1

]
. (4.58)

Notice that in order to deduce (4.58) we used the fact that D0
(
η
)

g ∈ΣFR
K ,0,1 [ϵ0, N ], which stems immediately

from the paralinearization provided in Proposition 4.8, Item 1, next we relabeled 1
2 D0

(
η
)

g =V0
(
η,∂−1

x g ; x
)
.

Next we use Equations (4.10), (4.40) and (4.41) and obtain that

K0 (
η; x

)+ ηx

r 2 J0 (
η; x

)= 0,

K′0 (
η; x

)+ ηx

r 2 J′0
(
η; x

)= −J0 (
η; x

)
.

Thus, transforming (4.58) into (4.56). The proof of (4.57) is almost identical to the proof of (4.56) and is
hence omitted.

4.4 Proof of Theorem 4.2

We can finally paralinearize Eq. (1.9). We use Equations (4.56) and (4.57), we set g = ∂xψ and Proposi-
tion 3.15 in order to obtain, from (1.9), that

ηt = OpBW
(
−|ξ|

2
+ A[−2]

(
η; x,ξ

))
ψ

+OpBW
(

1

2
Bb

(
η,ψ; x

) |ξ|− i Vb

(
η,ψ; x

)
ξ+ A[0]

(
η,ψ; x,ξ

))
η+R

(
η,ψ

)[
η+ψ]

,
(4.59)

where

Bb

(
η,ψ; x

)
≜B0

(
η,ψ; x

)+bB̃
(
η; x

)
, B0

(
η,ψ; x

)
≜

ψx

1+2η
J0 (

η; x
)

, B̃
(
η; x

)
≜

J0
(
η; x

)
1+2η

(4.60)
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and

Vb

(
η,ψ; x

)
≜

1

2
D0

(
η
)[
b+ψx

]− b

2
.

Let us now paralinearize the term

−b+ψx

2
D0

(
η
)[
b+ψx

]
.

We apply Lemma 3.16 and obtain that

−ψx

2
D0

(
η
)[
b+∂xψ

]= OpBW
(
−ψx

2

)[
D0

(
η
)[
b+∂xψ

]]−OpBW
(D0

(
η
)[
b+∂xψ

]
2

)[
ψx

]
+R1

(
−ψx

2

)[
D0

(
η
)[
b+∂xψ

]]+R2
(
D0

(
η
)[
b+∂xψ

])[−ψx

2

]
.

(4.61)

Recall that
D0(η)[b+∂xψ]

2 =Vb

(
η,ψ; x

)
, so that we can apply Propositions 3.15 and 3.17 and obtain that

OpBW
(
−D0

(
η
)[
b+∂xψ

]
2

)[
ψx

]= OpBW (−i Vb

(
η,ψ; x

)
ξ
)
ψ+R

(
η,ψ

)
ψ,

R1

(
−ψx

2

)[
D0

(
η
)[
b+∂xψ

]]+R2
(
D0

(
η
)[
b+∂xψ

])[−ψx

2

]
= R

(
η,ψ

)[η
ψ

]
·
[

1
1

]
.

(4.62)

Next we apply the paralinearization stated in Proposition 4.8 and the composition theorems in Proposi-
tions 3.15 and 3.17 and obtain that

OpBW
(
−ψx

2

)[
D0

(
η
)[
b+∂xψ

]]= OpBW
(
−1

2

ψx

1+2η
J0 (

η; x
) |ξ|+ A[−2]

(
η; x,ξ

))
ψ

+OpBW
(
−1

2

ψx
(
b+ψx

)
1+2η

J′0
(
η; x

) |ξ|+ A[0]
(
η,ψ; x,ξ

))
η+R

(
η,ψ

)[η
ψ

]
·
[

1
1

]
, (4.63)

so, using (4.60), we obtain that

OpBW
(
−ψx

2

)[
D0

(
η
)[
b+∂xψ

]]= OpBW
(
−1

2
B0

(
η,ψ; x

) |ξ|+ A[−2]
(
η; x,ξ

))
ψ

+OpBW
(
−1

2

ψx
(
b+ψx

)
1+2η

J′0
(
η; x

) |ξ|+ A[0]
(
η,ψ; x,ξ

))
η+R

(
η,ψ

)[η
ψ

]
·
[

1
1

]
. (4.64)

We invoke now Proposition 4.8 and obtain, using the notation introduced in (4.60), that

− b

2
D0

(
η
)[
b+ψx

]= OpBW
(
−b

2
B̃

(
η; x

) |ξ|+ A[−2]
(
η; x,ξ

))
ψ

− b2

2
+OpBW

(
b2(

1+2η
) − b

2

b+ψx(
1+2η

)2 J
′0 (
η; x

) |ξ|+ A[0]
(
η,ψ; x,ξ

))
η+R

(
η,ψ

)[η
ψ

]
·
[

1
1

]
. (4.65)

Notice that using Eqs. (4.61) and (4.62) we obtain that

−b+ψx

2
D0

(
η
)[
b+ψx

]=−b
2

D0
(
η
)[
b+ψx

]+OpBW
(
−ψx

2

)[
D0

(
η
)[
b+∂xψ

]]
+OpBW (−i Vb

(
η,ψ; x

)
ξ
)
ψ+R

(
η,ψ

)[η
ψ

]
·
[

1
1

]
.

(4.66)

From Equations (4.40) and (4.41) we obtain the relation

J′0
(
η; x

)= 2
(
1+2η

)4((
1+2η

)2 +η2
x

)2 − (
J0 (

η; x
))2

(4.67)

so that using Eqs. (4.60), (4.64), (4.65) and (4.67) and denoting with

Wb

(
η,ψ; x

)
≜W0

(
η,ψ; x

)+bW̃
(
η; x

) ∈ΣFR
K ,0,0 [ϵ0, N ] , (4.68)
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where

W0
(
η,ψ; x

)
≜

ψx
(
1+2η

)(
1+2η

)2 +η2
x

∈ΣFR
K ,0,1 [ϵ0, N ] , W̃

(
η; x

)
≜

1+2η(
1+2η

)2 +η2
x

∈ΣFR
K ,0,0 [ϵ0, N ] , (4.69)

we obtain that

− b

2
D0

(
η
)[
b+ψx

]+OpBW
(
−ψx

2

)[
D0

(
η
)[
b+∂xψ

]]=−b
2

2
+OpBW

(
−1

2
Bb

(
η,ψ; x

) |ξ|+ A[−2]
(
η; x,ξ

))
ψ

+OpBW
(

b2(
1+2η

) − 1

2

(
W 2

b

(
η,ψ; x

)−B 2
b

(
η,ψ; x

)) |ξ|+ A[0]
(
η,ψ; x,ξ

))
η+R

(
η,ψ

)[η
ψ

]
·
[

1
1

]
. (4.70)

We thus insert (4.70) in (4.66) and obtain that

−b+ψx

2
D0

(
η
)[
b+ψx

]= − b2

2
+OpBW

(
−1

2
Bb

(
η,ψ; x

) |ξ|− i Vb

(
η,ψ; x

)
ξ+ A[−2]

(
η; x,ξ

))
ψ

+OpBW
(

b2(
1+2η

) − 1

2

(
W 2

b

(
η,ψ; x

)−B 2
b

(
η,ψ; x

)) |ξ|+ A[0]
(
η,ψ; x,ξ

))
η

+R
(
η,ψ

)[η
ψ

]
·
[

1
1

]
.

(4.71)

An iterated application of Lemma 3.19 give us that

−γK
(
η
)= OpBW (

γ
(
1+f

(
η; x

))(|ξ|2 −1
))
η+R

(
η
)
η,

f
(
η; x

)
≜

(
1+2η(

1+2η
)2 +η2

x

) 3
2

−1 ∈ΣFR
K ,0,1 [ϵ0, N ] .

(4.72)

We can thus now plug Eqs. (4.71) and (4.72) in the second equation of (1.9) (recall that Ω is set in (2.21) in
order to cancel the 0-homogeneous components of the transport) and obtain that

ψt = OpBW
(
−1

2
Bb

(
η,ψ; x

) |ξ|− i Vb

(
η,ψ; x

)
ξ+ A[−2]

(
η; x,ξ

))
ψ

+OpBW
(
γ

(
1+f

(
η; x

))(|ξ|2 −1
)+ b2(

1+2η
) − 1

2

(
W 2

b

(
η,ψ; x

)−B 2
b

(
η,ψ; x

)) |ξ|+ A[0]
(
η,ψ; x,ξ

))
η

+R
(
η,ψ

)[η
ψ

]
·
[

1
1

]
.

(4.73)

Finally, we combine Eqs. (4.59) and (4.73) to obtain (4.1) after a renaming, if needed.

5 Complex Hamiltonian formulation of the Kelvin-Helmholtz equations

We begin with the real Hamiltonian system (2.5), and introduce the following associated complex variables[
η

ψ

]
≜ C

[
v
v̄

]
, C ≜

1p
2

[
1 1
−i i

]
, C−1 = 1p

2

[
1 i
1 −i

]
. (5.1)

Under this change of variables (2.5) is equivalent to[
vt

v̄t

]
= C−1 J∇(η,ψ)H

(
C

[
v
v̄

])
. (5.2)

Defining HC≜H ◦C and noting that [
∂η
∂ψ

]
= 1p

2

[
1 1
i −i

][
∂v

∂v̄

]
,
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we obtain that (5.2) can be written as an Hamiltonian system in the complex coordinates (5.1) as

Vt = JC∇U HC (V ) , V ≜
[

v
v̄

]
, (5.3)

where the complex Poisson tensor (cf. (2.5)) is defined as

JC≜−iJ =
[

0 i
−i 0

]
. (5.4)

Next we define the Fourier symbol

mγ,b (ξ)≜

√
|ξ|

2ωγ,b (ξ)
= 4

√√√√ |ξ|
2
(
γ

(|ξ|2 −1
)−b2

( |ξ|
2 −1

)) ∈ Γ̃−
1
4

0 ,

mγ,b (ξ)−1 =
4

√√√√2
(
γ

(
ξ2 −1

)−b2
( |ξ|

2 −1
))

|ξ| ∈ Γ̃
1
4
0 .

(5.5)

Then, we consider the symplectic matrix

Sγ,b(D)≜
[
mγ,b (D) 0

0 mγ,b (D)−1

]
and Mγ,b (D)≜ Sγ,b(D)◦C. (5.6)

Notice that

Mγ,b (ξ)≜
1p
2

[
mγ,b (ξ) mγ,b (ξ)

−imγ,b (ξ)−1 imγ,b (ξ)−1

]
∈ (
Γ̃1/4

0

)2×2
,

M−1
γ,b (ξ)≜

1p
2

[
mγ,b (ξ)−1 i mγ,b (ξ)
mγ,b (ξ)−1 −i mγ,b (ξ)

]
∈ (
Γ̃1/4

0

)2×2
.

(5.7)

We define the complex coordinates U as

U ≜
[

u
ū

]
≜M−1

γ,b (D)

[
η

ψ

]
= C−1 ◦S−1

γ,b(D)

[
η

ψ

]
. (5.8)

Notation 5.1. Let K ∈N, ϵ0 > 0, m ∈R, N ∈N and 0⩽K ′⩽K . We work on a time interval I = [0,T ] for some
fixed T > 0 to be determined. This latter is a priori implicit but will correspond to cε−(N+1). Moreover, from
now on we denote with

• A[m;K ′] (U ; x,ξ) any generic element in the space ΣΓm
K ,K ′,1 [ϵ0, N ], while A[m;K ′] (U ; x,ξ) is a generic el-

ement of
(
ΣΓm

K ,K ′,1 [ϵ0, N ]
)2×2

such that JCOpBW
(

A[m;K ′] (U ; x,ξ)
)

is lineary Hamiltonian up to homo-

geneity N (cf. Definition A.2), whose explicit expression may vary from line to line. We use as well the
simplified notation A[m;0] (U ; x,ξ)≜ A[m] (U ; x,ξ) and A[m;0] (U ; x,ξ)≜ A[m] (U ; x,ξ);

• R[K ′] (U ) and R [K ′] (U ) any generic element in the space ΣR−ϱ
K ,K ′,1 [ϵ0, N ] and

(
ΣR−ϱ

K ,K ′,1 [ϵ0, N ]
)2×2

re-

spectively, whose explicit expression may vary from line to line. We denote as well R[0] (U ) ≜ R (U )
and R [0] (U )≜R (U ) .

We prove the following:

Proposition 5.2 (Kelvin-Helmholtz equations in complex Hamiltonian coordinates). Let N ∈N, γ> 0, b ∈R
and ϱ⩾ 0, for any K ∈N there exists s0 > 0 and ϵ0 > 0 such that if η,ψ ∈ B K

s0,R (I ;ϵ0) is a solution of Eq. (1.9),
then U defined in (5.8) solves the complex Hamiltonian system

Ut = JC OpBW
(

A 3
2

(U ; x) ωγ,b (ξ)+ A1 (U ; x,ξ)+ A 1
2

(U ; x) |ξ| 1
2 + A[0] (U ; x,ξ)

)
U +R (U )U , (5.9)

where

• JC is defined in Eq. (5.4);
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• A 3
2

(U ; x) ∈
(
ΣFR

K ,0,0 [ϵ0, N ]
)2×2

is defined as

A 3
2

(U , x)≜
[

0 1
1 0

]
+ f

((
Mγ,b (D)U

)
1 ; x

)
2

[
1 1
1 1

]
, (5.10)

where f
(
η; x

)
is defined in Eq. (4.72);

• A1 (U ; x,ξ) ∈
(
ΣΓ1

K ,0,1 [ϵ0, N ]
)2×2

is defined as

A1 (U ; x,ξ)≜−Vb

(
Mγ,b (D)U ; x

)
ξ

[
0 −1
1 0

]
+ Bb

(
Mγ,b (|D|)U ; x

)
2

|ξ|
[

i 0
0 −i

]
,

where Vb

(
η,ψ; x

) ∈ΣFR
K ,0,1 [ϵ0, N ] and Bb

(
η,ψ;ξ

) ∈ΣFR
K ,0,1 [ϵ0, N ] are functions in defined in Eqs. (4.5)

and (4.60);

• A 1
2

(U ; x) ∈
(
ΣFR

K ,0,1 [ϵ0, N ]
)2×2

is defined as

A 1
2

(U , x)≜ A 1
2

(U ; x)

[
1 1
1 1

]
≜

1

2

1√
2γ

(
B 2
b (MU ; x)

2
+ b2

2
f

(
η; x

)−wb (MU ; x)

) [
1 1
1 1

]
, (5.11)

where wb

(
η,ψ; x

)
is defined in Eq. (4.3);

• A[0] (U ; x,ξ) and R (U ) are as in Notation 4.4.

Proof.

Step 1 (Diagonalization of the linear part of (4.1)). We can diagonalize the matrix defined in (2.15) as

Lγ,b (ξ) =Mγ,b (ξ)Dγ,b (ξ)M−1
γ,b (ξ) , Dγ,b (ξ)≜ iωγ,b (ξ)

[
1 0
0 −1

]
∈

(
Γ̃

3
2
0

)2×2

, (5.12)

whereωγ,b (ξ) ∈ Γ̃
3
2
0 are defined in Eq. (2.19). Defining U as in (5.8) where

[
η

ψ

]
solves (2.14), the vector-valued

complex function U solves the diagonal linear system

Ut = Dγ,b (D)U .

In particular thanks to the relation (5.8) combined with (5.5), which implies that mγ,b (|D|) [1] = 0, assure us

that if
(
η,ψ

) ∈ H
s+ 1

4
0 (T;R)× Ḣ s− 1

4 (T;R) then u ∈ H s
0 (T;C) ≃ Ḣ s (T;C) for s > 0.

Next, expanding (5.5) we have that

mγ,b (ξ) = 1(
2γ |ξ|) 1

4

+
(
b

2

)2 1(
2γ |ξ|) 5

4

+mγ,b;− 9
4

(|ξ|) , (5.13)

with mγ,b;− 9
4

(|ξ|) ∈ Γ̃−
9
4

0 .

Notation 5.3. From now on we use the abbreviated notation M ≜ Mγ,b (|D|) defined in (5.7) and m ≜
mγ,b (|D|) defined in (5.8) for the sake of brevity.

Step 2 (Reformulation of Eq. (4.1) in complex coordiantes). Recall the matrix of Fourier symbols Lγ,b in
(2.14) and the matrix of symbols Qγ,b in (4.2); we define

Qγ,b;⩾1
(
η,ψ; x,ξ

)
≜Qγ,b

(
η,ψ; x,ξ

)−Lγ,b (ξ) =
[

0 0
q

(
η,ψ; x,ξ

)
0

]
∈ΣΓ2

K ,0,1 [ϵ0, N ] , (5.14)
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where, from Eqs. (4.2) and (5.20), q (U ; x,ξ) is the real-valued symbol

q
(
η,ψ; x,ξ

)= γ f
(
η; x

)(|ξ|2 −1
)−wb

(
η,ψ; x

) |ξ|+b2
(

1(
1+2η

) −1

)
= γ f

(
η; x

) |ξ|2 −wb

(
η,ψ; x

) |ξ|+q0
(
η,ψ; x,ξ

)
,

(5.15)

with

q0
(
η,ψ; x,ξ

)
≜−γ f(

η; x
)+b2

(
1

1+2η
−1

)
∈ΣΓ0

K ,0,1 [ϵ0, N ] .

Then, by (5.12), Eq. (4.1) becomes[
η

ψ

]
t

−MDγ,b (D)M−1
[
η

ψ

]
= OpBW (

Q γ,b;⩾1
(
η,ψ; x,ξ

)+Bb

(
η,ψ; x

) |ξ|− iVb

(
η,ψ; x

)
IdR2 ξ+ A[0]

(
η,ψ; x,ξ

))[η
ψ

]
+R

(
η,ψ

)[η
ψ

]
.

(5.16)

Since U = M−1
[
η

ψ

]
we can derive the evolution equation for U multiplying (5.16) from the left for M−1

obtaining

Ut −Dγ,b (D)U

=M−1OpBW (
Q γ,b;⩾1 (MU ; x,ξ)+Bb (MU ; x) |ξ|− iVb (MU ; x) IdR2 ξ+ A[0] (MU ; x,ξ)

)
MU

+M−1R (MU )MU .

(5.17)

Recall that M−1 is explicitly defined in (5.7). We have the following relation

M−1
[

A1 A2

A3 A4

]
M=

1

2

[
m−1 A1m+mA4m

−1 + imA3m− im−1 A2m
−1 m−1 A1m−mA4m

−1 + imA3m+ im−1 A2m
−1

m−1 A1m−mA4m
−1 − imA3m− im−1 A2m

−1 m−1 A1m+mA4m
−1 − imA3m+ im−1 A2m

−1

]
. (5.18)

Notice now that given

a (U ; x,ξ) ∈ΣΓma
K ,0,1 [ϵ0, N ] , α (ξ) ∈ Γ̃mα

0 , β (ξ) ∈ Γ̃mβ

0 ,

applying Proposition 3.15 we have that

α (D)OpBW (a (U ; x,ξ))β (D) = OpBW
(

a (U ; x,ξ)α (ξ)β (ξ)+ 1

2i
(a (U ; x,ξ))x

(
αξ (ξ)β (ξ)−α (ξ)βξ (ξ)

))
+OpBW

(
ΣΓ

ma+mα+mβ−2
K ,0,1 [ϵ0, N ]

)
+ΣR−ϱ

K ,0,1 [ϵ0, N ] .
(5.19)

Then, applying (5.18), we have that

M−1OpBW (
Q γ,b;⩾1 (MU ; x,ξ)

)
M = i

2
m OpBW (

q(U ; x,ξ)
)
m

[
1 1
−1 −1

]
, (5.20)

where q (U ; x,ξ) is the real valued symbol in (5.15) evaluated at (η,ψ) =MU . We apply Equation (5.19) and
obtain that

m OpBW (
q (U ; x,ξ)

)
m= OpBW

(
q (U ; x,ξ)m2

γ,b (ξ)+ A[− 1
2

] (U ; x,ξ)
)
+R (U ) . (5.21)

Thus, combining Eqs. (5.20) and (5.21), we obtain

M−1OpBW (
Q γ,b;⩾1 (MU ; x,ξ)

)
M

= i

2

(
OpBW

(
q(U ; x,ξ)m2

γ,b (ξ)+ A[− 1
2

] (U ; x,ξ)
)
+R (U )

)[
1 1
−1 −1

]
.

(5.22)
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Next we apply Eqs. (5.18) and (5.19) to the matrix-valued symbol Bb (MU ; x) |ξ| defined in (4.4) and obtain
that

M−1OpBW (Bb (MU ; x) |ξ|)M

= 1

2
OpBW (Bb (MU ; x) |ξ|)

[
0 1
1 0

]
+ i

4
OpBW

(
B 2
b (MU ; x) |ξ|m2

γ,b (ξ)
)[

1 1
−1 −1

]
+OpBW (

A[0] (U ; x,ξ)
)+R (U ) .

(5.23)

The same procedure give us the conjugations

M−1OpBW (iVb (MU ; x)ξ)IdR2M= OpBW (iVb (MU ; x)ξ)IdC2 +OpBW (
A[0] (U ; x,ξ)

)+R (U ) ,

M−1OpBW (
A[0] (MU ; x,ξ)

)
M= OpBW (

A[0] (U ; x,ξ)
)+R (U ) ,

(5.24)

while Proposition 3.17 implies that
M−1R (MU )M⇝R (U ) . (5.25)

We plug Equations (5.22) to (5.25) in Equation (5.17) and obtain that

Ut −Dγ,b (D)U = OpBW

(
2∑
j=0

ANH
3−j

2

(U ; x,ξ)+ A[0] (U ; x,ξ)

)
U +R (U )U , (5.26)

with

ANH
3−j

2

(U ; x,ξ) ∈
(
ΣΓ

3−j
2

K ,0,1 [ϵ0, N ]

)2×2

,

and are explicitly defined as

ANH
3
2

(U ; x,ξ)≜
i

2
q(U ; x,ξ)m2

γ,b (ξ)

[
1 1
−1 −1

]
,

ANH
1 (U ; x,ξ)≜− iVb (MU ; x)ξ

[
1 0
0 1

]
+ Bb (MU ; x)

2
|ξ|

[
0 1
1 0

]
,

ANH
1
2

(U ; x,ξ)≜
i

4
B 2
b (MU ; x) |ξ|m2

γ,b (ξ)

[
1 1
−1 −1

]
.

(5.27)

We now expand the symbols in (5.27) in decreasing para-differential orders using Eqs. (5.13) and (5.15), thus
obtaining that

q (U ; x,ξ)m2
γ,b (ξ) =

√
γ

2
f

(
η; x

) |ξ| 3
2 + 1√

2γ

((
b

2

)2

f
(
η; x

)−wb (MU ; x)

)
|ξ| 1

2 + A[− 1
2

] (U ; x,ξ) ,

B 2
b (MU ; x) |ξ|m2

γ,b (ξ) = 1√
2γ

B 2
b (MU ; x) |ξ| 1

2 + A[− 1
2

] (U ; x,ξ) .

(5.28)

Thus, inserting (5.28) in (5.27), we obtain that

2∑
j=0

ANH
3−j

2

(U ; x,ξ) =
2∑
j=0

AH
3−j

2

(U ; x,ξ)+ A[− 1
2

] (U ; x,ξ) ,

where

AH
3
2

(U ; x,ξ)≜
i

2

√
γ

2
f

(
η; x

) |ξ| 3
2

[
1 1
−1 −1

]
,

AH
1 (U ; x,ξ)≜ ANH

1 (U ; x,ξ) ,

AH
1
2

(U ; x,ξ)≜
i

2

1√
2γ

(
B 2
b (MU ; x)

2
+

(
b

2

)2

f
(
η; x

)−wb (MU ; x)

)
|ξ| 1

2

[
1 1
−1 −1

]
.

Therefore, (5.26) becomes

Ut −Dγ,b (D)U = OpBW

(
2∑
j=0

AH
3−j

2

(U ; x,ξ)+ A[0] (U ; x,ξ)

)
U +R (U )U . (5.29)
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We now further refine the expression deduced in (5.29) by expressing the leading term as a quasilinear per-
turbation of the unperturbed frequencies ωγ,b (ξ), cf. (2.19). Using (2.20) we have that

AH
3
2

(U ; x,ξ) = i

(
f

(
η; x

)
2

ωγ,b (ξ)+ 1√
2γ

f
(
η; x

)
2

(
b

2

)2

|ξ| 1
2 + A[− 1

2

] (U ; x,ξ)

)[
1 1
−1 −1

]
,

so that, defining

JCA 3
2 ;⩾1 (U , x)≜

f
(
η; x

)
2

[
1 1
−1 −1

]
i ,

JCA 1
2

(U , x)≜
1

2

1√
2γ

(
B 2
b (MU ; x)

2
+2

(
b

2

)2

f
(
η; x

)−wb (MU ; x)

) [
1 1
−1 −1

]
i,

JCA1 (U ; x,ξ)≜AH
1 (U ; x,ξ) ,

we transform (5.29) into

Ut −Dγ,b (D)U

= JC OpBW
(

A 3
2 ;⩾1 (U ; x) ωγ,b (ξ)+ A1 (U ; x,ξ)+ A 1

2
(U ; x) |ξ| 1

2 + A[0] (U ; x,ξ)
)
U +R (U )U .

(5.30)

Next, an explicit computation shows that

Dγ,b (ξ) =ωγ,b (ξ) JC

[
0 1
1 0

]
.

Thus, defining

A 3
2

(U ; x)≜
[

0 1
1 0

]
+ A 3

2 ;⩾1 (U , x) ,

it remains only to show that (5.30) is a complex Hamiltonian system and that JCA[0] (U ; x,ξ) is linearly sym-
plectic. Indeed complex variables transformation M−1

γ,b in (5.8) is the composition of the complex transfor-

mation C−1 in (5.1) and the real symplectic map S−1
γ,b(D), see (5.6). Then the equation for U has the com-

plex Hamiltonian form in (5.3). Then we apply Lemma A.14 to each homogeneous component in (5.30).
As the explicit positive order symbols are linearly symplectic by direct inspections, we eventually replace
A[0] (U ; x,ξ) as in (A.17) to get a linearly symplectic matrix of symbols. This conclude the proof.

6 Block diagonalization and reduction to constant coefficients

In this section, we perform spectrally localized, linearly symplectic, and bounded transformations to conju-
gate the complex Kelvin-Helmholtz system (5.9) into a diagonal constant-coefficient system, up to a smooth-
ing remainder. Specifically, we prove the following.

Proposition 6.1. Let N ∈ N and ϱ > 3(N +1), there exists K ′ > 0 such that for any K > K ′ there are s0 > 0,
ϵ0 > 0 such that, for any solution U ∈ B K

s0
(I ;ϵ0) solution of (5.9) there exists a real-to-real invertible matrix of

spectrally localized maps B (U ; t ) such that

1. B (U ; t ) , B (U ; t )−1 ∈
(
S0

K ,K ′−1,0 [ϵ0, N ]
)2×2

are linearly symplectic up to homogeneity N , according to

Definition A.4. Moreover, B (U ; t )− Id ∈
(
ΣS

3
2 (N+1)

K ,K ′−1,1 [ϵ0, N ]

)2×2

;

2. The variable W ≜B (U ; t )U solves

Wt = OpBW
vec

(
i
[

(1+v (U ; t ))ωγ,b (ξ)+Vb (U ; t )ξ+b 1
2

(U ; t ) |ξ| 1
2 +b0 (U ; t ,ξ)

])
W +RRR (U ; t )W, (6.1)

where
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• ωγ,b (ξ) ∈ Γ̃
3
2
0 is defined in (2.19);

• v (U ; t ) ∈ΣFR
K ,0,2 [ϵ0, N ] and is independent of x;

• Vb (U ; t ) ∈ΣFR
K ,1,2 [ϵ0, N ] and is independent of x;

• b 1
2

(U ; t ) ∈ΣFR
K ,2,2 [ϵ0, N ] and is independent of x;

• b0 (U ; t ,ξ) ∈ΣΓ0
K ,K ′,2 [ϵ0, N ], is independent of x and such that Imb0 (U ; t ,ξ) ∈ Γ0

K ,K ′,N+1 [ϵ0];

• RRR (U ; t ) ∈
(
ΣR−ϱ+3(N+1)

K ,K ′,1 [ϵ0, N ]
)2×2

.

The rest of the section is devoted to the proof of Proposition 6.1. The procedure is now rather classical
so we state the main steps, for the missing details, we refer the interested reader to [25, Section 6].

6.1 A complex Alinhac Good Unknown

We first perform a change of variable, known as Alinhac good unknown that cancels the anti-diagonal terms
of order one in (5.9).

Lemma 6.2 (Alinhac Good Unknown for the Kelvin-Helmholtz equations in complex coordinates). Let N ∈
N, γ> 0, b ∈R and ϱ⩾ 0, for any K ∈N there exists s0 > 0 and ϵ0 > 0 such that if U ∈ B K

s0
(I ;ϵ0) solves (5.9) there

exists a real-to-real matrix of operators G(U ) such that

1. G (U ) , G (U )−1 ∈
(
S0

K ,0,0 [ϵ0, N ]
)2×2

are linearly symplectic, according to Definition A.3. Moreover, G (U )−

Id ∈
(
ΣS− 1

2
K ,0,1 [ϵ0, N ]

)2×2

;

2. The variable U0≜G (U )U solves

∂tU0 = JC OpBW
(

A(0)
3
2

(U ; x) ωγ,b (ξ)+ A(0)
1
2

(U ; x) |ξ| 1
2 + A[0;1] (U ; x,ξ)

)
U0

−OpBW
vec (iVb (MU ; x)ξ)U0 +R (U )U0,

(6.2)

where

• the symbols A(0)
3
2

≜ A 3
2

, ωγ,b and Vb are the same as in the statement of Proposition 5.2 and A[0;1],

R are as in Notation 5.1;

• A(0)
1
2

∈
(
ΣFR

K ,0,1 [ϵ0, N ]
)2×2

is defined as

A(0)
1
2

(U ; x)≜ A(0)
1
2

(U ; x)

[
1 1
1 1

]
≜

1

2

1√
2γ

(
b2

2
f

(
η; x

)−wb (MU ; x)

) [
1 1
1 1

]
,

where wb

(
η,ψ; x

)
is defined in Eq. (4.3).

Proof. The procedure that we use here is the same as the one proved in [25, Section 6.1], thus we omit to
perform detailed computations, in particular the Item 1 is true by direct computations and the fact that

G (U )− Id ∈
(
ΣS0

K ,0,1 [ϵ0, N ]
)2×2

. This latter fact is a consequence of Lemma 3.7. The only difference, com-

pared to [25], is the symbol A 1
2

(U ; x) |ξ| 1
2 ∈ ΣΓ

1
2
K ,0,1 [ϵ0, N ] appearing in (5.9) and defined explicitly in (5.11),

which shall be treated in detail. Let us define the transformation

G (U )≜ Id− i

2

[
1 1
−1 −1

]
OpBW

(
Bb (MU ; x)m2

γ,b (ξ)
)
. (6.3)

The fact that G (U ) is a nilpotent perturbation of the identity allows us to compute its inverse as

G (U )−1≜ Id+ i

2

[
1 1
−1 −1

]
OpBW

(
Bb (MU ; x)m2

γ,b (ξ)
)
.
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Thus, defining U0≜G (U )U , and using the conjugation rules

G (U ) JCOpBW
(

A 3
2
ωγ,b (ξ)

)
G (U )−1 = JCOpBW

(
A 3

2
ωγ,b (ξ)− i

Bb
2

|ξ|
[

1 0
0 −1

]
+

B2
b

4
m2
γ,b (ξ)

[
1 1
1 1

]
+ A[0]

)
+R (U ) ,

G (U )OpBW
vec (−iVbξ) IdC2G (U )−1 = OpBW

vec (−iVbξ) IdC2 ,

G (U ) JCOpBW
(
i
Bb
2

|ξ|
[

1 0
0 −1

])
G (U )−1 = JCOpBW

(
i
Bb
2

|ξ|
[

1 0
0 −1

]
−

B2
b

2
m2
γ,b (ξ)

[
1 1
1 1

]
+ A[0]

)
+R (U ) ,

(6.4)

we get, using also Eqs. (5.13) and (6.4),

G (U ) JCOpBW
(

A 3
2
ωγ,b (ξ)+ A1

)
G (U )−1 = JCOpBW

(
A 3

2
ωγ,b (ξ)− 1√

2γ

B 2
b

4
|ξ| 1

2

[
1 1
1 1

]
+ A[0]

)
+OpBW

vec (−iVbξ)+R (U ) .

(6.5)

Due to the particular nilpotent structure of JCOpBW
(

A 1
2

(U ; x) |ξ| 1
2

)
and G(U )− Id, the conjugation for the

symbol of order 1/2 explicitly given by

G (U ) JCOpBW
(

A 1
2

(U ; x) |ξ| 1
2

)
G (U )−1 = JCOpBW

(
A 1

2
(U ; x) |ξ| 1

2

)
. (6.6)

Remark that there is a cancellation of the terms of the form |ξ| 1
2 between (5.11) and (6.5) leading the the

expression of A(0)
1
2

in the statement. Moreover, we have

G (U )Ut = ∂tU0 − (∂t G (U ))G (U )−1 U0. (6.7)

Hence, from Item 1 and Proposition 3.15, we have that

(∂t G (U ))G (U )−1 = OpBW
(

A[− 1
2 ;1

] (U ; x,ξ)
)
, A[− 1

2 ;1
]≜− i

2

[
1 1
−1 −1

]
∂t Bb (MU ; x)m2

γ,b (ξ). (6.8)

The conjugations proved in Eqs. (6.5) to (6.8) and the computations performed in [25, Section 6.1] conclude
thus the proof of Lemma 6.2. We remark that the zero-th order matrix A[0,1] is the sum of the linearly Hamil-
tonian matrix A[− 1

2 ,1] and the contributions coming from A[0] in Eqs. (6.4) and (6.5). To prove that JCA[0] is
linearly Hamiltonian up to homogeneity N we then apply Lemma A.15 to each homogeneous component
of the operators in Eqs. (6.4) and (6.5) which are linearly Hamiltonian thanks to Lemma A.5.

6.2 Diagonalization at the highest order

In the present section, we diagonalize the quasi-linear contribution

JCOpBW
(

A(0)
3
2

(U ; x)ωγ,b (ξ)

)
,

which reduces to the diagonalization of the matrix

JCA(0)
3
2

(U ; x) = i

[− (1+f (U ; x)) −f (U ; x)
f (U ; x) 1+f (U ; x)

]
, (6.9)

where f (U ; x) is defined in (4.72). The eigenvalues of (6.9) are given by ±i λ (U ; x) where

λ (U ; x)≜
√

1+2f (U ; x) (6.10)

and we have that λ (U ; x)−1 ∈ΣFR
K ,0,1 [ϵ0, N ]. Defining

h≜
1+f+λ√

(1+f+λ)2 −f2
, g≜

−f√
(1+f+λ)2 −f2

,
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the symmetric and symplectic matrix

F ≜
[
h g

g h

]
∈ (
ΣFR

K ,0,0 [ϵ0, N ]
)2×2

, F−1≜
[
h −g
−g h

]
∈ (
ΣFR

K ,0,0 [ϵ0, N ]
)2×2

, (6.11)

which are such that
F − Id, F−1 − Id ∈ (

ΣFR
K ,0,1 [ϵ0, N ]

)2×2
, (6.12)

diagonalize (6.9) in the sense that

F−1 JCA(0)
3
2

F =
[−iλ 0

0 iλ

]
.

We prove the following result.

Lemma 6.3. Let N ∈ N and ϱ > 0, for any K ∈ N∗ there are s0 > 0, ϵ0 > 0 such that, for any solution U ∈
B K

s0
(I ;ϵ0) of (6.2) there exists a real-to-real invertible matrix of spectrally localized mapsΨ1(U ) such that

1. Ψ1(U ), Ψ1(U )−1 ∈
(
S0

K ,0,0 [ϵ0]
)2×2

are linearly symplectic as per Definition A.3. Moreover, Ψ1(U )− Id ∈(
ΣS0

K ,0,1 [ϵ0, N ]
)2×2

.

2. The variable U1≜Ψ1(U )U0 solves

∂tU1 = OpBW
vec

(
i λ (U ; x)ωγ,b (ξ)− i V (1)

b (U ; x)ξ
)

U1

+ JCOpBW
(

A(1)
1
2

(U ; x) |ξ| 1
2 + A[0;1] (U ; x,ξ)

)
U1 +R [1] (U )U1,

(6.13)

where

• ωγ,b (ξ) ∈ Γ
3
2
0 is defined in (2.19);

• λ (U ; x) is defined in (6.10);

• V (1)
b (U ; x) ∈ΣFR

K ,0,1 [ϵ0, N ];

• A(1)
1
2

(U ; x)≜
(
h (U ; x)+g (U ; x)

)2 A(0)
1
2

(U ; x) ∈
(
ΣFR

K ,0,1 [ϵ0, N ]
)2×2

.

Proof. Arguing as in [25, Lemma 6.4] the 1-flowΨ1 (U )≜ Ψτ (U )|τ=0 of∂τΨ
τ (U ) = JCOpBW

([
i log

(
h (U ; x)+g (U ; x)

)
0

0 −i log
(
h (U ; x)+g (U ; x)

)])
Ψτ,

Ψ0 (U ) = Id

(6.14)

is such that

Ψ1 (U ) = OpBW (
F−1 (U ; x)

)+R (U ) , Ψ1 (U )−1 = OpBW (F (U ; x))+R (U ) . (6.15)

Since the generator in (6.14) is linearly Hamiltonian, Lemma A.6 ensures thatΨ1 (U ) is a linearly symplectic,

spectrally localized map in
(
ΣS0

K ,K ′,1[r, N ]
)2×2

. Thus, the new variable U1≜Ψ1 (U )U0 solves (cf. (6.2))

∂tU1 =Ψ1 (U ) JC OpBW
(

A(0)
3
2

(U ; x) ωγ,b (ξ)+ A(0)
1
2

(U ; x) |ξ| 1
2 + A[0;1] (U ; x,ξ)

)
Ψ1 (U )−1 U1

+∂tΨ1 (U )Ψ1 (U )−1 U1 −Ψ1 (U )OpBW (iVb (MU ; x)ξ)Ψ1 (U )−1 U1 +Ψ1 (U )R (U )Ψ1 (U )−1 U1. (6.16)

Following the same computations as in [25, Eq. (6.3)] we have that

Ψ1 (U ) JC OpBW
(

A(0)
3
2

(U ; x) ωγ,b (ξ)

)
Ψ1 (U )−1

= OpBW
(
iλ (U ; x)ωγ,b (ξ)

[−1 0
0 1

]
+ A[− 1

2 ;0
] (U ; x,ξ)

)
+R (U ) .

(6.17)
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Similar computations give us the conjugation

Ψ1 (U ) JC OpBW
(

A(0)
1
2

(U ; x) |ξ| 1
2

)
Ψ1 (U )−1

= JCOpBW
((
h (U ; x)+g (U ; x)

)2 A(0)
1
2

(U ; x) |ξ| 1
2 + A[− 1

2 ;0
] (U ; x,ξ)

)
+R (U )

(6.18)

and
Ψ1 (U )OpBW (

A[0;1] (U ; x,ξ)
)
Ψ1 (U )−1 = OpBW (

A[0;1] (U ; x,ξ)
)+R (U ) , (6.19)

while from Eqs. (6.12) and (6.15) we obtain that

∂tΨ1 (U )Ψ1 (U )−1 = OpBW (
A[0;1] (U ; x,ξ)

)+R [1] (U ) , (6.20)

and standard symbolic computations (cf. Proposition 3.15 and Eq. (6.15)) give that

Ψ1 (U )OpBW
vec (iVb (U ; x)ξ)Ψ1 (U )−1 = OpBW

vec

(
iV (1)

b (U ; x)ξ
)
+R (U ) , V (1)

b (U ; x) ∈ΣFR
K ,0,1 [ϵ0, N ] . (6.21)

We conclude plugging Eqs. (6.17) to (6.21) in Eq. (6.16). We remark that the zero-th order matrix A[0,1] is
the sum of A[− 1

2 ;0] form Eqs. (6.17) and (6.18) and A[0;1] from Eqs. (6.19) and (6.20). To prove that JCA[0;1] is
linearly symplectic we then apply Lemma A.15 to each homogeneous components of the spectrally localized
operators in Eqs. (6.17) to (6.20), which are linearly Hamiltonian thanks to Lemma A.5.

6.3 Reduction to constant coefficients at the highest order

Lemma 6.4 (Reduction of the highest order). Let N ∈ N and ϱ > 2(N + 1). Then for any K ∈ N∗ there are
s0 > 0, ϵ0 > 0 such that for any solution U ∈ B K

s0
(I ;ϵ0) of (6.13), there exists a real-to-real invertible matrix of

spectrally localized mapsΨ2(U ) satisfying

1. Ψ2(U ),Ψ2(U ) ∈
(
S0

K ,0,0[ϵ0]
)2×2

are linearly symplectic as per Definition A.3. Moreover, Ψ2(U )− Id ∈(
ΣSN+1

K ,0,2[ϵ0, N ]
)2×2

;

2. The variable U2≜Ψ2(U )U1 solves the system

∂tU2 = OpBW
vec

(
i
[

(1+v(U ))ωγ,b (ξ)−V (2)
b (U ; x)ξ

])
U2

+ JCOpBW
(

A(2)
1
2

(U ; x) |ξ| 1
2 + A[0;1](U ; x,ξ)

)
U2 +R(U )U2,

(6.22)

where

• v(U ) is a x-independent function in ΣFR
K ,0,2[ϵ0, N ] and ωγ,b(ξ) is defined in (2.19);

• V (2)
b (U ; x) is a real valued function in

(
ΣFR

K ,1,1[ϵ0, N ]
)2

;

• A(2)
1
2

(U ; x)≜ A(2)
1
2

(U ; x)

[
1 1
1 1

]
where A(2)

1
2

(U ; x) ∈
(
ΣFR

K ,0,1 [ϵ0, N ]
)2×2

;

• R (U ) ∈ΣR−ϱ+2(N+1)
K ,1,1 [ϵ0, N ].

Proof. We refer the interested reader to [25, Lemma 6.7], the only difference being the conjugation of the
term of order 1/2, which is achieved by standard paracomposition theorems, such as [18, Theorem 3.27].
Notice that the conjugation worsens the regularizing properties of the smoothing operator in Eq. (6.22).
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6.4 Diagonalization up to smoothing remainders

In this section we block-diagonalize the Kelvin-Helmholtz system up to a smoothing remainder.

Lemma 6.5 (Diagonalization to arbitrary order). Let N ∈ N and ϱ≫ N . Then for any n ∈ N∪ {−1}, there
exists K ′ ≜ K ′(n) ⩾ 0 such that for all K ⩾ K ′ + 1, there exist s0 > 0 and ϵ0 > 0 such that for any solution
U ∈ B K

s0,R (I ;ϵ0) of Eq. (6.22), there exists a real-to-real invertible matrix of spectrally localized maps Φn(U )
satisfying

1. Φn(U ),Φn(U )−1 ∈
(
S0

K ,0,0[ϵ0]
)2×2

are linearly symplectic up to homogeneity N as per Definition A.4.

Moreover,Φn(U )− Id ∈
(
ΣS0

K ,K ′,1[r, N ]
)2×2

;

2. The variable Un+3≜Φn(U )U2 solves

∂tUn+4 = OpBW
vec

(
i
[

(1+v(U ))ωγ,b (ξ)−V (2)
b (U ; x)ξ+a(n)

1/2 (U ; x) |ξ| 1
2 +a(n)

0 (U ; x,ξ)
])

Un+3

+ JCOpBW (
A[−n;K ′+1] (U ; x,ξ)

)
Un+3 +R (U )Un+3,

(6.23)

where

• a(n)
1
2

(U ; x) ∈FR
K ,0,1 [ϵ0, N ],

• a(n)
0 (U ; x,ξ) is a symbol in ΣΓ0

K ,K ′,1[ϵ0, N ] with Ima(n)
0 (U ; x,ξ) ∈ Γ0

K ,K ′,N+1[ϵ0],

• R (U ) ∈ΣR−ϱ+2(N+1)
K ,1,1 [ϵ0, N ].

Proof.

Step 1 (Reduction of the term of order 1/2). Notice that the term of order 1/2 can be written as

JCA(2)
1
2

(U ; x) |ξ|1/2 =−ia(−1)
1/2 (U ; x)

[
1 1
−1 −1

]
|ξ| 1

2 , a(−1)
1/2 (U ; x) ∈ΣFR

K ,0,1 [ϵ0, N ] .

Let now

F (−1) (U ; x,ξ)≜
[

0 F (−1) (U ; x,ξ)
F (−1) (U ; x,ξ) 0

]
, F (−1) (U ; x,ξ)≜

a(−1)
1/2 (U ; x) |ξ|1/2

2(1+v (U ))ωγ,b (ξ)
∈ΣΓ−1

K ,0,1 [ϵ0, N ]

and let
(
Φτ

F (−1) (U )
)
|τ|⩽1

be the flow generated by OpBW
(
F (−1) (U ; x,ξ)

)
with initial conditionΦ0

F (−1) (U ) = Id as

per Lemma A.6. We denote withΦ (U )≜Φ1
F (−1) (U ). Since F (−1) is linearly Hamiltonian, Lemma A.6 ensures

thatΦ (U ) is a linearly symplectic, spectrally localized map in
(
ΣS0

K ,K ′,1[r, N ]
)2×2

. Let us define

U3≜Φ
1
F (−1) (U )U2 =Φ (U )U2,

which is the solution of

∂tU3 =Φ (U )OpBW
vec

(
i
[

(1+v(U ))ωγ,b (ξ)−V (2)
b (U ; x)ξ

])
Φ (U )−1 U3

+ (∂tΦ (U ))Φ (U )−1 U3 +Φ (U ) JCOpBW
(

A(2)
1
2

(U ; x) |ξ| 1
2 + A[0;1](U ; x,ξ)

)
Φ (U )−1 U3

+Φ (U )R(U )Φ (U )−1 U3.

(6.24)

The following conjugation rule apply (cf. [19, Lemma A.1]) setting F≜OpBW
(
F (−1) (U ; x,ξ)

)
Φ (U ) M (U )Φ (U )−1 = M +

L∑
q=1

1

q !
Adq

F [M]+ 1

L!

∫ 1

0
(1−τ)LΦτ

F (−1) (U )AdL+1
F [M]Φτ

F (−1) (U )−1 dτ, (6.25)

(∂tΦ (U ))Φ (U )−1 = JCOpBW (
A[−1;1] (U ; x,ξ)

)+R [1] (U ) , (6.26)
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An application of Eq. (6.25) for L > 3+2ϱ
4 −1 combined with symbolic calculus considerations give us that

Φ (U )

(
OpBW

vec

(
i (1+v(U ))ωγ,b (ξ)

)+ JCOpBW
(

A(2)
1
2

(U ; x) |ξ| 1
2 + A[0;1](U ; x,ξ)

))
Φ (U )−1

= OpBW
vec

(
i
[

(1+v(U ))ωγ,b (ξ)+a(−1)
1/2 (U ; x) |ξ| 1

2

])
+ JCOpBW (

A[0;1] (U ; x,ξ)
)+R (U ) ,

(6.27)

in which the off-diagonal terms of order 1/2 have been canceled. Applying Eqs. (6.25) to (6.27) to (6.24) (and
renamingΦ (U )R(U )Φ (U )−1⇝R(U ) in light of Proposition 3.17, Item 2 we obtain that

∂tU3 = OpBW
vec

(
i
[

(1+v(U ))ωγ,b (ξ)−V (2)
b (U ; x)ξ+a(2)

1/2 (U ; x) |ξ| 1
2

])
U3

+ JCOpBW (
A[0;1](U ; x,ξ)

)
U3 +R(U )U3.

(6.28)

Notice that the conjugation rule in Eq. (6.25) does not modify the principal symbol of the transport term.
Moreover the zero-th order matrix A[0,1] is the sum of A[−1;1] form Eq. (6.26) and A[0;1] from Eq. (6.27). To
prove that JCA[0;1] is linearly symplectic we then apply Lemma A.15 to each homogeneous components
of the spectrally localized operators in Eqs. (6.26) and (6.27), which are linearly Hamiltonian thanks to
Lemma A.5.

Step 2 (Reduction at non-positive order). We sketch the proof which is very similar to the one outlined
in Step 1, we refer the interested reader to [25, Lemma 6.8]. The proof is performed by induction on n ∈
N, the case n = 0 is proven in Step 1, so that we can consider the case n ⇝ n + 1. Suppose Eq. (6.23)
holds, we have to find a bounded, lineary-symplectic transformation that pushes the off diagonal terms
of JCOpBW

(
A[−n;K ′+1]

)
to lower order, similarly as in was done in Step 1. Since the matrix A[−n;K ′+1] is of the

form

JCA[−n;K ′+1] = JC

[−ib̄∨
[−n] −ā∨

[−n]
−a[−n] ib̄[−n]

]
, a[−n], b̄[−n] ∈ΣΓ−n

K ,K ′+1,1 [ϵ0, N ] , (6.29)

such cancellation is achieved via conjugation by the flow{
∂τΦ

τ
F (n) (U ) = OpBW (

F (n)(U )
)
Φτ

F (n) (U ),

Φ0
F (n) (U ) = Id,

F (n)(U )≜

[
0 f−n− 3

2

f ∨
−n− 3

2

0

]
,

f−n− 3
2

(U ; t , x,ξ)≜− b−n(U ; x,ξ)

2iω(ξ)(1+v(U ))
∈ΣΓ−n− 3

2
K ,K ′+1,1[ϵ0, N ],

and defining the variable Un+4 ≜Φ1
F (n) (U )Un+3 and we refer the reader to [25, Lemma 6.8] for further de-

tails. As the matrix in (6.29) is linearly Hamiltonian up to homogeneity N by inductive hypothesis, the
explicitly defined generator F (n) is linearly Hamiltonian up to homogeneity N as well. Thus Lemma A.6

ensures thatΦτ
F (n) (U ) is a linearly symplectic, spectrally localized map in

(
ΣS0

K ,K ′,1[r, N ]
)2×2

. The bounded,

linearly symplectic transformation is thus defined as

Φn (U )≜
n∏

j=−1
Φ1

F (j) (U ) .

We can thus apply Lemma 6.5 setting n ≜ n1
(
ϱ
)
⩾ −ϱ+ 2(N +1) so that JCOpBW

(
A[−n;K ′+1]

)
can be

incorporated in the smoothing reminder R (U ), thus setting Z ≜Un1+4 we obtain that Z solves the evolution
equation

∂t Z = OpBW
vec

(
i
[

(1+v(U ))ωγ,b (ξ)−V (2)
b (U ; x)ξ+a(n1)

1/2 (U ; x) |ξ| 1
2 +a(n1)

0 (U ; x,ξ)
])

Z +R (U ) Z . (6.30)
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6.5 Reduction to constant coefficients up to smoothing remainders

Notation 6.6. From now on we shall denote functions and symbols that are x-independent with calligraphic
lower- and upper-case letters.

Lemma 6.7. Let N ∈ N and ϱ > 3(N + 1). Then for any n ∈ N there is K ′′ ≜ K ′′ (ϱ,n
) > 0 such that for all

K ⩾K ′′+1 there are s0 > 0, ϵ0 > 0 such that for any solution U ∈ B K
s0,R(I ;ϵ0) of (5.9), there exists a real-to-real

invertible matrix of spectrally localized mapsΘn(U ) such that

1. Θn(U ),Θn(U )−1 ∈
(
S0

K ,K ′′,0[ϵ0]
)2×2

are linearly symplectic up to homogeneity N according to Definition

A.4. Moreover,Θn(U )− Id ∈
(
ΣS

N+1
2

K ,K ′′,1[ϵ0, N ]

)2×2

.

2. If Z solves (6.30) then the variable Zn ≜Θn(U )Z solves

∂t Zn = OpBW
vec

(
id (n)

3/2 (U ; t ,ξ)+ ia− n
2

(U ; t , x,ξ)
)

Zn +RRR(U ; t )Zn , (6.31)

with the x–independent symbol

d (n)
3/2 (U ; t ,ξ)≜ (1+v(U ; t ))ω(ξ)+Vb(U ; t )ξ+b 1

2
(U ; t )|ξ| 1

2 +b(n)
0 (U ; t ,ξ), (6.32)

where

• v(U ) ∈ΣFR
K ,0,2[ϵ0, N ];

• the function V (U ; t ) ∈ΣFR
K ,1,2[ϵ0, N ] is x-independent;

• the function b 1
2

(U ; t ) ∈ΣFR
K ,2,2[ϵ0, N ] is x-independent;

• the symbol b(n)
0 (U ; t ,ξ) ∈ΣΓ0

K ,K ′′,2[ϵ0, N ] is x–independent and its imaginary part Imb(n)
0 (U ; t ,ξ) is

in Γ0
K ,K ′′,N+1[ϵ0];

• the symbol a− n
2

(U ; t , x,ξ) belongs to ΣΓ
− n

2
K ,K ′′+1,1[ϵ0, N ] and its imaginary part Ima− n

2
(U ; t , x,ξ) is

in Γ
− n

2
K ,K ′′+1,N+1[ϵ0];

• RRR(U ; t ) is a real-to-real matrix of smoothing operators in
(
ΣR−ϱ+3(N+1)

K ,K ′′+1,1 [ϵ0, N ]
)2×2

.

Proof. The proof consist of a minor modification of the proof of [25, lemma 6.9], so we refer the interested
reader to [25, lemma 6.9] for details.

Finally we prove Proposition 6.1.

Proof of Proposition 6.1 In Lemma 6.7 we set

n2≜ n2
(
ϱ, N

)
≜ n⩾ 2

(
ϱ+3(N +1)

)
, K ′≜K ′′+1

and we define
W ≜ Zn2 = B (U ; t )U ,

where
B (U ; t )≜Θn2 (U ; t )◦Φn1 (U ; t )◦Ψ2 (U ; t )◦Ψ1 (U ; t )◦G (U ; t ) .

At last we set b(n)
0 ≜ b0 and we conclude.
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7 Hamiltonian Birkhoff normal form and energy estimate

In this section we finally prove the almost global existence Theorem 1.1. The previous reduction broke the
Hamiltonian structure of the system. Therefore, a first step is to recover the complex Hamiltonian formu-
lation through a symplectic correction. The corresponding result is stated in Proposition 7.1 and serves as
the foundation for the subsequent normal form analysis. Then, in the technical subsection 7.1, we intro-
duce the class of super-action preserving Hamiltonians that play a central role in the forthcoming analysis,
as they do not contribute to the energy estimate. Next, in Section 7.2, we perform a Birkhoff normal form
procedure, which extracts the Hamiltonian super-action preserving property up to homogeneity N +1, for
a given fixed integer N . Finally, we implement in Section 7.3 the energy estimate allowing to conclude the
desired Theorem.

The transformation B (U ) in Proposition 6.1 destroyed the Hamiltonian property of the system. However
B (U ) was still linearly symplectic and therefore, we can recover the complex Hamiltonian structure by ap-
plying the abstract Darboux Theorem of Berti-Maspero-Murgante [25, Theorem 7.1], see also Theorem A.16.
The corresponding result states as follows.

Proposition 7.1 (Hamiltonian reduction up to smoothing operators). Let N ∈N and ϱ> ϱ(N )≜ 3(N +1)+
3
2 (N + 1)3. Then, for any K ⩾ K ′ (fixed in Proposition 6.1) there is s0 > 0,ϵ0 > 0, such that for any solution
U ∈ B K

s0,R(I ;ϵ0) of (5.9), there exists a real-to-real matrix of pluri–homogeneous smoothing operators RRR(U ) in(
ΣN

1 R̃−ϱ′
q

)2×2
for any ϱ′⩾ 0, such that defining

Z0≜
(
Id+R(Φ(U ))

)
Φ(U ), Φ(U )≜B (U ; t )U , (7.1)

where B (U ; t ) is defined in Proposition 6.1, the following holds true:

i Symplecticity: The non-linear map
(
Id+R(·))◦Φ in (7.1) is symplectic up to homogeneity N according to

Definition A.11.

ii Conjugation: The variable Z0 solves the Hamiltonian system up to homogeneity N (cfr. Definition A.10).

∂t Z0 = iωγ,b(D)Z0 +OpBW
vec

(
i(d 3

2
)⩽N (Z0;ξ)+ i(d 3

2
)>N (U ; t ,ξ)

)
Z0 +RRR⩽N (Z0)Z0 +RRR>N (U ; t )U , (7.2)

where

• ωγ,b(D)≜OpBW
vec

(
ωγ,b(ξ)

)
is a matrix in the space

(
Γ3/2

0

)2×2
;

• (d 3
2

)⩽N is a pluri-homogeneous, real valued symbol, independent of x, in ΣN
2 Γ̃

3
2
q ;

• (d 3
2

)>N is a non–homogeneous symbol, independent of x, in Γ
3
2

K ,K ′,N+1
[ϵ0] with imaginary part

Im(d 3
2

)>N in Γ0
K ,K ′,N+1

[ϵ0];

• R⩽N (Z0) is a real-to-real matrix of smoothing operators in
(
ΣN

1 R̃−ϱ+ϱ(N )
q

)2×2
;

• R>N (U ; t ) is a real-to-real matrix of non–homogeneous smoothing operators in
(
R−ϱ+ϱ(N )

K ,K ′,N+1
[ϵ0]

)2×2
.

iii Boundedness: The variable Z0 = M0(U ; t )U with M0(U ; t ) ∈
(
M0

K ,K ′−1,0
[ϵ0]

)2×2
and for any s ⩾ s0, there

is 0 < ϵ0(s) < ϵ0, such that for any U ∈ B K
s0

(I ;ϵ0)∩C K
∗R(I ; Ḣ s(T,C2)), there is a constant C ≜Cs,K > 0 such

that, for all k = 0, . . . ,K −K ′,
C−1∥U∥k,s ⩽ ∥Z0∥k,s ⩽C∥U∥k,s . (7.3)
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7.1 Super-action preserving symbols and Hamiltonians

In this section we define the special class of “super–action preserving" SAP homogeneous symbols and
Hamiltonians which will appear in the Birkhoff normal form reduction of the Section 7.2.

Definition 7.2. (SAPmonomial) Let p ∈N∗. Given (⃗ ȷ , σ⃗) = ( ja ,σa)a=1,...,p ∈ (Z∗)p×{±}p we define the multi-
index (α,β) ∈NZ∗ ×NZ∗

with components, for any k ∈Z∗,

αk (⃗ ȷ , σ⃗)≜ #
{

a = 1, . . . , p : ( ja ,σa) = (k,+)
}

,

βk (⃗ ȷ , σ⃗)≜ #
{

a = 1, . . . , p : ( ja ,σa) = (k,−)
}

.
(7.4)

We say that a monomial of the form zσ⃗
ȷ⃗
= zσ1

j1
. . . z

σp

jp
is super-action preserving if the associated multi-index

(α,β) = (α(⃗ ȷ , σ⃗),β(⃗ ȷ , σ⃗)) is super-action preserving according to Definition 2.5.

We now introduce the subset Sp of the indexes of Tp composed by super-action preserving indexes

Sp ≜
{

(⃗ ȷ , σ⃗) ∈Tp s.t. (α(⃗ ȷ , σ⃗),β(⃗ ȷ , σ⃗)) ∈NZ∗ ×NZ∗
in (7.4) are super action preserving

}
. (7.5)

We remark that the multi-index (α,β) associated to (⃗ ȷ , σ⃗) ∈ (Z∗× {±})p as in (7.4) satisfies |α+β| = p and

zσ⃗ȷ⃗ = zα z̄β≜
∏

j∈Z\{0}
z
α j

j z j
β j = ∏

n∈N
zαn

n zα−n−n zn
βn z−n

β−n . (7.6)

It turns out

σ⃗ · ω⃗γ,b(⃗ ȷ) =σ1ωγ,b( j1)+·· ·+σpωγ,b( jp ) = (α−β) · ω⃗γ,b =
∑

k∈Z∗
(αk −βk )ωγ,b(k) , (7.7)

where we denote
ω⃗γ,b(⃗ ȷ)≜ (ωγ,b( j1), . . . ,ωγ,b( jp )), ω⃗γ,b≜ {ωγ,b( j )} j∈Z∗ . (7.8)

Remark 7.3. If the monomial zσ⃗
ȷ⃗

is super–action preserving then, for any j ∈ Z∗, the monomial zσ⃗
ȷ⃗

z j z̄ j is

super-action preserving as well.

For any n ∈N∗, we define the super-action

Jn ≜ |zn |2 +|z−n |2. (7.9)

The following is Lemma 7.7 in [25].

Lemma 7.4. The Poisson bracket between a monomial zσ⃗
ȷ⃗

and a super-action Jn , n ∈N, defined in (7.9), is{
zσ⃗ȷ⃗ , Jn

}
= i

(
βn +β−n −αn −α−n

)
zσ⃗ȷ⃗ , (7.10)

where (α,β) = (α(⃗ ȷ , σ⃗),β(⃗ ȷ , σ⃗)) is the multi-index defined in (7.4). In particular a super-action preserving
monomial zσ⃗

ȷ⃗
(according to Definition 7.2) Poisson commutes with any super-action Jn , n ∈N.

We now define a super-action preserving Hamiltonian.

Definition 7.5. (SAPHamiltonian) Let p ∈N. A (p+2)–homogeneous super-action preserving Hamiltonian
H (SAP)

p+2 (Z ) is a real function of the form

H (SAP)
p+2 (Z ) = 1

p +2

∑
(⃗ ȷp+2 ,⃗σp+2)∈Sp+2

H
σ⃗p+2

ȷ⃗p+2
z
σ⃗p+2

ȷ⃗p+2

where Sp+2 is defined as in (7.5). A pluri-homogeneous super-action preserving Hamiltonian is a finite
sum of homogeneous super-action preserving Hamiltonians. A Hamiltonian vector field is super-action
preserving if it is generated by a super-action preserving Hamiltonian.

We now define a super-action preserving symbol.
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Definition 7.6. (SAP symbol) Let p ∈ N and m ∈ R. For p ⩾ 1 a real valued, p–homogeneous super-action
preserving symbol of order m is a symbol m(SAP)

p (Z ;ξ) in Γ̃m
p , independent of x, of the form

m(SAP)
p (Z ;ξ) = ∑

(⃗ ȷp ,⃗σp )∈Sp

M
σ⃗p

ȷ⃗p
(ξ)z

σ⃗p

ȷ⃗p
.

For p = 0 we say that any symbol in Γ̃m
0 is super-action preserving. A pluri-homogeneous super-action

preserving symbol is a finite sum of homogeneous super-action preserving symbols.

Remark 7.7. A super-action preserving symbol has even degree p of homogeneity. Indeed, if z
σ⃗p

ȷ⃗p
is super-

action preserving then (α,β) defined in (7.4) satisfies |α| = |β| and p = |α+β| = 2|α| is even.

Given a super-action preserving symbol we associate a super-action preserving Hamiltonian according
to the following lemma (see Lemma 7.11 in [25]).

Lemma 7.8. Let p ∈ N, m ∈ R. If (m(SAP))p (Z ;ξ) is a p–homogeneous super-action preserving symbol in Γ̃m
p

according to Definition 7.6 then

H (SAP)
p+2 (Z )≜Re

〈
OpBW (

(m(SAP))p (Z ;ξ)
)
z

∣∣ z̄
〉
R

is a (p +2)–homogeneous super-action preserving Hamiltonian according to Definition 7.5.

7.2 Birkhoff normal form reduction

In this section we finally transform the system (7.2) into its Hamiltonian Birkhoff normal form, up to homo-
geneity N .

Proposition 7.9. (Hamiltonian Birkhoff normal form) Let N ∈ N and 0 < β1 < β2 < 4
(
2+p

3
)
. Assume

that the parameter β = b2

γ ∈ [
β1,β2

]
is outside the zero measure set B ⊂ [

β1,β2
]

defined in Proposition 2.6.

Then, there exists ϱ = ϱ(N ) > 0 such that, for any ϱ⩾ ϱ, for any K ⩾ K ′ ≜ K ′(ϱ) (defined in Proposition 6.1),

there exists s0 > 0 such that, for any s ⩾ s0 there is ϵ0≜ ϵ0(s) > 0 such that for all 0 < ϵ0 < ϵ0(s) small enough,
and any solution U ∈ B K

s0
(I ;ϵ0)∩C K

∗R(I ; Ḣ s(T;C2)) of the complex Kelvin-Helmholtz system (5.9), there exists
a non–linear map Fnf(Z0) such that:

i Symplecticity: Fnf(Z0) is symplectic up to homogeneity N (Definition A.11);

ii Conjugation: If Z0 solves the system (7.2) then the variable Z ≜Fnf(Z0) solves the Hamiltonian system
up to homogeneity N (cfr. Definition A.10)

∂t Z = iωγ,b(D)Z + JC∇H (SAP)
3
2

(Z )+ JC∇H (SAP)
−ϱ (Z )+OpBW

vec

(
i(d 3

2
)>N (U ; t ,ξ)

)
Z +RRR>N (U ; t )U , (7.11)

where

• H (SAP)
3
2

(Z ) is the super-action preserving Hamiltonian

Re

〈
OpBW

(
(d (SAP)

3
2

)⩽N (Z ;ξ)

)
z

∣∣∣∣ z̄

〉
R

,

with a pluri-homogeneous super-action preserving symbol (d (SAP)
3
2

)⩽N (Z ;ξ) in ΣN
2 Γ̃

3
2
q , according to

Definition 7.6;

• JC∇H (SAP)
−ϱ (Z ) is a super-action preserving, Hamiltonian, smoothing vector field in ΣN+1

3 X̃
−ϱ+ϱ
q (see

7.5);

• (d 3
2

)>N (U ; t ,ξ) is a non–homogeneous symbol in Γ
3
2

K ,K ′,N+1
[ϵ0] with imaginary part Im(d 3

2
)>N (U ; t ,ξ)

in Γ0
K ,K ′,N+1

[ϵ0];
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• RRR>N (U ; t ) is a real-to-real matrix of non–homogeneous smoothing operators in
(
R

−ϱ+ϱ
K ,K ′,N+1

[ϵ0]
)2×2

.

iii Boundedness: There exists a constant C ≜Cs,K > 0 such that for all 0⩽ k ⩽K and any
Z0 ∈ B K

s0
(I ;ϵ0)∩C K

∗R(I ; Ḣ s(T,C2)) one has

C−1∥Z0∥k,s ⩽ ∥Fnf(Z0)∥k,s ⩽C∥Z0∥k,s (7.12)

and
C−1∥U (t )∥Ḣ s ⩽ ∥Z (t )∥Ḣ s ⩽C∥U (t )∥Ḣ s , ∀t ∈ I . (7.13)

Notation 7.10. From now on we denote with RH
p any smoothing remainder in R̃−ϱ

p such that RH
p (Z )Z is a

p +1-homogeneous Hamiltonian vector field, namely RH
p (Z )Z = JC∇Hp+2(Z ) for some p +2 homogeneous

Hamiltonian as per Definition A.8.

Proof of Proposition 7.9. The proof consists in N steps and is analogous to the proof of Proposition 7.12
in [25]. For completeness, we only sketch the main steps and we refer to [25] for a detailed proof.

We first reduce the quadratic terms of the vector field in (7.2).

Step 1: Elimination of the quadratic smoothing remainder in equation (7.2).

The x-independent symbol (d 3
2

)⩽N (Z0;ξ) in (7.2) belongs to ΣN
2 Γ̃

3
2
q and the only quadratic component of the

vector field in (7.2) is RH
1(Z0)Z0 where (recall the notation in (3.18))

RH
1(Z0)≜P1[R⩽N (Z0)] ∈

(
R̃−ϱ+ϱ(N )

1

)2×2
. (7.14)

Since the system (7.2) is Hamiltonian up to homogeneity N , RH
1(Z0)Z0 is a Hamiltonian vector field that we

expand in Fourier coordinates as (recall (3.19))(
RH

1(Z0)Z0
)σ

k = ∑
( j1, j2,k,σ1,σ2,−σ)∈T3

Xσ1,σ2,σ
j1, j2,k (z0)σ1

j1
(z0)σ2

j2
. (7.15)

In order to remove RH
1(Z0)Z0 from (7.2), we perform the change of variable Z1 = F(1)

⩽N (Z0) where F(1)
⩽N (Z0) is

the map given by Lemma A.17 relative to a Hamiltonian smoothing vector field(
GH

1(Z0)Z0
)σ

k = ∑
( j1, j2,k,σ1,σ2,−σ)∈T3

Gσ1,σ2,σ
j1, j2,k (z0)σ1

j1
(z0)σ2

j2
, GH

1(Z0) ∈
(
R−ϱ′

1

)2×2
(7.16)

for some ϱ′ > 0 to be determined. Since GH
1(Z )Z is a Hamiltonian vector field, Lemma A.17 gives by con-

struction that F(1)
⩽N is symplectic up to homogeneity N and it has the form

Z1≜ F(1)
⩽N (Z0) = Z0 +GH

1(Z0)Z0 +F⩾2(Z0)Z0, F⩾2(Z0) ∈
(
ΣN

2 R̃−ϱ′
q

)2×2
. (7.17)

Applying Lemma A.12, we obtain that the variable Z1 solves a system which is Hamiltonian up to homo-
geneity N . We compute it using Lemma B.2. Its assumption (A) at page 65 holds since Z0 solves (7.2). Then
Lemma B.2 implies that the variable Z1 solves

∂t Z1 = iωγ,b(D)Z1 +OpBW
vec

(
i(d 3

2
)+⩽N (Z1;ξ)+ i(d 3

2
)+>N (U ; t ,ξ)

)
Z1

+ [RH
1(Z1)+G+

1 (Z1)]Z1 +R+
⩾2(Z1)Z1 +R+

>N (U ; t )U ,
(7.18)

where

• (d 3
2

)+⩽N (Z1;ξ) is a real valued symbol, independent of x, in ΣN
2 Γ̃

3
2
q ;

• (d 3
2

)+>N (U ; t ,ξ) is a non-homogeneous real valued symbol, independent of x, in Γ
3
2

K ,K ′,N+1
[ϵ0] with imagi-

nary part Im(d 3
2

)>N (U ; t ,ξ) in Γ0
K ,K ′,N+1

[ϵ0];

• RH
1(Z1) is defined in (7.14) and G+

1 (Z1)Z1 ∈ X̃−ϱ′+ 3
2

2 has Fourier expansion, by (B.15) and (7.16),

(G+
1 (Z1)Z1)σk = ∑

( j1, j2,k,σ1,σ2,−σ)∈T3

i
(
σ1ωγ,b( j1)+σ2ωγ,b( j2)−σωγ,b(k)

)
Gσ1,σ2,σ

j1, j2,k (z1)σ1
j1

(z1)σ2
j2

; (7.19)
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• R+
⩾2(Z1) is a matrix of pluri-homogeneous smoothing operators in

(
ΣN

2 R̃
−ϱ+ϱ(2)
q

)2×2
where

−ϱ+ϱ(2)≜−ϱ′+ 3

2
; (7.20)

• R+
>N (U ; t ) is a matrix of non–homogeneous smoothing operators in

(
R

−ϱ+ϱ(2)

K ,K ′,N+1
[ϵ0]

)2×2
.

By (7.15), (7.19) we solve
RH

1(Z1)Z1 +G+
1 (Z1)Z1 = 0 (7.21)

by taking

Gσ1,σ2,σ
j1, j2,k ≜


0, if ( j1, j2,k,σ1,σ2,−σ) ∉T3,

−
Xσ1,σ2,σ

j1, j2,k

i
(
σ1ωγ,b( j1)+σ2ωγ,b( j2)−σωγ,b(k)

) , if ( j1, j2,k,σ1,σ2,−σ) ∈T3 .
(7.22)

The previous expression and the fact that the vector field RH
1(Z0)Z0 is Hamiltonian justifies a posteriori that

indeed GH
1(Z0)Z0 is Hamiltonian. Moreover, combining (7.14) and Proposition 2.6, taking β ∈ [

β1,β2
]

\B, we

get that GH
1(Z0)Z0 ∈ X̃−ϱ′

2 with ϱ′≜ ϱ−ϱ(N )−τ. Thus, by Eq. (7.20), we get ϱ(2) = ϱ(N )+τ+ 3
2 .

Step p ⩾ 2: We now assume that the system is in normal form up to degree p −1 of homogeneity. Next, we
illustrate how to perform the normal form transformation on the terms of degree p. Specifically, we assume
that Zp−1 solves

∂t Zp−1 = iωγ,b(D)Zp−1 + JC∇
(
H (SAP)

3
2

)
⩽p+1(Zp−1)+ JC∇

(
H (SAP)

−ϱ
)
⩽p+1(Zp−1)

+OpBW
vec

(
i(d 3

2
)p (Zp−1;ξ)+ i(d 3

2
)⩾p+1(Zp−1;ξ)

)
Zp−1 +RH

⩾p (Zp−1)Zp−1

+OpBW
vec

(
−i(d 3

2
)>N (U ; t ,ξ)

)
Zp−1 +R>N (U ; t )U , (7.23)

where
(
H (SAP)

3
2

)
⩽p+1,

(
H (SAP)

−ϱ
)
⩽p+1 are pluri-homogeneous super-action preserving Hamiltonians, (d 3

2
)p ∈ Γ̃

3
2
p

and expands as

(d 3
2

)p (Zp−1;ξ) = ∑
(⃗ ȷp ,⃗σp )∈Tp

D
σ⃗p

ȷ⃗p
(ξ) (zp−1)

σ⃗p

ȷ⃗p
, D

−σ⃗p

ȷ⃗p
(ξ) = D

σ⃗p

ȷ⃗p
(ξ). (7.24)

Moreover (d 3
2

)⩾(p+1) ∈ΣN
p+1Γ

3
2
q and RH

⩾p ∈ΣN
p R

−ϱ+ϱ(p)
q . We reduce the homogeneous component

OpBW
vec

(
−i(d 3

2
)p

)
+Rp into its resonant normal form. First of all we define the intermediate variable

W ≜Φp (Zp−1)≜GGG1
gp

(Zp−1)Zp−1, (7.25)

whereGGG1
gp

(Zp−1) is the time 1-linear flow generated by OpBW
vec

(
igp

)
, where gp is the Fourier multiplier

gp (Zp−1;ξ)≜
∑

(⃗ ȷp ,⃗σp )∈Tp

G
σ⃗p

ȷ⃗p
(ξ)(zp−1)

σ⃗p

ȷ⃗p
∈ Γ̃

3
2
p . (7.26)

Then Lemma B.1 implies that the variable W defined in (7.25) solves

∂t W = iωγ,b(D)W + JC∇
(
H (SAP)

3
2

)
⩽p+1(W )+ JC∇

(
H (SAP)

−ϱ
)
⩽p+1(W )

+OpBW
vec

(
i[(d 3

2
)p (W ;ξ)+ g+

p (W ;ξ)]+ i(d 3
2

)+⩾p+1(W ;ξ)
)

W +R⩾p (W )W

+OpBW
vec

(
i(d 3

2
)+>N (U ; t ,ξ)

)
W +R>N (U ; t )U ,

(7.27)

where g+
p expands as

g+
p (W ;ξ) = ∑

(⃗ ȷp ,⃗σp )∈Tp

i⃗σp · ω⃗γ,b(⃗ ȷp )G
σ⃗p

ȷ⃗p
(ξ)w

σ⃗p

ȷ⃗p
, (7.28)
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while R⩾p ∈
(
ΣN

1 R̃
−ϱ+ϱ(p)+c(N ,p)
q

)2×2
, R>N ∈

(
R

−ϱ+ϱ(p)+c(N ,p)

K ,K ′,N+1 [ϵ0]
)2×2

for some c(N , p) > 0. In order to get a

p-homogeneous super-action preserving normal form symbol, we solve the homological equation

(d 3
2

)p (W ;ξ)+ g+
p (W ;ξ) = (d (SAP)

3
2

)p (W ;ξ)≜
∑

(⃗ ȷp ,⃗σp )∈Sp

D
σ⃗p

ȷ⃗p
(ξ) w

σ⃗p

ȷ⃗p
,

where Sp has been introduced in (7.5). One solution is obtained by choosing

G
σ⃗p

ȷ⃗p
(ξ)≜


0, if (⃗ ȷp , σ⃗p ) ∈Sp ,

D
σ⃗p

ȷ⃗p
(ξ)

i⃗σp · ω⃗γ,b(⃗ ȷp )
, if (⃗ ȷp , σ⃗p ) ̸∈Sp .

(7.29)

The previous expression (7.29) and the fact that (d 3
2

)p is real valued justifies a posteriori that indeed gp is

real valued. Moreover, combining estimate (3.5) for (d 3
2

)p and Proposition 2.6, taking β ∈ [
β1,β2

]
\B, we get

that gp satisfies the corresponding estimate (3.5) with µ⇝µ+τ. Now, we observe that, by Lemma A.13,

OpBW
vec

(
i(d (SAP)

3
2

)p (W ;ξ)

)
W = JC∇

(
H (SAP)

3
2

)
p+2(W )+R p (W )W, (7.30)

with Hamiltonian (
H (SAP)

3
2

)
p+2(W )≜Re

〈
OpBW

(
(d (SAP)

3
2

)p (W ;ξ)

)
w, w̄

〉
R

, (7.31)

which is super-action preserving by Lemma 7.8, and a matrix of smoothing operators R p (W ) in
(
R̃−ϱ′

p

)2×2

for any ϱ′⩾ 0. Therefore (7.27) becomes

∂t W =iωγ,b(D)W + JC∇
(
H (SAP)

3
2

)
⩽p+2(W )+ JC∇

(
H (SAP)

−ϱ
)
⩽p+1(W )

+OpBW
vec

(
i(d 3

2
)+⩾p+1(W ;ξ)

)
W + [R⩾p (W )]W

+OpBW
vec

(
i(d 3

2
)+>N (U ; t ,ξ)

)
W +R>N (U ; t )U ,

(7.32)

where (see (7.23),(7.31)) (
H (SAP)

3
2

)
⩽p+2≜

(
H (SAP)

3
2

)
⩽p+1 +

(
H (SAP)

3
2

)
p+2, (7.33)

while R⩾p is a new smoothing remainder in
(
ΣN

1 R̃
−ϱ+ϱ(p)+c(N ,p)
q

)2×2
. Note that the new system (7.32) is not

Hamiltonian up to homogeneity N (unlike system (7.23) for Zp−1), since the mapΦp (Zp−1) =GGG1
gp

(Zp−1)Zp−1

in (7.25) is not symplectic up to homogeneity N . By Lemma A.7 we only know that GGG1
gp

(Zp−1) is linearly
symplectic. We now apply Theorem A.16 to find a correction of Φp (Zp−1) which is symplectic up to ho-
mogeneity N . The assumptions of Theorem A.16 are verified applying Lemma A.7, therefore there exists

R (p)
⩽N ∈

(
ΣN

p R̃
−ϱ− 3

2
q

)2×2

such that the variable

V ≜C(p)
N (W )≜

(
Id+R (p)

⩽N (W )
)
W = (

Id+R (p)
⩽N (Φp (Zp−1))

)
Φp (Zp−1) (7.34)

is symplectic up to homogeneity N , thus solves a system which is Hamiltonian up to homogeneity N . Since

W solves (7.32) then Lemma B.2 implies that V =W +R (p)
⩽N (W )W solves

∂t V =iωγ,b(D)V + JC∇
(
H (SAP)

3
2

)
⩽p+2(V )+ JC∇

(
H (SAP)

−ϱ
)
⩽p+1(V )

+OpBW
vec

(
i(̃d 3

2
)
⩾p+1

(V ;ξ)

)
V + JC∇

(
H−ϱ

)
p+2 (V )+R⩾p+1(V )V

+OpBW
vec

(
i(̃d 3

2
)>N

(U ; t ,ξ)
)

V +R>N (U ; t )U ,

(7.35)

where (̃d 3
2

)
⩾p+1

∈ ΣN
p+1Γ̃

3
2
q , JC∇

(
H−ϱ

)
p+2 ∈ X

−ϱ+ϱ(p)+C (N ,p)
p , R⩾p+1 ∈ ΣN

p R̃
−ϱ+ϱ(p)+C (N ,p). Notice that the

Hamiltonian structure of JC∇
(
H−ϱ

)
p (V ) is justified a posteriori by the fact that the p-homogeneous compo-

nent of the vector field in (7.35) is Hamiltonian and the term in its first line is Hamiltonian, thus we deduce
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the Hamiltonianity by difference. Thus we can proceed as in Step 1. First we Fourier expand JC∇
(
H−ϱ

)
p+2

as (
JC∇

(
H−ϱ

)
p+2 (V )

)σ
k = ∑
(⃗ ȷp+1,k ,⃗σp+1,−σ)∈Tp+2

X
σ⃗p+1,σ
ȷ⃗p+1,k v

σ⃗p+1

ȷ⃗p+1
. (7.36)

Then we use Lemma A.17 to generate a symplectic up to homogeneity N map F (p)
⩽N associate to the Hamil-

tonian smoothing vector field (
G p (V )V

)σ
k = ∑

(⃗ ȷp+1,k ,⃗σp+1,−σ)∈Tp+2

G
σ⃗p+1,σ
ȷ⃗p+1,k v

σ⃗p+1

ȷ⃗p+1
. (7.37)

Applying Lemma B.2 the analogue of the homological equation (7.21) is

JC∇
(
H−ϱ

)
p+2 (Zp )+G+

p (Zp )Zp = JC∇
(
H (SAP)

−ϱ
)

p
(Zp )≜

∑
(⃗ ȷp+1,k ,⃗σp+1,−σ)∈Sp+2

X
σ⃗p+1,σ
ȷ⃗p+1,k (zp )

σ⃗p+1

ȷ⃗p+1
(7.38)

where the vector field G+
p (Zp )Zp is explicitly given by

(G+
p (Zp )Zp )σk ≜

∑
(⃗ ȷp+1,k ,⃗σp+1,−σ)∈Tp+2

i
(
σ⃗p+1 · ω⃗γ,b(⃗ ȷp+1)−σωγ,b(k)

)
G
σ⃗p+1,σ
ȷ⃗p+1,k (zp )

σ⃗p+1

ȷ⃗p+1
.

Then a solution of (7.38) is given by

G
σ⃗p+1,σ
ȷ⃗p+1,k ≜


0, if (⃗ ȷp+1,k, σ⃗p+1,−σ) ∈Sp+2,

−
X
σ⃗p+1,σ
ȷ⃗p+1,k

i(σ⃗p+1 · ω⃗γ,b(⃗ ȷp+1)−σωγ,b(k))
, if (⃗ ȷp+1,k, σ⃗p+1,−σ) ̸∈Sp+2.

(7.39)

The previous expression and the fact that the vector field JC∇
(
H−ϱ

)
p+2 is Hamiltonian justifies a posteriori

that indeed Gp (Zp )Zp is Hamiltonian. Moreover, since JC∇
(
H−ϱ

)
p+2 isϱp -smoothing, we apply Proposition

2.6, taking β ∈ [
β1,β2

]
\B and we get that G p (Zp )Zp ∈ X̃−ϱp+1

2 with ϱp+1≜ ϱp − c(N )−τ.

7.3 Energy estimate and proof of the main Theorem

Remark 7.11. We can derive local existence for (5.9) following the computations in the main result of [23]
and exploiting the fact that the local existence result of [23] uses the very same paradifferential functional
setting as in the present manuscript. Minor modifications in the works [3, 51] can also provide local exis-
tence for the setting of (1.4).

The following result, analogous to [19, Lemma 6.3], enables to bound the norms ∥∂k
t U (t )∥s− 3

2 k of the
time derivatives of a solution U (t ) of (5.9) by ∥U (t )∥s .

Lemma 7.12. Let K ∈ N. There exists s0 > 0 such that for any s ⩾ s0, any ϵ ∈ (
0,ϵ0 (s)

)
small, if U belongs

to B 0
s0,R (I ;ϵ)∩C 0∗

(
I ; Ḣ s

(
T;C2

))
and solves (5.2) then U ∈C K

∗R
(
I ; Ḣ s(T;C2)

)
and there exists C1≜C1 (s,K )⩾ 1

such that
∥U (t )∥s ⩽ ∥U (t )∥K ,s ⩽C1 ∥U (t )∥s , ∀t ∈ I .

Proof. The proof is inductive and follows the same line of [19, Lemma 6.3], so we sketch only the first step.
As ∥U (t )∥s ⩽ ∥U (t )∥K ,s is obvious in view of the definition (3.3), it remains to prove the second inequality.
We start by estimating ∥∂tU (t )∥s− 3

2
. Using equation (5.2) for U (t ) and then (3.13) with k = K ′ = p = 0, m = 3

2
and estimate (3.16) with m⇝−ϱ and k = 0, we get

∥∂tU (t )∥s− 3
2
⩽

∥∥∥OpBW
(

A 3
2

(U ; x) ωγ,b (ξ)+ A1 (U ; x,ξ)+ A 1
2

(U ; x) |ξ| 1
2 + A[0] (U ; x,ξ)

)
U

∥∥∥
s− 3

2

+∥R (U )U∥s− 3
2

≲ ∥U (t )∥s .

The estimates for k ⩾ 2 follow in a similar manner, additionally using estimates (3.13) and (3.16) with k ⩾ 1
to handle higher-order derivatives.
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We fix now the parameters appearing in Proposition 7.9. In its statement, we set ϱ ≜ ϱ(N ) and K ≜
K ′(ϱ), which implies the existence of the constant s0 > 0 which we increase, if necessary, to fit the range of
Lemma 7.12, such that for any s⩾ s0, and any fixed 0 < ϵ0⩽min{ϵ0(s),ϵ0(s)}, where ϵ0(s) is defined in Propo-
sition 7.9, and ϵ0(s) in Lemma 7.12, the conclusions of Proposition 7.9 and Lemma 7.12 hold. Therefore, one
can obtain the following energy estimate. Notice that the time-reversibility of the Kelvin-Helmholtz system
allows us to restrict the discussion to positive times t > 0.

Lemma 7.13 (Energy estimate). Let U (t ) be a solution of equation (5.9) in B K
s0

(I ;ϵ0)∩C K∗
(
I ; Ḣ s

(
T;C2

))
. Then

there exists C̄2 (s) > 1 such that

∥U (t )∥2
s ⩽ C̄2 (s)

(
∥U (0)∥2

s +
∫ t

0
∥U (τ)∥N+1

s0
∥U (τ)∥2

s dτ

)
, ∀0 < t < T. (7.40)

Proof. The variable Z defined in Proposition 7.9 solves the normal form Equation (7.11). Then, denoting by
H (SAP)≜H (SAP)

3
2

+H (SAP)
−ϱ we have that

d

dt
∥Z (t )∥2

s = dZ ∥Z∥2
s

[
iωγ,b(D)Z + JC∇H (SAP) +OpBW

(
i(d 3

2
)>N (U ; t ,ξ)

)
Z +R>N (U ; t )U

]
= ∑

n∈N
|n|2s {

Jn , H (SAP)}
+

〈
|D|2s OpBW

(
−Im

((
d 3

2

)
>N

(U ; t ,ξ)
))

Z
∣∣∣ Z

〉
+2Re

〈|D|2s R>N (U ; t )U
∣∣ Z

〉
≲ ∥U∥N+1

K ′,s0
(∥Z∥s +∥U∥s)∥Z∥s ,

where we used Lemma 7.4 and the fact that −Im
((

d 3
2

)
>N

(U ; t ,ξ)
)

is in Γ0
K ,K ′,N+1[ϵ0] and R>N (U ; t ) is in

M0
K ,K ′,N+1[ϵ0]. Integrating in time the above inequality, then using Eq. (7.13) and Lemma 7.12, we obtain

(7.40).

The energy estimate (7.40) and the equivalence∥∥η (t )
∥∥

H
s+ 1

4
0

+∥∥ψ (t )
∥∥

Ḣ s− 1
4
∼ ∥U (t )∥s , (7.41)

which is a consequence of (5.8), imply, by a standard bootstrap argument, Theorem 1.1. For detailed com-
putations we refer the interested reader to [18, 19, 25].

A Hamiltonian formalism

In this appendix we set the Hamiltonian formalism for the problem at hand, following [25, Section 3].

A.1 Linearly Hamiltonian systems

In this section we provide the linear Hamiltonian framework needed in our analysis. The linear Hamilto-
nian structure is the natural algebraic property that emerges from the paralinearization of an Hamiltonian
system.

Definition A.1 (Linearly Hamiltonian paradifferential operator). A real-to-real matrix of paradifferential
complex operators is linearly Hamiltonian if it is of the form

JCOpBW (B ), B ≜
[

b1 (U ; t , x,ξ) b2 (U ; t , x,ξ)

b2 (U ; t , x,−ξ) b1 (U ; t , x,−ξ)

]
,

{
b1 (U ; t , x,−ξ) = b1 (U ; t , x,ξ) ,

b2 (U ; t , x,ξ) ∈R.
(A.1)

In other words, b1 is even in ξ and b2 is real valued. This is equivalent to require that the matrix valued
paradifferential operator OpBW (B ) is symmetric.

Definition A.2 (Linearly Hamiltonian operator up to homogeneity N ). A real-to-real matrix of spectrally
localized maps JCB(U ; t ) in

(
ΣSK ,K ′,p [ϵ0, N ]

)2×2 is linearly Hamiltonian up to homogeneity N if its pluri-
homogeneous component P⩽N (B(U ; t )) (defined through (3.18)) is symmetric, namely

P⩽N (B(U ; t )) =P⩽N
(
B(U ; t )⊺

)
.
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In particular, a real-to-real matrix of paradifferential operators is linearly Hamiltonian up to homogene-
ity N if it has the form (cfr. (A.1))

JCOpBW
(

b1(U ; t , x,ξ) b2(U ; t , x,ξ)

b2(U ; t , x,−ξ) b1(U ; t , x,−ξ)

)
,

{
b1(U ; t , x,−ξ)−b1(U ; t , x,ξ) ∈ Γm

K ,K ′,N+1[ϵ0],

Imb2(U ; t , x,ξ) ∈ Γm′
K ,K ′,N+1[ϵ0]

(A.2)

for some m,m′ in R.

Definition A.3 (Linearly symplectic map). A real-to-real linear transformation A is linearly symplectic if
A∗ΩC =ΩC, whereΩC is defined as

ΩC

([
u1

ū1

]
,

[
u2

ū2

])
≜

〈
EC

[
u1

ū1

] ∣∣∣∣ [
u2

ū2

]〉
R

, EC≜ J−1
C , (A.3)

namely
A⊤ECA= EC.

Definition A.4. (Linearly symplectic map up to homogeneity N ) A real-to-real matrix of spectrally local-
ized maps S(U ; t ) in

(
ΣSK ,K ′,0[r, N ]

)2×2 is linearly symplectic up to homogeneity N if

S(U ; t )⊤ ECS(U ; t ) = EC+S>N (U ; t ), (A.4)

where E C is the symplectic operator defined in (A.3) and S>N (U ; t ) is a matrix of spectrally localized maps
in

(
SK ,K ′,N+1[ϵ0]

)2×2.

Linearly symplectic maps up to homogeneity N preserve the linear Hamiltonian structure up to homo-
geneity N . The following result is borrowed from [25, Lemma 3.9].

Lemma A.5. Let JCB (U ; t ) be a linearly Hamiltonian operator up to homogeneity N (Definition A.2) and
S(U ; t ) be an invertible map, linearly symplectic to homogeneity N (Definition A.4). Then the operators
S(U ; t )JCB (U ; t )S(U ; t )−1 and (∂t S(U ; t ))S−1(U ; t ) are linearly Hamiltonian up to homogeneity N .

We consider the flow of a linearly Hamiltonian up to homogeneity N paradifferential operator. The
following is Lemma 3.16 of [25].

Lemma A.6. (Linear symplectic flow) Let p ∈N, N ,K ,K ′ ∈Nwith K ′⩽K , m⩽ 1, r > 0. Let

JCOpBW (B ) = OpBW

([
ib∨

2 ib∨
1

ib1 ib2

])
be a linearly Hamiltonian operator up to homogeneity N (Definition A.2) where B is a matrix of symbols

B ≜B (τ,U ; t , x,ξ)≜
(

b1(τ,U ; t , x,ξ) b2(τ,U ; t , x,ξ)

b2(τ,U ; t , x,−ξ) b1(τ,U ; t , x,−ξ)

)
,

{
b1 ∈ΣΓ0

K ,K ′,p [r, N ],

b2 ∈ΣΓm
K ,K ′,p [r, N ],

with b∨
1 −b1 in Γ0

K ,K ′,N+1[ϵ0] and the imaginary part Im b2 in Γ0
K ,K ′,N+1[ϵ0] (cfr. (A.2)) uniformly in |τ|⩽ 1.

Then there exists s0 > 0 such that, for any U ∈ B K
s0,R(I ;r ), the system

∂τGGGτB (U ; t ) = JCOpBW (B (τ,U ; t , x,ξ))GGGτB (U ; t ), GGG0
B (U ; t ) = Id

has a unique solutionGGGτB (U ) defined for all |τ|⩽ 1, satisfying the following properties:

(i) Boundedness: For any s ∈ R the linear map GGGτB (U ; t ) is invertible and GGGτB (U ; t ) and GGGτB (U ; t )−1 are

non–homogeneous spectrally localized maps in
(
S0

K ,K ′,0[ϵ0]
)2×2

according to Definition 3.20.

(ii) Linear symplecticity: The map GGGτB (U ; t ) is linearly symplectic up to homogeneity N (Definition A.4).
If JCOpBW (B) is linearly Hamiltonian (Definition A.1), then GGGτB (U ; t ) is linearly symplectic (Definition
A.3).

61



(iii) Homogeneous expansion: GGGτB (U ; t ) and its inverse are spectrally localized maps and GGGτBBB (U ; t )± − Id

belong to
(
ΣS (N+1)m0

K ,K ′,p [r, N ]
)2×2

with m0≜max(m,0), uniformly in |τ|⩽ 1.

The flow generated by a Fourier multiplier satisfies similar properties. The following is Lemma 3.17
of [25].

Lemma A.7. (Flow of a Fourier multiplier) Let p ∈ N and gp (Z ;ξ) be a p–homogeneous, x-independent,

real symbol in Γ̃
3
2
p . Then, the flowGGGτgp

(Z ) defined by

∂τGGGτgp
(Z ) = OpBW

vec

(
igp (Z ;ξ)

)
GGGτgp

(Z ) , GGG0
gp

(Z ) = Id, (A.5)

is well defined for any |τ|⩽ 1 and satisfies the following properties:

(i ) Boundedness: For any K ∈N and r > 0 the flow GGGτgp
(Z ) and its inverse GGG−τ

gp
(Z ) are real-to-real diagonal

matrix of spectrally localized maps in
(
S0

K ,0,0[ϵ0]
)2×2

.

(i i ) Linear symplecticity: The flow mapGGGτgp
(Z ) is linearly symplectic (Definition A.3).

(i i i ) Homogeneous expansion: The flow map GGGτgp
(Z ) and its inverse GGG−τ

gp
(Z ) are matrices of spectrally lo-

calized maps such thatGGG±τ
gp

(Z )− Id belong to

(
ΣS

3
2 (N+1)

K ,0,p [r, N ]

)2×2

, uniformly in |τ|⩽ 1.

A.2 Non-linear Hamiltonian systems

We first give the definition of p-homogeneous Hamiltonian functions.

Definition A.8 (Homogeneous Hamiltonian). Let p ∈ N, a p + 2-homogeneous Hamiltonian is a function
defined on Ḣ∞(T;C2) with values in Cwhich is real valued for any U ∈ Ḣ∞

R
(T;C2) of the form, c.f. (3.19)

Hp+2(U ) = 〈Mp (U )U ,U 〉 = ∑
(⃗ ȷ ,⃗σ)∈Tp+2

H σ⃗
ȷ⃗ uσ⃗

ȷ⃗ , Mp (U ) ∈
(
M̃m

p

)2×2
(A.6)

for some m ∈ R and complex valued coefficients H σ⃗
ȷ⃗
= H

σ1,...,σp+2

j1,..., jp+2
. A pluri-homogeneous Hamiltonian is a

polynomial of the form

H(U ) =
N∑

p=0
Hp+2(U ), (A.7)

where, for p = 0, . . . , N , Hp+2 is a p +2-homogeneous Hamiltonian.

From the definition the coefficients in (A.6) satisfy the following:

1. Symmetry restrictions: for any σ⃗= (σ1, . . . ,σp+2) ∈ {±}p+2 and ȷ⃗ = ( j1, . . . , jp+2) ∈ (Z∗)p+2, one has

Reality condition: H σ⃗
ȷ⃗
= H−σ⃗

ȷ⃗ , Momentum condition: H σ⃗
ȷ⃗ ̸= 0 =⇒ σ⃗ · ȷ⃗ = 0. (A.8)

2. Polynomial bound: There are µ,C > 0 and m ∈R such that∣∣∣H σ⃗
ȷ⃗

∣∣∣⩽C max3(| j1|, . . . , | jp+2|)µmax2(| j1|, . . . , | jp+2|)m .

Remark A.9. In view of the momentum condition σ⃗ · ȷ⃗ = 0 in (A.8), one has the equivalence

max(| j1|, . . . , | jp+2|) ∼ max2(| j1|, . . . , | jp+2|).

We now define the class of Hamiltonian systems up to homogeneity N that we shall use in Section 7.
Let K ,K ′ ∈Nwith K ′⩽K , r > 0 and U ∈ B K

s0
(I ;r ). Let

Z ≜M0(U ; t )U with M0(U ; t ) ∈
(
M0

K ,K ′,0[ϵ0]
)2×2

. (A.9)
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Definition A.10. (Hamiltonian system up to homogeneity N ) Let N ,K ,K ′ ∈Nwith K ⩾K ′+1 and assume
(A.9). A U –dependent system

∂t Z = JC∇H(Z )+M>N (U ; t )[U ] (A.10)

is Hamiltonian up to homogeneity N if
• H(Z ) is a pluri-homogeneous Hamiltonian as in (A.7);
• M>N (U ; t ) is a matrix of non-homogeneous operators in

(
MK ,K ′+1,N+1[ϵ0]

)2×2.

We shall perform nonlinear changes of variables which are symplectic up to homogeneity N according
to the following definition.

Definition A.11. (Symplectic map up to homogeneity N ) Let p, N ∈Nwith p ⩽N . We say that

D(Z ; t ) = M(Z ; t )Z with M(Z ; t )− Id ∈ (
ΣMK ,K ′,p [r, N ]

)2×2 , (A.11)

is symplectic up to homogeneity N , if its pluri-homogeneous componentD⩽N (Z )≜
(
P⩽N M(Z ; t )

)
Z satisfies[

dZD⩽N (Z )
]⊤ ECdZD⩽N (Z ) = EC+E>N (Z ) with E>N (Z ) ∈

(
ΣN+1M̃q

)2×2
. (A.12)

A symplectic map up to homogeneity N transforms a Hamiltonian system up to homogeneity N into
another Hamiltonian system up to homogeneity N .

Lemma A.12. Let p, N ∈ N with p ⩽ N , K ,K ′ ∈ N with K ⩾ K ′+1. Let Z ≜M0(U ; t )U as in (A.9). Assume
D(Z ; t ) = M(Z ; t )Z is a symplectic map up to homogeneity N (Definition A.11) such that

M(Z ; t )− Id ∈
{(
ΣMK ,K ′,p [r, N ]

)2×2 , if M0(U ; t ) = Id,(
ΣMK ,0,p [r̆, N ]

)2×2 , ∀r̆ > 0 otherwise .
(A.13)

If Z (t ) solves a U -dependent Hamiltonian system up to homogeneity N (Definition A.10), then the variable
W ≜D(Z ; t ) solves another U -dependent Hamiltonian system up to homogeneity N (generated by the trans-
formed Hamiltonian).

The following is Lemma 3.19 in [25].

Lemma A.13. Let p ∈N, m ∈ R and a(U ; x,ξ) a real valued homogeneous symbol in Γ̃m
p . Then the Hamilto-

nian vector field generated by the Hamiltonian

H(U )≜Re〈A(U )u | ū〉R , A(U )≜OpBW (a(U ; x,ξ)),

is
JC∇H(U ) = OpBW

vec (ia(U ; x,ξ))U +R(U )U ,

where R(U ) is a real-to-real matrix of homogeneous smoothing operators in
(
R̃−ϱ

p
)2×2

for any ϱ⩾ 0.

The following is Lemma 3.20 in [25].

Lemma A.14. Let p ∈N, m ∈R and ϱ⩾ 0. Let

X (U ) = JCOpBW (A(U ; x,ξ))U +R(U )U = JC∇H(U ) (A.14)

be a (p +1)-homogeneous Hamiltonian vector field, where

A(U ; x,ξ) =
(

a(U ; x,ξ) b(U ; x,ξ)

b(U ; x,−ξ) a(U ; x,−ξ)

)
(A.15)

is a matrix of symbols in
(
Γ̃m

p

)2×2
and R(U ) is a real-to-real matrix of smoothing operators in

(
R̃−ϱ

p
)2×2

. Then,
we may write

X (U ) = JCOpBW (A1(U ; x,ξ))U +R1(U )U , (A.16)

where the matrix of paradifferential operators OpBW (A1(U ; x,ξ)) is symmetric, with matrix of symbols

A1(U ; x,ξ) = 1

2

(
a +a∨ b +b

b
∨+b∨ a +a∨

)
(A.17)

and R1(U ) is another real-to-real matrix of smoothing operators in
(
R̃−ϱ

p
)2×2

.
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The following is Lemma 3.21 in [25].

Lemma A.15. Let p ∈N, m ∈R and ϱ⩾ 0. Let S(U ) be a matrix of spectrally localized homogeneous maps in(
S̃p

)2×2
which is linearly Hamiltonian of the form

S(U ) = JCOpBW (A(U ; x,ξ))+R(U ) , (A.18)

where A(U ; x,ξ) is a real-to-real matrix of symbols in
(
Γ̃m

p

)2×2
as in (A.15), and R(U ) is a real-to-real matrix

of smoothing operators in
(
R̃−ϱ

p

)2×2
. Then, we may write

S(U ) = JCOpBW (A1(U ; x,ξ))+R1(U ),

where the matrix of symbols A1(U ; x,ξ) in
(
Γ̃m

p

)2×2
has the form (A.17) and R1(U ) is another matrix of real-

to-real smoothing operators in
(
R̃−ϱ

p

)2×2
. In particular the homogeneous operator JCOpBW (A1(U )) is linearly

Hamiltonian.

A.3 Symplectic corrections

In this section we provide a symplectic correction to two different class of maps: linearly symplectic spec-
trally localized maps and smoothing perturbations of the identity. The main result is Theorem 7.1 in [25]
that we state below.

Theorem A.16. Let p, N ∈N with p ⩽N , K ,K ′ ∈N with K ′+1⩽K , r > 0. Let Z = M0(U ; t )U with M0(U ; t ) ∈(
M0

K ,K ′,0[ϵ0]
)2x2

. Assume that Z (t ) solves a Hamiltonian system up to homogeneity N . Consider

Φ(Z )≜B (Z ; t )Z , (A.19)

where

• B (Z ; t )− Id is a matrix of spectrally localized maps in

B (Z ; t )− Id ∈
{(
ΣSK ,K ′,p [r, N ]

)2x2 , if M0(U ; t ) = Id,(
ΣSK ,0,p [r̆, N ]

)2x2 , ∀r̆ > 0 otherwise .
(A.20)

• B (Z ; t ) is linearly symplectic up to homogeneity N , according to Definition A.4.

Then, there exists a real-to-real matrix of pluri–homogeneous smoothing operators R⩽N (·) in
(
ΣN

p R̃
−ϱ
q

)2x2
,

for any ϱ> 0, such that the non-linear map

Z+≜
(
Id+R⩽N (Φ(Z ))

)
Φ(Z )

is symplectic up to homogeneity N and thus Z+ solves a system which is Hamiltonian up to homogeneity N .

Given a map of the form U 7→U + JC∇Hp+2(U ) where JC∇Hp+2(U ) is a Hamiltonian, smoothing vector
field, we find a correction which is symplectic up to homogeneity N .

Lemma A.17. Let p, N ∈Nwith p ⩽N . Let Yp+1(U ) = JC∇Hp+2(U ) be a homogeneous Hamiltonian smooth-
ing vector field in X̃

−ϱ
p+1 for some ϱ⩾ 0. Then there is a map of the form

F⩽N (U ) =U +Yp+1(U )+F⩾(p+2)(U ), F⩾(p+2)(U ) ∈ΣN
p+2X̃

−ϱ
q , (A.21)

which is symplectic up to homogeneity N (Definition A.11).

Proof. It is a direct consequence of Lemmata 2.27 and 3.14 in [24]. A careful examination of the proofs
reveals that F⩾(p+2)(U ) actually belongs to ΣN

2p+1X̃
−ϱ
q . However, since this stronger result is not required for

our purposes, we prefer to state the weaker conclusion F⩾(p+2)(U ) ∈ΣN
p+2X̃

−ϱ
q .

Remark A.18. The map F⩽N (U ) in (A.21) is indeed the truncation up to homogeneity N of the time-one
flow generated by the Hamiltonian vector field JC∇Hp+2(U ).
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B Auxiliary flows and conjugations

The following conjugation Lemmata B.1 and B.2 are used in the nonlinear Hamiltonian Birkhoff normal
form reduction performed in Section 7. Their proof can be found in Appendix A of [25].

The following hypothesis shall be assumed in both Lemmata B.1 and B.2:

Assumption (A): Assume Z ≜M0(U ; t )U where M0(U ; t ) ∈
(
M0

K ,K ′,0[ϵ0]
)2×2

, U ∈ B K
s0,R(I ;ϵ0) for some ϵ0, s0 >

0 and 0⩽K ′⩽K . Let N ∈N and assume that Z solves the system

∂t Z = OpBW
vec

(
iωγ,b(ξ)+ ia⩽N (Z ;ξ)+ ia>N (U ; t ,ξ)

)
Z +R⩽N (Z )Z +R>N (U ; t )U , (B.1)

where:

• a⩽N (Z ;ξ) is a real valued pluri-homogeneous symbol, independent of x, in ΣN
2 Γ̃

3
2
q ;

• a>N (U ; t ,ξ) is a non-homogeneous symbol, independent of x, in Γ
3
2
K ,K ′,N+1[ϵ0] with imaginary part

Im a>N (U ; t ,ξ) in Γ0
K ,K ′,N+1[ϵ0];

• R⩽N (Z ) is a real-to-real matrix of pluri-homogeneous smoothing operators in
(
ΣN

1 R̃−ϱ
q

)2×2
;

• R>N (U ; t ) is a real-to-real matrix of non-homogeneous smoothing operators in
(
R−ϱ

K ,K ′,N+1[ϵ0]
)2×2

.

Lemma B.1 (Conjugation under the flow of a Fourier multiplier). Assume (A) at page 65. Let gp (Z ;ξ) be a

p–homogeneous real symbol independent of x in Γ̃
3
2
p , p ⩾ 2, that we expand as

gp (Z ;ξ) = ∑
(⃗ ȷp ,⃗σp )∈Tp

G
σ⃗p

ȷ⃗p
(ξ)z

σ⃗p

ȷ⃗p
, G

−σ⃗p

ȷ⃗p
(ξ) =G

σ⃗p

ȷ⃗p
(ξ) ∈C (B.2)

and denote by GGGgp (Z )≜GGG1
gp

(Z ) the time 1-flow defined in (A.5) generated by OpBW
vec

(
igp (Z ;ξ)

)
. If Z (t ) solves

system (B.1), then the variable
W ≜GGGgp (Z )Z (B.3)

solves the system

∂t W = iωγ,b(D)W +OpBW
vec

(
ia+
⩽N (W ;ξ)+ ia+

>N (U ; t ,ξ)
)

W +R+
⩽N (W )W +R+

>N (U ; t )U , (B.4)

where

• a+
⩽N (W ;ξ) is a real valued pluri-homogeneous symbol, independent of x, in ΣN

2 Γ̃
3
2
q , with components

P⩽p−1[a+
⩽N (W ;ξ)] =P⩽p−1[a⩽N (W ;ξ)] ,

Pp

[
a+
⩽N (W ;ξ)

]
=Pp

[
a⩽N (W ;ξ)

]+ g+
p (W ;ξ),

(B.5)

where g+
p (W ;ξ) ∈ Γ̃

3
2
p is the real, x-independent symbol

g+
p (W ;ξ)≜

∑
(⃗ ȷp ,⃗σp )∈Tp

i
(
σ⃗p · ω⃗γ,b(⃗ ȷp )

)
G
σ⃗p

ȷ⃗p
(ξ)w

σ⃗p

ȷ⃗p
; (B.6)

• a+
>N (U ; t ,ξ) is a non-homogeneous symbol, independent of x, in Γ

3
2
K ,K ′,N+1[ϵ0] with imaginary part

Im a+
>N (U ; t ,ξ) belonging to Γ0

K ,K ′,N+1[ϵ0];

• R+
⩽N (W ) is a real-to-real matrix of pluri–homogeneous smoothing operators in

(
ΣN

1 R̃−ϱ+c(N ,p)
q

)2×2
for

some c(N , p) > 0 (depending only on N , p) and fulfilling

P⩽p [R+
⩽N (W )] =P⩽p [R⩽N (W )] ; (B.7)
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• R+
>N (U ; t ) is a real-to-real matrix of non–homogeneous smoothing operators in

(
R−ϱ+c(N ,p)

K ,K ′,N+1 [ϵ0]
)2×2

.

The following lemma describes how a system is conjugated under a smoothing perturbation of the iden-
tity.

Lemma B.2 (Conjugation under a smoothing perturbation of the identity). Assume (A) at page 65. Let

F⩽N (Z ) be a real-to-real matrix of pluri-homogeneous smoothing operators in
(
ΣN

p R̃
−ϱ′
q

)2×2
for some ϱ′⩾ 0.

If Z (t ) solves (B.1) then the variable

W ≜F⩽N (Z )≜ Z +F⩽N (Z )Z (B.8)

solves

∂t W = iωγ,b(D)W +OpBW
vec

(
ia+
⩽N (W ;ξ)+ ia+

>N (U ; t ,ξ)
)

W +R+
⩽N (W )W +R+

>N (U ; t )U , (B.9)

where

• a+
⩽N (W ;ξ) is a real valued pluri-homogeneous symbol, independent of x, in ΣN

2 Γ̃
3
2
q , with components

P⩽p+1[a+
⩽N (W ;ξ)] =P⩽p+1[a⩽N (W ;ξ)] ; (B.10)

• a+
>N (U ; t ,ξ) is a non-homogeneous symbol, independent of x, in Γ

3
2
K ,K ′,N+1[ϵ0] with imaginary part

Im a+
>N (U ; t ,ξ) belonging to Γ0

K ,K ′,N+1[ϵ0];

• R+
⩽N (W ) is a real-to-real matrix of pluri–homogeneous smoothing operators in

(
ΣN

1 R̃−ϱ∗
q

)2×2
, ϱ∗ ≜

min(ϱ,ϱ′− 3
2 ) (ϱ≥ 0 is the smoothing order in Assumption (A) at page 65), with components

P⩽p−1[R+
⩽N (W )] =P⩽p−1[R⩽N (W )] , (B.11)

and, denoting F p (W )≜Pp (F⩽N (W )) in
(
R̃−ϱ′

p

)2×2
, one has

Pp [R+
⩽N (W )] =Pp [R⩽N (W )]+dW

(
F p (W )W

)[
iωγ,b(D)

]− iωγ,b(D)F p (W ); (B.12)

• R+
>N (U ; t ) is a real-to-real matrix of non–homogeneous smoothing operators in

(
R−ϱ∗

K ,K ′,N+1[ϵ0]
)2×2

.

In addition, if F⩽N (Z ) in (B.8) is the symplectic up to homogeneity N map associated to a Hamiltonian vector

field G p (Z )Z = JC∇Hp+2(Z ) as per Lemma A.17, where
(
G p (Z ) ∈ R̃−ϱ′

p

)2×2
has Fourier expansion

(
G p (Z )Z

)σ
k = ∑

(⃗ ȷp+1,k ,⃗σp+1,−σ)∈Tp+2

G
σ⃗p+1,σ
ȷ⃗p+1,k z

σ⃗p+1

ȷ⃗p+1
, (B.13)

then (B.12) reduces to
Pp [R+

⩽N (W )] =Pp [R⩽N (W )]+G+
p (W ), (B.14)

where G+
p (W ) ∈

(
R̃−ϱ′+ 3

2
p

)2×2

is the smoothing operator with Fourier expansion

(G+
p (W )W )σk = ∑

(⃗ ȷp+1,k ,⃗σp+1,−σ)∈Tp+2

i
(
σ⃗p+1 · ω⃗γ,b(⃗ ȷp+1)−σωγ,b(k)

)
G
σ⃗p+1,σ
ȷ⃗p+1,k w

σ⃗p+1

ȷ⃗p+1
. (B.15)
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