Confinement results near point vortices on the rotating sphere
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Abstract

We study the Euler equation on the rotating sphere in the case where the absolute vorticity is initially
sharply concentrated around several points. We follow the literature already concerning vorticity confinement
for the planar Euler equations, and obtain similar results on the rotating sphere, with new challenges due
to the geometry. More precisely, we show the improbability of collisions for point-vortices, logarithmic in
time absolute vorticity confinement for general configurations, the optimality of this last result in general,
and the existence of configurations with power-law long confinement. We take this opportunity to write a
unified, self-contained, and improved version of all the proofs, previously scattered across multiple papers
on the planar case, with detailed exposition for pedagogical clarity.
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To study large-scale atmospheric or oceanic dynamics, one has to take into account the natural presence of
vortices of very high circulations. Going back to the work of Helmholtz [44], a first approximation of the motion
of such vortices is given by the so called point-vorter dynamics, which corresponds to assuming that the vortices
are singular: Dirac masses of vorticity. Numerous works studied this dynamics in many different context, and
we refer the interested reader to [2] for a review on point-vortex dynamics in the plane. An other important
question is the measure how good of an approximation the point-vortex system is to a solution of the Euler



equations consisting of sharply concentrated vortices. This question can be answered in many different ways
and in this paper we will mainly focus on the problem of localization and confinement: given an initial data
sharply concentrated around several points, how long does the solution of the Euler equation remains both
concentrated and following the prediction of the point-vortex model ?

This question, first answered in [563], lead to an important series of work, and in the scope of the present
article, we put the emphasis on [9], which is the starting point of the present paper. To the best of our
knowledge, all known results on vorticity confinement are established in various fluids models, mostly the
planar Euler equations, but none on the rotating sphere.

The aim of this paper is to establish the results of [0, 21}, 22] on vorticity confinement for the Euler equation
on the rotating sphere. In addition, to complete this work, we prove a necessary property of the point-vortex
dynamics on the sphere, which is the improbability of finite-time collisions.

1.1 Point-vortices and vorticity confinement on the plane

At first, let us contextualize our present work on the rotating sphere by recalling the planar point-vortex system
for Euler equations and the associated results. We consider the bidimensional homogeneous and incompressible
Euler equations in the plane

Oyw +u - Vw =0, u= Vi, Ay = w. (1.1)

Solving the Laplace equation gives the following integral representation for the stream function ¢

w(tv Z) = 2 GR2 (Zag)w(tag)dgv GR2 (2,5) £ % IOg (|Z - f‘)

The point-vortex dynamics describe the evolution of formal solutions to the 2D Euler equations where the
vorticity is concentrated on points, namely

N
wt)=Y Tib, NeN, T,eR,  z(t)eR. (1.2)
=1

Plugging (1.2) inside (1.1]), we get formally the following set of ordinary differential equations called point-vortex
system

N L
2 =Y L (zlt) = %(1))
j=1 2 ‘Zl(t) —Zj (t)|2 1<T.7EN
i i

1 I,T;
= ﬁviH(zl(t)a-“vZN(t))a H(z1,...,2n) = Z Tﬂjlog (|2 — ).

Due to the singularity in the velocity when z;(t) = z;(t), all initial data our not admissible for this dynamics,
and even admissible data can lead to non-trivial blow-up of solution, which we call vortex collapses, when
happens when there exists T* < oo, and i # j two indices such that

lirg%r*lf |zi(t) — 2 ()] = 0.

However, the collisions are known to be improbable, in the sense the the measure of the set of initial data leading
to a collapse is 0. This result was proved in the torus in [26], in bounded domains in [20], and in unbounded
domains such as the whole plane in [54] and for other models of point-vortices in [32], B3], under an additional
condition on the vortex intensities (I';)1<i;<n. In the case of the sphere, we prove the same result, without the
additional assumption due to the fact that the sphere is a compact manifold.

We now introduce the problems of localization and confinement of vorticity. Given a set of pairwise distinct
points z7,..., 2%, a set of intensities I'y, ...,y such that the associated solution to the point-vortex dynamics
has a global solution (t — zi(t))l <IN let us consider, for every ¢ > 0, an initial datum wj for the Euler
equations satisfying the following assumptions.

Hypothesis 1.1. There exist constants M,eq > 0 and n = 2 such that for every e € (0,e9),

o Wi € L' N L°(R2), with |[w§|| Loz < Me™,

1>
wo,i

o wj = E wo;  where T

i

>0, Fié/ wpi(w)dz
RQ

e supp wg,; C B(2?,¢).



In view of these hypotheses, one has that w5, —O> J.0 in the sense of measures. Since w solves the (nonlinear)
0 0=

transport equation (|1.1]) by a velocity field u that is divergence free, then for all times, we have that the solution
w® of the Euler equations such that w®(0) = wf satisfies for all times ¢t > 0 that

o wi(t,-) € L' N L(R2), with [l (£, )| oo (rey < Me™,
N E(

= (¢, -
o () = Dwilt) where SHE ) 2o, /R it a)de =T,

Moreover, the maps w$(t) are all compactly supported, at all times, however the information that we loose a
priori is both the localization and growth of the support. The naive bound on the growth of support would
be linear in ¢, and for a single blob of positive vorticies, this bound can be improved to (tInt)*/* ([48]). When
considering several sharply concentrated vortices, by assuming for instance Hypothesis the vortices remain
concentrated for a time of order O(|In¢|) around the point-vortex system. More precisely, let us consider for
any f < 1/2 and € > 0:

N
7.5 = sup {t >0 st Vsel0,t], supp (wg(s, )) C U B(zi(s),sﬁ)} )
i=1

This time 7. 4 is the first time the support of the vorticity exists the reunion of balls of radius ¢’ around the
point-vortex solution. Since e? < 1 for € small enough, Te,p is a time during which both the solution remains a
sum of sharply concentrated vortices, and that those vortices are located near the solution of the point-vortex
dynamics. Regarding this time 7. g, Butta and Marchioro proved the following.

Theorem 1.1 ([9]). Let (29)1<i<n be N pairwise distinct points of R? and (I';)1<i<n be some non-vanishing
intensities such that the solution of the point-vortex dynamics (1.7) with initial datum (2{)1<i<n is global in
time and satisfies the following distance condition for some dy > 0,

VISij<SN, i#j = inffz(t) - z0)] > do.

Let w§ satisfying Hypothesis . Then for every B < 1/2 there exists ¢g = €o(3,do) > 0 and o 2 a(B,dy) > 0
such that for every e € (0,e0) the solution w® of (L.1) with initial condition w§ satisfies

Tep = allnel.

In conclusion, Theorem proves that the point-vortex dynamics is a good approximation of the Euler
equations for a time at least of order O(|Ine|), where €, which describes how concentrated the initial vortices
are, goes to 0. One can then wonder whether this logarithmic bound is optimal. In general, it is the case, as
proved in [21] using unstable configurations of point-vortices. However, there exist particular conditions under
which this bound can be improved. In [J], in addition to Theorem the authors prove that three situations
lead to an estimate of the form 7.3 > 7%, with a > 0. The first case is taking N = 1, a single vortex, in
which case this bound becomes a rescaled version of the result of [48]. Then, taking a self-similar expanding
configuration of vortices (with an explicit example for N = 3), where the growth of the distances between the
point-vortices is enough to enhance the bound on 7, 3. Last, they prove that power-law bound holds for a single
vortex placed at the center of a circular rigid boundary. In [24], it is then proved that other bounded domains
can be constructed satisfying the existence of a point around which a concentrated vortex satisfies the enhanced
confinement bound. In [22], it is this time with special configurations for arbitrary N > 4 that this bound was
obtained. With new techniques, [57] proved that for general configurations, but assuming in addition the initial
vortices wy  to be nearly radial functions, then the power-law bound holds, with larger « as the blobs are closer
to be radial.

This problem can be formulated for more complicated fluid equations, such as the SQG equations (see [16]),
the lake equations [45], and the three-dimensional Euler equations with axial ([8| [7, 23]) or helical ([25],[35])
symmetry, with a range of new difficulties arising due to changes in the Biot-Savart law. The present paper
aims to have the same discussion in the case of the Euler equations on the rotating sphere.

We end this paragraph by mentioning some constructions of periodic (or more general) solutions near special
point vortex configurations. In the plane, a single point vortex stays immobile, placed at the origine, and due to
the symmetries of Euler equations, it is possible to find via bifurcation techniques periodic solutions performing
a uniform rotation around it [0, BI], I8, 19, (0]. The search for quasi-periodic solutions is more delicate. In
this regime, one encounters small divisors and time-space resonances, which prevent a direct perturbative
construction and instead require techniques from infinite-dimensional Hamiltonian dynamics, notably KAM
theory and Nash—Moser schemes. In particular, quasi-periodic motions near the Rankine vortex were first



established in 2021 in the second author’s PhD thesis for the quasi-geostrophic shallow-water equations [47],
and in the same period for generalized SQG models by Hassainia-Hmidi-Masmoudi [38]. Related results were
obtained for the Euler equations near Kirchhoff ellipses by Berti-Hassainia-Masmoudi [3], near Rankine vortices
in the unit disc by Hassainia-Roulley [42] and near annuluar patches by Hassaini-Hmidi-Roulley [41]. Also with
weak Birkhoff normal forms, the authors in [34] could find quasi-periodic vortex patches for the very singular
generalized SQG equations.

The contour dynamics approach has proved to be a powerful tool for constructing families of periodic vortex
patch solutions exhibiting either uniform rotation or uniform translation. The first results in this direction
were obtained by Hmidi and Mateu [46], who established the existence of symmetric pairs of patches (with
equal or opposite strengths). The asymmetric case was later treated by Hmidi and Hassainia [37]. These local
bifurcation results were subsequently complemented by global bifurcation analyses by Garcia-Haziot [30], which
revealed the global structure of the solution branches. Extensions to configurations with more vortices were
developed by Garcia, both near classical von Kdrmdan vortex streets [27] and near Thomson polygon equilibria
[28]. Finally, Hassainia and Wheeler [43] addressed the general setting of non-degenerate point-vortex equilibria,
providing a unified desingularization framework. We also mention some related works using others approaches
like variational techniques [12] [I4] [62] [63] or gluing methods [I7].

Beyond perturbations of steady or rigidly rotating states, the construction of vortex patches near genuinely
time-dependent point-vortex motions remained largely open. A breakthrough in this direction was achieved with
the periodic desingularization of the four-vortex leapfrogging configuration by Hassainia, Hmidi, and Masmoudi
[39], providing the first example of patch dynamics shadowing a nontrivial periodic point-vortex orbit. More
recently, the longstanding problem of constructing periodic patch motions in general bounded simply connected
domains was resolved by Hassainia, Hmidi, and Roulley [40], through the desingularization of periodic orbits of
a single point vortex.

1.2 Barotropic model
Now and for the rest of the paper, we work on the unit sphere S? defined by
sz {(xl,zg,xg) eR? st. ai+aitai= 1},

performing a uniform rotation around the vertical axis with constant angular speed v € R. Throughout the
document, we denote | - [gs the Euclidean norm in R3, namely

V(xy, 22, 23) GR?)» |(£L’1,1'2,{E3)|]§3 éx%—i—x%—i—x%
and we shall use the following notation for € R? and r > 0,

B(z,r) & {y ER? st |z —yls < r}.

Then, we consider an homogeneous and incompressible fluid on S? described by its velocity field v and its
pressure P. The 2D Euler equations on the rotating sphere is

w(t,x) + u(t,x) - V(w(t,x) — 2yx3) = 0. (1.3)
The equation must be supplemented by the following impermeability condition
Vo €T, up(0,9) =0=up(m ).

The divergence-free property of the velocity field and the compactness of the manifold S? implies that the
vorticity should satisfy the so-called Gauss constraint, namely

/ w(t,x)do(x) = 0.
52
Finally, we define the absolute vorticity through the relation
C(t,x) 2 w(t,x) — 2y x3.
According to , it is a solution to the following active scalar equation
A C(t, x) + u(t,x) - V((t,x) = 0. (1.4)

Moreover, the Gauss constraint is also satisfied by the absolute vorticity

¢(t,x)do(x) = 0.
SQ



The fact that u is solenoidal implies the existence of a stream function ¥ such that
u(t,x) = VEU(t, x).
The stream function solves the Poisson equation
ATU(t,x) = w(t,x)

and therefore is linked to the vorticity via the following integral formula, see [4]

U(t,x) = V)t x) 2 [ Glryw(ty)doly), Glxy)2 —

1 — .
A o~ log (jx — ylz)

The norm | - |gs is the usual Euclidean norm in R3. In general,
1
AV[fl=f—— d .
=1 [, 1690
In terms of absolute vorticity, denoting 6 € (0, 7) the colatitude, we have
u(t,x) = VH (T[] (x) +vz3) = V(] x) + 7V (x - e3).

According to Lemma the Biot-Savart law on the rotating sphere is

1 X A
Y_((t,y)do(y) +yes Ax.

tLx)=— [ ——5—
ul ) 21 Jgz X — ¥lgs

Throughout the document, we shall denote the Biot-Savart kernel as
XAy

Ke(x,y) £ <=y,
]RB

(1.5)

1.3 Point-vortices on the rotating sphere

An absolute vorticity point vortex distribution is a formal solution of (1.3)) in the form

N
C(ta X) = Z Fi(sxi(t)7
=1

where N € N\ {0, 1} is the number of points, x1(t),...,xy(t) € S* are the points at time ¢ > 0 and I'y,...,T'x €
R are the intensities subject to the Gauss constraint

N
dTi=0. (1.6)
=1

In what follows, we denote
£ {Iy,...,I'nk

The point-vortex system on the rotating unit 2-sphere is the time evolution law for the points, namely

N
d T ox(t) Ax;(t)
—xi(t) =y L LTI e Axg(t),

V1<i<N, dt %; 27 |x;(t) — Xj(t)h%g (1.7)
x;(0) :X?~

The model, introduced in [5], was later studied in many works, and we refer the interested reader to [49], and
in particular, the study of relative equilibria in [0, 51l [52], or in a more physically relevant context, [58]. Let
us mention that the dynamics (1.7) is Hamiltonian

4
dt

associated to the energy H (cf. Lemma and (A.3)) related to the kinetic energy and center of mass, which
are two conserved quantities

1
V1<i<N, xi(t):FV,JgiH(xl(t),...,xN(t)),

N
Ly
;Lt(xlw--,XN)é Z %ln(\xi—xjms)+7e3'ZFixi.
1<'§£§N g i=1
i#j



In [13], the authors desingularized vortex pairs on the sphere at rest and briefly mention how to treat the
rotating case. Later Sakajo and Sun studied the C' and patch-type regularization of Von-Karmén vortex
streets [60} [61]. The bifurcation of one and two-interface vortex caps from zonal (i.e., longitude independent)
solutions has been obtained in [29]. The filamentation phenomenon with linear growth of the perimeter near
monotone zonal vortex caps has been studied in [56] exploiting the stability result of monotone zonal flows of
Caprino-Marchioro [I5] based on the conservation of the momentum with respect to the vertical axis.

On surfaces of non constant curvature, the point-vortex dynamics has a very different behaviour as the first
order term is then given by the derivative of the curvature, see [4]. One would expect on such manifold that
the confinement results that can be obtained would be similar to the three-dimensional-with-symmetry cases,
as previously discussed, coaxial vortex rings and helical filaments, or in the lake equation for instance. On the
sphere, the constant curvature means that instead, the result that we obtain are similar to the two-dimensional
results, resulting in the presence of non-trivial geometry, without the singularity of motion observed in the
curved cases.

1.4 Main results

Our first result is the improbability of point-vortex collisions, necessary to justify that most initial data have
global solutions. It reads informally as follows.

Theorem 1.2. (Improbability of point vortex collision)
Let N € N\ {0,1}. Then, for almost every initial conditions (x9)1<i<n € (S*)V, the point vortex system (1.7)
has a global solution.

The precise statement and proof Theorem [2.1] are given in Section We then turn to the localization
and confinement problems. Analogously to the planar case, for given pairwise distinct points on the sphere
x9,...,x%;, and intensities satisfying the Gauss condition (1.6), let us consider a family (¢§).=o of initial data

to the Euler equation in absolute vorticity (|1.4) satisfying the following assumptions.
Hypothesis 1.2. There exist constants M,eq > 0 and n = 2 such that for every e € (0,¢eq),

o (5 € L>(S?), with |[(§]| Lo (s2) < Me™".

N N
© G =D G where 0. D% /Szc*s@(x)do(x) and 3T, =0,
=1 i=1

® supp Cg,i - B(X?7 £),
These initial conditions provide a solution to equation (1.4) denoted (°(t,x).

For the same reasons that in the planar case, the decomposition as a sum of complactly supported vortices
of circulation T'; remains true at all time (these facts are given in details in Section . Then, define for any
B8 <1/2 and € > 0 the exit time

7.5 = sup {t >0 st. Vsel0,t], supp (Cs(s, )) C U B(xi(s),aﬁ)} , (1.8)

=1
We then prove the following result, analogous to Theorem

Theorem 1.3. (Logarithmic time scale for vorticity confinement)

Let (x9)1<i<n be N pairwise distinct points of S* and (T;)1<i<n be some non-vanishing intensities satisfying
the Gauss condition . Assume that such that the solution of the point-vortex dynamics with initial
datum (x9)1<i<n is global in time and satisfies the following distance condition for some dg > 0,

VISij<N, i) = i) - x(Oks > do. (1.9)

Then for every B < 1/2 there exists g = 0(3,dg) > 0 and o £ «(B,dy) > 0 such that for every e € (0,e0) the

solution (¢ of (1.4]) with initial condition (5 subjected to the Hypothesis near the points (x?)1<i<n satisfies
Tep = allnel.

This bound is optimal, as we show in the following result, analogous to the one obtained in [21].



Theorem 1.4. (Optimality of the logarithmic time confinement) There exists a choice of (X1,...,XN)
and intensities I'1, ..., Uy satisfying and such that there exists By < 1/2, n = 2 such that for any
B € (Po, 1), there exists ag > 0 such that for any e > 0 small enough, there exists (§ satisfying Hypothesis
such that

Tep < ao|Inel.

Differently said, there exist configurations that realize a logarithmic exit time. However, under certain
conditions, discussed in Section [5] and Section [6] the bound can be improved.

Theorem 1.5. (Improved confinement time for special configurations)

There exists a choice of (X1,...,xn) and intensities I'1,...,T'n satisfying and such that for every
B <1/2 and o < min(B,2 —4p), there exists eg > 0 such that for every e € (0,¢q), the solution (* of with
initial condition (§ subjected to the Hypothesis near the points (x9)1<i<n satisfies

Te g 2 e ¢
Here note that it is only the choice of the configuration and intensities that ensure that any initial datum
satisfying (1.2]) leads to a solution having a power-law exit time.

The paper is organized as follows. In Section[2} we prove Theorem|[I.2} This section is completely independent
of the rest of the paper. Then in Section (3] we study general properties of the solution to equation with
initial datum satisfying Hypothesis (1.2)). With these estimates established, in Section [4] we prove Theorems|[L.3]
Proofs of Theorems[I.4)and [I.5]are done in Sections[d and [B]respectively, conditionally to the existence of suitable
configurations of point-vortices. Then in Section [6, we prove the existence of these configurations, closing the
proofs of these theorems, and discuss various examples.
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2 Improbability of point vortex collisions: proof of Theorem (1.2

This section is devoted to the proof of Theorem

We denote B(S?) the Borel o-algebra of the unit sphere S2. Let us recall that o is the surface measure on
(SQ, B (SQ)). It is well-known that the area of the unit sphere — that can be recovered by simple integration — is

o (S?) = 4m. Therefore, the measure
A O

" ar

is a probability measure on (S?, B(S?)). Fix N € N\ {0,1}, then the Borel o-algebra on (S?)" is

B((SHN)2B(S*) ®...®@B(S?).

N times

We define the product probability measure on ((S*), B ((S*)V)) via
Pyv£P®...QP.
—_———
N times

Now, let us consider the set of admissible initial positions for the N-point-vortex dynamics.
Ay 2 {X = (x1,...,xn) € (S)V st VI<Kij<N, i#j = x#xj}. (2.1)

The set Ay is an open subset of (S*)V. Therefore, Ay € B ((S*)V) . In addition, it is easy to show that it is of
full measure, namely
Py(Ay) = 1.

The Borel o-algebra of Ay is obtained by the trace topology
B(AnN) £ ANNB ((SQ)N) .



We define the conditional probability measure Py (-] Ax) with respect to the almost sure event Ay by

VA e B((SHY), Pn(AlAN) = W =Pn(AN Ay).

Notice that Py and Py (-] Ax) coincide on B(Ap). Therefore, in what follows, we still denote Py restriction of
Pxn(-|An) to the o-algebra B(Ax) and we will work with the probability space (An,B(An),Py). For every
X = (x1,...,xn5) € Ap, by a classical application of the local Cauchy-Lipschitz theory, the point-vortex
system with initial configuration X has a unique solution ¢ — S¢(X) £ (x1(t),...,xn(t)) continuous on
a maximal time interval that we denote by [0,7T(X)), with T(X) € (0, +oc]. Let us observe that T'(X) < 400
if and only if there is a collision (in the broad sense).

Let us denote by % the set of collisions, namely the set of initial data leading to a finite time collision in

the point-vortex dynamics
Cn 2 {Xc Ay st. T(X) < +oo}. (2.2)

Remark 2.1. A priori, it is not immediate that the function X — T(X) is measurable and therefore one cannot
a priori state that the set €n is measurable.

The Theorem can be reformulated as follows.
Theorem 2.1. Let N € N\ {0, 1}. Then,
CN € B(.AN) and PN(%N) =0.

Proof. We consider the notion of almost collision and its associated regularized dynamics. Fix € € (0,1) and
consider In, € C°°([O, +00), R) a non-decreasing function satisfying the conditions

Vr € [e,4+0), In.(r)=In(r),
Vr >0, [Ing(r)| <[In(r)], (2.3)
Vr >0, Ini(r)< %
Then, we define the regularized energy H. : (S)¥ — R by
He(x1,...,XN) = Z LTy In, (|x1 — Xj|R3) + ~ves - ifixi
ogen AT im1

i£j

leading, by virtue of (A.3)), to the Hamiltonian regularized dynamics

. d 5 1 e € Y L € € e
VISISN, % (t) = F—iVii’HE(Xl(t), CLxy(t) = Z:; ﬁv; In (x5 (t) = x5(t)|rs) +ves AX5(t). (2.4)
G

Since In. is smooth on [0,+00), by a trivial application of the Cauchy-Lipshitz theory, this dynamics has a
global smooth solution for every initial data in (S*)™. We denote by (t,X) = S§(X) £ (x§(t),...,x5(t)) the
flow of the regularized system that is continuous is both variables and therefore defines a stochastic process
(5§)i>0 (i-e. a continuous family of measurable functions) over ((S*)V,B((S?)")). Let us define for X € Ay
the first time of e-collision T (X) given by

T.(X) £inf{t >0 st. I1<ig,jo <N, io#jo and [|x5 (1) — x5, (t)|rs <&} (2.5)
Observe that we can write
T.(X)=inf{t >0 st. S;(X)e (SHV\ AL},

where
AV &2 {X = (x1,....xn) € ()Y st. VI, j<N, i#j = |x—xjlps>¢}.

With this expression, thanks to the measurability of (S§);>0, we can say that T is a random variable (i.e. a
measurable function) over (Ax,B(Ay)), that is a stopping time adapted to the natural filtration (Ff);>0 of
(S§)i>0 defined by

Fi20(S5,0<s<t).



By construction of In. and 7T, in (2.3)-(2.5) and uniqueness of the local solutions, we have that

VX € Ay, To(X) < T(X), (2.6)
VX € Ay, Wt<TA(X), Si(X)=S5(X), (2.7)

Because of (2.7)), the solution (¢, X) — S£(X) is called regularized dynamics until e-collisions since it coincides
with the real point-vortex dynamics until the first e-collision. The set @y defined in (2.2)) can be written

ey = J{XecAy st. T(X)<7}

TEN*
Fix 7 € N* then the inequality (2.6 implies the inclusion
{XeAy st. TX)<7}Cc{XeAy st T(X)<7}

Now, we fix n € (0,1) and define the continuous function ¢. : (S*)¥ — R? through

$-(X) & Z exp (—nln. (|x; — xj|rs)) .
1<6,j <N

i#j

Assume now that X € Ay is such that T.(X) < +oo. Then, there exists (ig, jo) € [1, N]* with iy # jo such
that

i (Te(X)) = x5, (Te(X)) s = -
Since all the terms in the sum defining the function ¢. are positive, then
6-(87, (X)) > exp (e ([ (72(X)) — 35 (T2(X)) ) = 7
The previous estimate implies the following inclusion
{XedAy st T.(X)<7}C {X €SN st sup ¢ (S{(X)) = 5”} .
t€[0,7]
Applying Markov inequality yields
Py ({X €eAn st T.(X) < T}) < 5”/ sup ¢ (S5 (X))dPy(X).
(S2)N telo,7]
Then we claim the following.

Lemma 2.1. There exists a constant C depending only on N, the intensities I'y,...,I'y, and n such that for
every T € N*,

/ sup ¢-(SeX)dPy(X) < C(1+ 7).
s

2)N ¢€[0,7]

We delay the proof of Lemma [2.3] for the time being, to conclude that
]P’N({X eAy st Tu(X) < T}) < C(1+ 7). (2.8)
We consider a sequence (£, )nen € (0,1)N decreasing and converging to 0. Therefore, by virtue of ,
VneN, Py ({X eAy st T (X)< T}) <Ol + 7). (2.9)

By decreasing property, the e,-collision must happen before the €,.1-collision. Hence, we have

VX eAy, VneN, T. (X)<T.

En+41

(X). (2.10)

Invoking the monotone convergence theorem, the upper bound ([2.6) implies the convergence of the increasing
sequence (TE” (X))n N Since the solution lives on the sphere, by contraposition of the principle of a priori
majoration, one must have

The property (2.10]) implies that the family

((Xedy st T.(X)<7}),



is decreasing for the inclusion operation. Besides, as a countable intersection, the set

{(XeAy st. T(X)<7}=[|{XecAy st. T, (X)<7}eBAy)

neN

Then, by continuity of the measure and (2.9)), we get

Py <ﬂ {XeAy st T..( T})

neN
= ngrfoo Pv({XeAn st T, (X)<7)=

N{{XeAy st T(X)<7})

As a countable union,
ey = [J{XeAy st. T(X)<7}eB(Ay)

TEN*
and by Boole inequality

VM) < Y Py{{XeAy st T(X)<7}) =0, ie.  Py(6y)=0.
TEN*

This concludes the proof of Theorem O
We are left to prove Lemma
Proof of Lemma[2.d. Let 7 € N*. We define
D.(t,X) £ ¢ (57 (X))
Then, since the system is autonomous, then for any s,t € [0,7(X)) with ¢ + s € [0, T(X)), we have

Siys(X) = S;(55(X)).

Hence,
Dot X) = 0 (S7(X)) = - (S5(S7(X)) ) = @-(0, 57(X)).
Therefore,
02 (S5(X)) = 6. (S5(X / Ouo (SE(X
X +/ 9@ (0, 55(X))ds.
0
Consequently,
(S5 X) 0P O SE( d
2 04500 <600 + [ 100-(0.8700) | .

By using the Fubini-Tonelli Theorem and the fact that the flow ¢t — S§ is Hamiltonian, we infer

(S X)dPx (X) < )dP 9@, (0, 55(X))| dP
/(SZ)N t:hl)f,)ﬂ(é ( ! ) N( ) /(gz)N & ( N / /SZ)N| ¢ )| N
=/ ¢E(X)dIP’N(X)+T/ |0:®. (0, X)|dPx (X).
(S2)N

(s3)N

This new expression only involves the computation of properties of the flow at time 0, meaning that at this
point the regularization is not needed anymore. Indeed, for X € Ay, therefore in particular for almost every
X € (S*)V, using the conditions (2.3]), we get

where
Z |Xi—Xj|H§3n, leE.AN, .
X f X
B(X) 2 { 1< and (s, x) 2 | $(5X). X €Ay,
0 therwi 0, otherwise.
, otherwise

10



First remark that by Fubini-Tonelli Theorem

[ o000 = e 32 [ [ aet) - doten)

S2)N 1<i,j <N
i#]

> / /S ( /S i - lekﬁdrr(xj)) do(x)...do(x;-1)do(x;41) . . do(xy).

<i

N
1
i

But, using the rotation invariance and spherical coordinates, for any o > 0 and any 1 < i < N, we have (recall
that N is the north pole)

[ = xildot) = [ pi-xprdat;)

2 sin(6
S S A—, 'Y
/ / N — 1 (0 )\Rs i

T 0
:22—%/ ﬂ 0 2 4rC.,,.
0

sin®~! (2)

Consequently, the previous integral is independant of ¢ and by comparison with Riemann integrals, we get
/ IXi — Xj|ps dor(x;) < 00 iff a < 2. (2.11)
SQ
Since n € (0,1), we get the integrability and

[ SO0 (X) = NV 1), < o
(s2)

Besides,
x1(0)
9,2(0,X) = Vo(X) - :
xn(0)
By (L.7), (A.1), and Cauchy-Schwarz inequality, we infer
XX X; A X X; — X
i Xi NXp i —Xj
|0 D 0X|—7) ( : +’)/63/\X'>-
2 i
N N N 1
<C
IO Moot
#L k;él
Since n 4+ 1 < 2, proceeding as before and using (2.11)), we can conclude
/ |0:@(0, X)|dPx (X) < +00.
(s2)N
Combining the foregoing calculation ends the proof of Lemma [2.1] O

3 Estimates on vortex evolutions

In this section, we establish some important properties on the solution to equations with initial datum (§
satisfying Hypothesis . The initial positions x,...,x% € S? and intensities I'y,...,I'y € R* are fixed once
and for all satlsfymg the Gauss constraint msuch that the associated solution of the pomt vortex dynamics (|1
satisfies We denote constants whose value is not important by C', and those constants are allowed to
depend on N, x9, ... ,x?v and intensities I'y,...,T'y.

Let us consider an initial datum satisfying the Hypothesis[I.2] namely a superposition of compactly supported
blobs with disjoint supports. We denote (t,x) — (*(¢,x) the unique global-in -time associated weak solution
of equations provided by the Yudovich theory [64]. Due to the transport nature of the equation , the
blob structure is preserved (at least locally in time) that is the solution decomposes as

N
=<
i=1

11



with for any ¢ € {1,..., N}, the ¢{ being a blob that satisfies the Lagrangian property

Cie(tv X) = ng (¢t_1(x))a at¢t(x) = U(t, d)t(x))a ¢0(X) = X.

For the rest of this section, we fix an index ¢ € {1,..., N}. Since (at least for short time) the supports of the
blobs are disjoints, then the blob (f solves the following problem (locally in time)

O + (us + FF) -V =0,
) e L [ Y e gy, (3.1)

% S2 |X_y]RJ

where the perturbation field F} is defined by

c(t,x) 277 Z " ‘XX_/\Y Cs(t y)do(y) + ves A x. (3.2)

Doing so, we simply denote the influence of the other blobs as an exterior velocity field F¥. Since for any y € S?,
we have x- (x Ay) = 0, then Ff(t,x) € TS? = span'(x) where the orthogonal is understood in the sense of the
usual scalar product in R?. By construction of the exit time 7. 5 in , for € small enough, we obtain from
the minimal distance assumption that for every t < 7. 5 and for every i # j € {1,..., N},

d
dist (B(Xi(t),EB) , supp (Cj(t, ))) > ?0, (3.3)
where by definition for two subsets 4, B C R3,
dist (4, B) & inf [ja — b||gs.
beB
As a consequence, the function F; can be extended into
Ffe 00([0, 78], C(B(xi(t), gﬁ),R3)). (3.4)
Due to (3.4, there exists a constant D independent of & such that
FE(t,x) — FE(t
max —max sup |FE(t,x) F ()l < D. (3.5)
te(0,7 5]1<1<nyEB(x7( t),68) ‘X*y|

Definition 3.1. Let us denote by D. the smallest constant such that for allt < 1.5, for all i € {1,...,N},
there holds both that

o for all x,y € B(x;(t),e?) such that x # vy,

‘(Ff(t, x) — Ff(t,y)) (z— y)‘
|z —y|?

< D. (3.6)

e for all x € B(x(t),e?),

(Fet) - [ e Y aow) o= c0)| < Do - o) [ 1o -y SE 0o )

%

One can easily check that by relation (3.5)), D. < D, which in particular ensures that D. < oco. However, in
the proof of Theorem the particular choice of configuration will lead to prove that D, = O(¢?) as ¢ — 0 in
the more precise bounds (3.6) and (3.7, which will be a crucial tool to obtain longer confinement times.

3.1 Estimates on the vorticity moments

A key point for describing the mass spreading is the control of the moments. Indeed, the first moment, the
center of mass, is used as a localization property, namely where in space is located the support of the absolute
vorticity. Higher-order moments are a measure of concentration, which we call weak confinement: when those
moments are small, it means that the support of the vorticity is mostly concentrated. Concluding the proof of
Theorem cannot rely only on weak confinement, as it requires that support is completely controlled: in the

12



end we obtain what we call this time strong confinement by controlling each particle trajectories carrying non
vanishing absolute vorticity, using the weak confinement estimates. This is the now standard method introduced
by Marchioro and Pulvirenti (see for instance [55]) and refined over time in many works. In particular, in this
paper we will obtain weak confinement estimates through the control of higher-order vorticity moments, as
introduced in [48], then used in [20] in the context of concentrated vortices.

Before defining the moments let us first reprove that the mass is a conserved quantity. By applying the
divergence Theorem and invoking the divergence-free property of ui + F;, we infer

/Cztxdo /ﬁtgztxda()
=— /s2 (us(t,x) + F5 (t,x)) - V (t,x)do(x)
- /Sz V- (w5 (t, %) + FE(t,%)) ¢ (%) dor(x)
= 0.

Therefore,

[ cittx0doto = [ 0300060 = [ Giolxiat =T (3.8)
S2
Now, we define the center of vorticity (in R?) of Cf by

(1) 2 Fi /S X (3o (x) (3.9)

C

<.

and its renormalized second moment
1
I (t) = | x= ¢ (8|5 G5 (t, %) (x). (3.10)
i Js2

Please note that, unlike the planar case, with our definition the center of vorticity does not lie within S?, but
instead within its convex envelope in R® which is the unit ball. Then, we draw inspiration from [48 page 19] in
the planar case, by defining higher-order moments of (¢, for every n € N*, by

1

myq(t) = T Jee [x — cf ()[RE¢ (¢, x)do (x). (3.11)

We start with the estimates at the initial time.
Lemma 3.1. We have that
c5(0) — x%|ps < ¢, I£(0) < 4€2, ms, ;(0) < 16",

Proof. In view of Hypothesis we have
supp (5 (0,-)) € B(x?,¢).
Since B(x?,¢) is a convex set in R?, then by definition of the convex hull, we obtain
Convgs (supp (¢ (0, ))) C B(xY,¢).

Besides, by Hypothesis and (3.9), the initial center of mass is a barycenter with positive coefficients of
elements in supp (Cf((), )) Consequently,

¢ (0) € Convigs (supp (¢7(0,1)) ).

and thus
|5 (0) — x7| <e. (3.12)

7

This is the first desired estimate. For the second one, we observe that (3.12]) implies, by means of triangular
inequality, that

max Ix — £ (0)|gs < [x? — ¢5(0)|rs + max Ix — x?|ps < 2. (3.13)
XEsupp (C,f(0,~)) XEsupp (Cf(O,')

13



Plugging the estimate (3.13)) into (3.10)) and using (3.8]) yields
I£(0) < 4%

Plugging the estimate (| into and using (3.8)) yields
ms, ;(0) < 16"e*™.
This concludes the proof of Lemma [3.1} O
We now estimate the growth of the vorticity moments.

Lemma 3.2. For everyt < 7. 3 and every i € {1,...,N},

d
S| <212 0).
G| <20z

Proof. Differentiating in time the moment (3.10) leads to

d d
GO = F 560 [ x=d®)exdet + 5 [ x—dORa (¢ x)do )
2 TN + J5(t).

First observe that from (3.8), we obtain

[ =) txot) = [ x¢itxdot) ~ i) [ G xaal)

=T (t) — Ty (1)
=0.

(3.14)

Therefore, J{*(t) = 0. Now, we turn to the estimation of J5'(t). From (3.1, we can write

5 (t) = —r% [ e 0B (w3030 + FE (1,3)) - VG (1 x)dor ().

Using the divergence Theorem together with the divergence-free property of the vector field u + Ff, we infer

I3 (t) = FE/S (x — (1)) - (u(t,x) + FF (t,x)) ¢ (¢, x)do (x)
=, G EO) G x5 [k 0) X6 0000,

Inserting the expression of u$ in (3.1) into the first term of the right hand-side above gives

- R X —¢§ (x AY) .
[ (e i) - ui .06 (130 () = o /S 2 /S 2 G (. x)dor (y)dor (x)

‘X Y|R3

/ / XAV (1, y)CE (1 %) (v)do ().
s2 Js2

X — y[3s

We have used the fact that the vectors x and x Ay are orthogonal. Now, by a anti-symmetry of the role of x
and y, we find

/S2 /S2 XNy ——— (S (t,x)( (t, y)do(x)do(y) = 0. (3.15)

Ix — y[2s

Hence,

T = £ [ (=) - et (13000 ).

Using (3.14)), we add a vanishing term in this expression to obtain that

B0 = /S (=) - (FE(tx) = FE(1,65() )65 (10 do (%),

14



where F? (t,¢5(t)) must be understood in the sense of the extension ([3.4). Since the blob is of constant sign, by
using Cauchy-Schwarz inequality together with the definition of (3.1]), more precisely of equation (3.6]), we get

TS (1) < 2D. / x — ()2 C(Iflx)da(x)
=2D.I;(t

Combining the foregoing calculations gives

d
S| <2p.rr ).
1| <2n0

This achieves the proof of Lemma [3.2] O

We now turn to evolution of the center of vorticity. For this, we introduce the notations

() = (5(1), ..., (1) (3.16)

and the point vortex vector field F given by

N
1 1 X; N\ X
FE2(F,....Fn), Fi(x1,..., 2 __ViH(xy,..., =—>y I =7
(71 N) (1 xn) r, ™ (o xn) 2m 4= 7% — x;]Re
i

A priori F; : Ay — TS? is well-defined on the admissible set Ay introduced in (2.1)). However, for later
purposes, we may rather consider F; as in (3.17)) but defined on the set

+’7€3 /\Xi~ (317)

N

In & H U Convpgs (supp (Ci(t, )))

k=1 tE[O,TE,[-;]

By continuity of the trajectories, the set Zy is closed in R®. By construction, JF; is Lipschitz (actually smooth)
on Yn.

Lemma 3.3. There exists a constant C' such that for every t < 7. 3 and every i € {1,..., N}, we have

N
) <O VI,
3 j:1

where ¢°(t) and F; have been introduced in 1) and ( m, respectively.
Proof. Differentiating in time c;, we obtain from and . that

d £ —E
‘dtci (t) — F; (c (t))

d
= f% x(uf(t, x) + F7 (¢, x)) V¢ (t,x)do (x).
1 JS§2

Applying, once again the divergence Theorem, we get

G0 =5 [ e+ Ff(t,x»cf(t,x)da(x)

1 XAy
= = | FErt, %)t x)d £(t, )¢5 (1, y)do(x)do (y).
b L G et + g [ XN G v todety)
From (3.15)), we infer

d 1
G0 = [ B0t x)do k). (318)
dt T S2

Therefore, by using (3.8)), the bound (3.5) and the Cauchy-Schwarz inequality, we obtain

d

&Cf(t) — Fi(t,e°(1))

- ‘1} /S FE (1,06 (1, x)do (x) — Fi(1, (1))

R3

R3

_ ’; /S (P (0) = F (1.5 (0) )0 x)dor(0) — (Fo(t, (1)) — FE (1 e5(1)
D

)+ | Fi(t, e (b)) — Ff (6,65 (1)) |gs-
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Using the definitions (L.5)), (3.2)), (3.16]) and (3.17)), we can write

N
T
Fi(t,E5(t)) — FE(t,c5(t)) = Z —TJFKSQ (c5(1),¢5(t) +ves Aci(t)
=
1N
52 Y [ K 0.5)G (0300 (y) — res A ()
iz
1N
5o 2 [ (Ko (0. 650) = Ko (60.3)) 1.3 )
=t
N
Thanks to , for t < 7. g, the function y — K(cf(t),y) is of class C! on U Conv(supp ({j—(t, ))) Hence,
2

by mean value Theorem, we have for any j € {1,..., N} \ {i} and any y € supp (Cj(t, ),

[ K (c5(8), ¢5(1) = K (5 (1), ¥)|ga < C|c5(8) = ¥ -

7 J

Thus, by means of triangle and Cauchy-Schwarz inequalities, we find

N € €
|Fi(£,25()) — FF (.5 (1) | s < % >l /S 1650~ mﬁ 4 if’,” ¢ 4 if’” do(y)

J J
N
< OZ,/I;(t).
g

This ends the proof of Lemma O

Lemma 3.4. For every € small enough and for every t < 7. g,

1

s

G0 < o) (LR 0+ an (o 0)

Proof. Throughout the proof, we fix n € N*. Differentiating in time (3.11)) and using (3.1)) leads to

e = 1 [ - o (G- d01) o

+ —/ ‘X |R38t(:i5(t,x)d0'()()

— 1 [ (G- d01) G exant

- T 3
Fi §2 ‘ R

d € = i d = £ An—2 re
M= 5 L a (1) - (x— (1)) [x — ()4 2¢E (¢, x)dor (x)
+ % - (xx = 5 (1)) - (w5 (t,x) + Ff (t,%)) [x — ¢ (£) |35 72¢F (£, x)dor ().

Using (3.18)) and (3.1)), we can rearrange the previous expression as

L
dt i 27rF

(1) - Y — e ()42 () CE (1 x)dor () dor (%)
S2><82 Ix —ylgs

+ 5 [ =) (Ff(t, X g [ G yo) ) k- 01 L xda )

£ A5(t) + AS(t).
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We first deal with the term Aj(¢). Notice that by definition (3.9) and orthogonality argument, we have for every
x € 2,

R XAy R B Y XA (t)
[ 6 i) Gy y) = T ) L5 =0
Therefore,
2
Ajt) = % //s?w? Ke(t,x,y)|x — 5 (t) %Zfzgf(t,y)Cf(t,x)dO'(y)dO'(x),
with

Kxy) 2 (x = 0) - xny) ).

x — Y|]?g3 - x — cf(t)h?@

We now split the domain of integration S? x S? into three subdomains

1
E5(t) = {(x, y)€S?xS? st |y —cS(t)|rs < (1 - Qn) |x — cf(t)h@} ,

1 1\
Es<t>£{<x,y>es2x82 st (1= 50 ) b= ik <ly — 0l < (1- 51 ) |xc:f<t>|Rs},

1
E5(t) & {(x,y) €S xS? st |x—c(t)|ps < (1 - 2n> ly — cf(t)hRs}.

This leads to write
AT = AT+ AT, + Al

where for any k € {1,2, 3},

g
t:
() = =

L Ky O G X))o )

We now work on the expression of K¢. We get the identity

| | (2= c50) = (y = £(1)) - (v = (1) 510
x—yRs Ix—ct)s % — 5 (t)|Rs X — ¥ [ ’ '
and since (x — ¢5(t)) - (x Ay) = (y — ¢£(t)) - (x A'y), we conclude that
Kt x,y) = (y = ¢i(1) - (x Ay) (2(X Ao CW))) ) (3.20)
,X,y) = (y — ¢ S (x . .
VoY Y = e OB — I,
We now focus on A7 ;(t). Take (x,y) € Ef(t). By definition,
1
v - 0l < (1 37 ) b= e (3.21)
Hence, by left-triangular inequality, we deduce that
Ix —ylrs = [x = () |rs — |y — ¢ ()]s
1 . (3.22)
> o (1)
Also, by right-triangular inequality and (3.21)), we have
20— £(0)) — v — F )]s < 25— E Wl + Iy — S (D o
< 3lx = ¢ (1) |- '

Putting together (3.20)), (A.1), (3.22)) and (3.23)) gives, by using Cauchy-Schwarz inequality,

31x — £ () sly — 5 (0)]ws
K= (5, 3)] < Iy — €5 (8) s x — s 2o Z
Sy — e (02 x — v s

8ly — 5 (1) 2
S = s lx - ylao
6nly — (]2
[ — (D2
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Consequently, we obtain

g0 < 20 b el e e o ()0

: (3.24)
12n°|T;
< wlﬁ(t)mz,l,i(w.
Now, we deal with the term Af ;(t). Take (x,y) € E5(t). By definition,
- 1
|x — ¢ (t)|rs < 1—— ly — ¢ (t)|grs- (3.25)
Compared to (3.21)), in (3.25) we have exchanged the roles of x and y, hence the bound (3.22)) becomes
|x — y|rs = i|y — 5 (t)|r3, (3.26)
2n
while (3.23)) becomes
2(x — i () — (y — i (D)) |rs < 3ly — i (#)[rs- (3.27)
Putting together (3.20)), (A.1), (3.26]) and (3.27)) gives, by Cauchy-Schwarz inequality,
3ly — ci (1) [
Kot x,y)| < |y — () |ps|x — R
‘ ( y)| |y z( )|]R3| y|]R3 |x—c§(t)\]12§3|x—y|112§3
3ly — ¢ (t) e
= x = (1) Ralx — yle
6nly — cF ()3
x = c5 (1)
Thus, we obtain that
12n Iy n_aGi(t,y) ¢S (E,x
Az < 2L Ty o - o YT o )00
, 5() ‘ ’ (3.28)
12n2|T;
< ﬂff(t)mn,l,xt).
Regarding Af 5(t), we split into two terms
€ 2n £ XAy 4n—2 e €
Afo(t) = — (x—ci(t) T Ix — S (Ol (8, y)¢ (t, x)do (y)do (%)
wl Es(t) | - y|]R3
o (x =) - (x Ay)x = (D)5 ¢ (8, y)¢E (1, x)do (y)do (x)
EQ t
£ AiQ,l( )+ Af 5 5(1).
Take (x,y) € FE5(t). By definition, we have
1- L x—c(t)|rs < |y —cs(t)|rs < (1 — L - |x — ¢ (t) |3 (3.29)
2n IR IR 2n PR ’

In particular,

x —ci ()] < 2ly — i (D).
Invoking one more time the Cauchy-Schwarz inequality and using (A.1]) together with the right-triangle inequal-
ity, we infer

We deduce that
- 12nF n_a G ¢E(t,x
[Aiaa] < Pyl s e a0 )0t
st

I I
LonIT; (3.30)
< T;| | (t)mn 1 z(t)
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As for Af 5 (1), noticing that
(x—cj(t) - x Ny =—=¢j(t) - x Ay,

we then symmetrize and get

A5 51 = 22610 // ) Y (= O~ by — GO 2) G (6 Y)E (1 x)do (y)do (x)

(t) |X - Y|Rs

A n— 5 n— e e
= - — ¢ -%OX—C?Q) %3 Poly -Gt )RS 4 2)< (t,y)¢ (t,x)do (y)do(x).

Now, using (3.29)), we obtain that

7TFi

4n—3
= @2~y — cE (B2 < |x—y|RsZ|x—c Ol ly = Ols

4n—3 1\-G-D 1\t
< [x — ylaslx — Oy — (0o 2(1—%) +(1—2n)
j=1

Standard computations give

02 E 08

7j=1

To get the last inequality, we have used the fact that n — (1 — ﬁ)f% is decreasing. Added to the fact that

1\ !
(1 - ) <2 < 2n,
2n

we deduce that
x—c ()2 =y — ¢ (t) ?1{3“2‘ < 3dnfx — ylps[x — ¢ (1) 35y — ¢ (1) |gs-

With this in hand, then the Cauchy-Schwarz inequality and (A.1) imply

a0 < 2Ry gl - g S D a0t

: (3.31)
34n2|T;
< wlf(t)mz,lm
Putting together (3.30) and -, we infer
4677,2 Fz
1450 < LW e yme ) (3.32)
Combining (3.24)), (3.28) and (3.32), we obtain
7On2\F |
AT < ———— L7 [ty (D). (3.33)

We now turn to the analysis of A5(t), which we recall to be
3 4n £ € 1 € £ 4n—2
At = 1 . (x=ci®) - (FFtx) -1 . (t,y)¢ (t,y)da(y) | [x = ¢; () [z "¢ (8, x)do(x).

19



By definition of D., more precisely by relation (3.7), we have that

A < anD. [[ vl S oty - o) do .

By right-triangular inequality, |x — y|rs < |x — ¢§(¢)|rs + |y — ¢S (¢)|rs and therefore

45001 < 0. (mi 0+ [y = Ok T aoty) [ x-S a0

By Cauchy-Schwarz inequality and the definition of I';, we get

[y =l S aoty) = [y -l W%”ﬁ%”dm)g 1)

Besides, given x € supp((§ (¢, ))7 since ¢f belongs to the convex envelop of supp (¢ (t,-)), we have that

Ix — ¢ (t)|ps < 26°.

Combining the foregoing calculations leads to
myn<4mx<mmamn E@x%miuao. (3.34)
Gathering (3.33) and (3.34), we deduce

d 70n2|T;
G0 < P 0+ an. (w04 2y T 0 0).
, - , , |

Using Holder’s inequality, we notice that

n—1 1
1 =1 W g
mia) = [ (Ee-dcen) T (Feen) dot < (mi,0) T
which concludes the proof of this lemma. O

All these estimates are weak confinement properties. We now introduce the strong confinement tools by
controlling the growth of the support of the absolute vorticity.

3.2 Growth of the support

Let us introduce for all ¢ > 0,
R;(t) £inf {r >0 s.t. supp (¢(t,-)) C B(c(t),7)}. (3.35)
By compactness of the support, we get the existence of X¢(t) € supp (Cf (t, )) such that
[ X5 (1) = i ()|rs = Ri (D). (3.36)

We denote by s + X;,(s) the trajectory passing through X7 (f) at time ¢, i.e. the solution of the Cauchy
problem

d

ds
These trajectories are continuous, so ¢ — RS (t) is also continuous. Then, we have the following lemma used to
estimate the growth of the support.

Xii(s) =i (s, X7 ,(s)) + F7 (5, X5,(9)),  Xi(t) = X7 (). (3.37)

Lemma 3.5. For anyt < 7. g we have that

oo () (MeTD . (R
< - .
ﬂ\m&@+mmmﬁ+< T i\ 2 ’

me ,(r) & / ¢ (8, %) dor (), (3.38)
' S2\C(cs (8),7)

d
SN — )|

where

with
Ve eR® Vr>0, Cx,r)2 {y €8? st |z —ylgs < r} = B(x,r) NS
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Proof. We follow the original proof by Butta-Marchioro in the planar case [0, Lem 2.5] and adapt it to our
situation. We fix ¢t < 7. 5. By definition (3.37)), one readily has by differenciating

4\ X))
at m) XE(0) — & (0)]pe

SIXE) - EColle| _, = (w (e x70) + FE (e XE0) -

Using (3.1)), (3.8) and (3.18), we can write

5 e T S ) e
XE(t) — ¢5(t)

1
— FE(t, X5(t)) — FF (¢ c(t,x)d . : L .
Then, by definition of D, in using relations (3.7)), (3.8) and the definition (3.35)), we get
“(t e(t
[ 1 e xiw) - Frten) e ¥doty)| < / 00~ vl L o y)
S2

[ ’L

d
—[X5s)

2 (9) s

< D.R;(t

Now, we split

o [ e Yy ) e

21 Jg2 |Xf(t) _y%gs |Xf(t) —c‘z?(t)hRs
where
s 1 X;(t) - () Xf (t) _
o /c(cfwf;”) X0 — @) 1XEQ) — v YT,
et X5(t) — 5 (t) Xf() y

"2 o (0,550 TXED) — & 0l TXE0) — v (t,y)do (y).

Observe that
(20— @) - [ (X2 An)GEeydoty) = (x50 - ) - (X501 [ v y)io) )

(
= (X7 () — (1) - (X7 () A cf (1))
0

Consequently, we can write

with

o X)) L “(t.y)io
1= ¢ [t 5y T k0l 7O (i v~ T s ) S0 0)
H,e L XM -l (XE(t) Ay)CE(t, y)da(y).

270 Joe e, ) 1K) - GO
Using the identities (3.19) and (3.36)), the term H; ; becomes

(2(X: () = ) = (y = ) - (v = 5 (1)

1 S —cE(t))-(XE 3 o
Hl’lzwfa»”/c(cf(ﬁ;”) (XEO-40) (K OA) X (0) — I3 tydely)

Notice that (X7 (t) —c5(t)) - (Xf(t) Ay) = (y — c(¢)) - (X5(t) Ay). Hence,

__ 1 . . (2(Xf(t) —G) - (v~ C§(t))) Sy —0)
Hyy = W /c(cf(t),Rf;t)) (y—cE () (X5 (t)Ay) X2 (0) — v G (t,y)do(y).

Now, remark that for y € C (cf(t), R§2(t)>7 we have |y — ¢5(t)|gs < @ Thus, by (3.36) and left-triangular
inequality, we infer
R3(t)

X5 (8) = ylee 2 [X7(t) = i (t)lre — [y = i (B)lre > —5
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As a consequence, by triangular inequality and ,
2(X5 (1) = 5 (1) = (v — €5 (1) go < IXF(1) = ¥lrs + | X5 (t) — €5 (t)]rs < 3|XF(t) — yle.
Applying one more time the Cauchy-Schwarz inequality, we deduce that
3IDLIE ()
2m (Rs (1))
Now we shall estimate Hy 3. By construction (3.35)-(3.36), for y € supp (¢5(t,-)),
[ X5 () = ylrs < |X7 (1) = G (D)|rs + [c7 () — ylrs < 2R7(2).

Hence, Cauchy-Schwarz ineaquality implies

|Hy1| <

XE(t) — (1)
X5 () — 5 (1)

S(XF@)Ay)

Therefore,
ITi] / Gty)
. t do(y).
WRf(t) SZ\C(cf(t),Rle) Fz

We consider the measure p5 ; defined on the measurable space (S?, B(S?)) given by

[ Gty)
A= [ S,

According to (3.8)), ui; is a probability measure on S?, which is absolutely continuous with respect to o. The
classical Markov inequality gives

|Hy 2] <

il . 2 c Ri(1)
. .t. — C; 3 =
Rt (Y€ $7 st |y —ci(t)lr 5

c 2
(e o - (52

4'” 5 by - OB )
_ 4|r| ey,
o L ioy)

|Hi 2| <

//\

4|I‘ |I‘E (t)
7 (R (1)
At last, we focus on the term Hy. One readily gets
\F |

1 Gty) dor(y).

o ( sa\e(es (0, 52) [ X7 () —ylre T

5 L (1),

The integrand is monotonically unbounded as y — X£(t), so the maximum of the integral is obtained when we
rearrange the vorticity mass as close as possible to the singularity. In view of the Hypothesis and since, by

(3-38), m§ ; (Rz(t)) is equal to the total amount of vorticity in 2\ C (c? (1), Rz(t)), this rearrangement gives

zi(0) < mae{ [ ot [ o) =i (B12) osc< AL

2 |N — Y|]R3

Me™"

Let us recall that N denotes the North pole of the sphere. The previous maximum is obtained for { = 9

the spherical cap C(N,r) for r > 0 such that

Me—n €
: / dor(y) = nt, (R(t)) . (3.39)
il Jew,r ’ 2

Let us consider on the unit sphere, the geodesic distance dsz. By definition of the function sin, one has

wiz)

on

Vx,y €S%, |x—ylps = 2sin<
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Therefore,

2arcsin(§)
/ do(y) = 27r/ sin(6)df = 27r<1 — cos (2arcsin (%) )) = 72, (3.40)
C(N,r) 0

Inserting (3.40)) into (3.39)), we find
enla| . (Ri(t)
r = m; . .
Mg b 2

Besides,
1 2 arcsin(l) in(6 2 arcsin( i) 0
/ ——do(y) = 27r/ ’ %d& = 27r/ * cos (> df = 2mr.
ey N = ylrs 0 2sin (3) 0 2
Hence,
2rrMe™" Me=n R:(t)
e &——— = €. i
) < P o S (557
Thus,
Me—|T; €
mﬂ<¢ e|Aﬁ(Rw»_
s ’ 2
This achieves the proof of Lemma [3.5 O

4 Logarithmic confinement results

Here, we use the results of the previous section to prove Theorems and

4.1 Proof of Theorem [1.3]
Recall the definition (3.5) of D, and that in all generality, D. < D. Let o > 0 to be chosen later, and let

5 £ 2aD. (4.1)
We thus have the following estimates on the vorticity moments.

Lemma 4.1. There exists a constant C' such that for € > 0 small enough, for any i € {1,...,N} and any
t < min(7 g, a|lnel),

)

If(t) < Ce*79, 5 (1) — xi(t)|gs < Ce'™27%  mS (1) < Cpe0-Cnon,

n,i

Proof. Fix i€ {1,...,N} and ¢t < min(7. g, a|Inel).
» First estimate : Since, t < 7. 3, we can apply Lemma and use Gronwall’s Lemma and the relation
to get
I3 (0] < TF(0) exp (2D1).
t

Making appeal to Lemma using the fact that ¢ < «|Ine| and the definition of ¢ in (4.1]), we conclude that
IE(t) < Ce*0. (4.2)
» Second estimate : Since t < 7. g, we can apply Lemma together with (4.2)), to get

Doy - F(@E@®)| <o i,
dt RSN

Denoting X(t) the point vortex solution

d
EX(t) =F(X()),

we can apply the variant of Gronwall’s lemma provided in Lemma and deduce that
¢e(t) — X(t)|gsn < (tC’gl_% +1¢°(0) — X(0)|R3N) exp(Ct).

Therefore, using Lemma we conclude that for e small enough, for every i € {1,..., N} and every ¢ <

min(r. g, a|Ine|) that
S
2

|5 () — x4 (t)| < Ce'~

—Qx
i .
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» Third estimate : Combining the estimate of Lemma [3.4] together with (£.2) and (3.5), we infer

d n-t

sty <onP(ms () "

1
i s (52_5 + (mf ()" + 535“_%) )

Assuming that 3641 > 2, namely that 8 > 1/3, which we can do since proving Theorem for some S implies
it for any B’ < B, then the rightmost term is negligible compared to 2~9. Therefore, we obtain

‘ (2 (mEa(0)F).

£ 2 € n

We apply Lemma [ATF] together with Lemma [3.1] leading to

ms (1) < (—e270 + (6270 + 16%) “m) "

n,t

Thus, since t < a|lne|, by compared growth for ¢ small enough, we have that

me (t) < Cng(Qféanoz)n'

n,i

This ends the proof of Lemma [£.1]
O

The first result that we infer from these estimates is the following control on the vorticity far from the center
of mass, which we call weak confinement. Recall the definition of m§ ; given in (3.38).
1
Lemma 4.2. Let §/ & ﬂ;” € (ﬁ,%). For every v > 0, there exists € > 0 depending only on 8 and v
such that provided « is chosen such small enough (depending on v and B only), for every € € (0,e), every

t < min(7. g, a|lnel) and any r > %,

€5+V
g . < -
1217;855\,1[11:71(7") = TG ’
where mg ;(r) is defined in (3.38).
Proof. We set
5 A 2-45,
4

Fix ¢ < min (7.3, @|In¢|). Invoking Lemma we get by compared growth as ¢ — 0 there exists a,, > 0 small
enough that if a < «,, then

ms, () < Cpe@=0m,
4
2

€

Therefore, for any r > and any v > 0, we have

1 1 RAGL
e G x)dot) = - [ XK 0o ()
i Jsane(es (t).r) i Jsave(es oy, X — 5 (8)[R5
< mfmj(t)
r n
Cngn(Q—é*)
prdn

gbtv 6(275*)77,7571/

T‘6 o5’ 4n—6
2
€5+V * ’ ’
< Cn24n76 8(276 —4B8 ) n—5—v+63 )
76

X bn

Since 2 — §* — 45" = % — 3, taking n = L%J + 2 there only remains to take € small enough such that
2

eC, 246 < 1.
Since n depends only on § and v, so does € such that this holds for every ¢ € (0, ). O
We are now ready to prove Theorem The idea is to use the previous estimates to show that for every

time ¢ < min(7.,3, aIne|) and for any 1 < i < N, we have that supp ((f(t)) C B (cf(t), %). Thus, necessarily,

Tep = oflnel.
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Conclusion of the proof of Theorem

Fix ¢ € {1,...,N}. For every ¢ > 0 and ¢ > 0, recall the notations of Section concerning the existence of
a point X{ and a trajectory s — X;,(s) such that relations (3.36) and (3.37) hold. Applying Lemma to

Lemma @ we have that
20 (Men (RN
. v . 4.
- (W@P+< . ”4 2)) (4.3)

d < DR;(t) 4+ Cy

X 5) = €5 05)

Let f; be the solution of the ODE:

, 2—4 Me=" Fi . (¢ %
Fi(t) =2Dfi(t) + 202;3@) +2 ( — Tl e (fé )>> , (4.4)
with initial data
fi(0) = 2R;(0). (4.5)

First observe that (4.3) and (4.4) imply

70 > LX)~ 5) o | (16)
Then, we claim that
vt < min(rog ol @), £i(t) > B (D). (4.7)
Indeed, assume that the converse is true and take
t' £ min{s € [0, min(7 5,/ In(e)])] s.t.  fi(s) = R5(s)}.
According to , we have ¢ > 0. In view of the definition , one has
X5 () = () |ps = RE(t) = filt)). (4.8)
By construction, for any 0 < h < ¢/
| X5 (' — ) = (' = h)| s < R;(t —h) < fi(t' —h). (4.9)
Combining and , we obtain
| X5 (= h) =i (' = )|y — | XF(t) = 5 (1) _ it —h) — fit). (4.10)
—h —h
Passing to the limit h — 0 in , we get a contradiction with . This proves the claim .
Let us now prove that there does not exist an index i € {1,..., N} and a time t; < «|lne| such that

fi(ta) = €/2. We proceed by contradiction: assume there exists such time. Let 5/ = 5%1/2 € (B,1/2) and
let t; be the last time prior to ¢y such that for every t € [t1,t2], we have that ef < fi(t) < £%/2. Since
fit)/2 =2 65'/2, we can apply Lemma with 7 = f;(t) and any positive v such that v > n+ 68" — 4 to get
that for all ¢ € [t1,t2],

, 2o Me=n|Ty|_ &5+ 3
fi(t) <2Dfi(t) +202ff(t) +2( T 2 f?(t))

£2-6
+ Ce(Brv—n—68)/2

£
9

<C (fi(t)Jr f;(:)) ;

where in the last inequality we used that 1(5+v —n—68’) > 8’ and thus e2 5T —1-6) <« 2F L f,(t) as € — 0.
Multiplying by f3(¢) gives that

< 2Df;(t) 4+ 2C,

(') < C(fH1) +27°).

This in turns gives that

FA(ta) < fA(t)eC 1) | 0270 (Clla—t) _ ) = g4F'~Ca | 0g2-0(c~Ca ),
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Provided « is small enough so that 8’ — Ca/4 > 8, and ¢ is small enough, we have that

s
fi (tZ) < %7
which is a contradiction. No such time t, exists for any index 4, and thus provided o and € are small enough,
for every ¢ € {1,..., N}, for every t < min(7. g, a|Inel|), R5(t) < fi(t) < % Therefore, for every such ¢ and 1,
for every point x € supp (Cf (t, ))7 we have that
3
= xi(t)leo < e — (Ol + xalt) — (Dl < REE) + xalt) — S (D> < 77,

where we used Lemma provided € and « are small enough. Applying this last equality in 7. 3 would then
be a contradiction as by definition of 7. g, there exists ig € {1,..., N} and X € supp ((5 (Te.8, )) such that

i0

X — %o () |rs = &”.

Therefore, this inequality cannot be applied in 7. g, so min(7. g, &|In€|) = a|Ine|, meaning that 7. 3 > a|lne|.
Theorem is now proved.

4.2 Optimality of the bound

We now prove that the logarithmic bound is optimal conditionally to the existence of a proper configuration
of point-vortices. Let (x{,...,x%;) be pairwise distinct points on the sphere S?, intensities I'y, ...,y satisfy-
ing ([L.6), and (t — x4(t)), <;<n De the solution to the point-vortex dynamics (1.7). We assume the following.

Hypothesis 4.1. There exists a constant g > 0 and €9 > 0 such that for all € € (0,eq), there exist a time
725 < ppllnel and a set of points xi,..., x5 such that the solution (t — x5(t)) of the point-vortex

dynamics (L7) with initial data (x5 )

1<iKN

L<i<N and intensities 'y, ..., I'y satisfies

|X? - X§,0|R3 < %7
Ixi (72 5) — %5 (72 5)|rs > 4.
We prove the following.

Theorem 4.1. Assuming Hypothesis there exists By < 1/2, n = 2 such that for any S € (Bo,1), there
exists ag > 0 such that for any € > 0 small enough, there exists (§ satisfying Hypothesis such that

Te.3 < o Inel.

Proof. For n to be chosen later, consider

T
i = ?;nﬂc (x505%)

In view of ([3.40)), we have
| Giv)aoty) =T

One can check by direct computation that the maps (f; satisfy Hypothesis (1.2) provided ¢ is small enough.
But in addition, it satisfies that
I; (0) < Ce".

Therefore, applying Lemma and integrating by Gronwall’s Lemma, recalling relation (3.5)), we obtain that
for every t < 7. g,
IE(t) < Cene?Pt,

Then, using Lemma [3.3] we have that

(0 - A m)

n
< Cezelt.
]R3

Up to renaming D, assume that D also bounds the Lipschitz norm of F over 2. Using the variant of Gronwall’s
Lemma [A74] we obtain that

¢
< </ Ce2eP*ds + |5 (0) — Xf(O)Rs) ePt
R3 0

n
<C (€2€Dt +5’7> ePt
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(4.11)

()= xi(0), < Cetepimel”

and thus provided ¢ is small enough,
=

Recall that by hypothesis (4.1)), there exists 77 5 < pg|Ine| such that
xi(,5) = Xi(72)| > 4°.

Let 1 be large enough such that
—p

> .

oD HB

(SIS

Then,
77 * —1
5—2D7—61B‘1n5| >B
Assume now that 7. g > 77 5. We deduce from the previous relation and from (4.11)) that for € small enough,
(1) —xi(rig)| <&

(72 p) = xi(72 5)| > 26,

and thus by triangular inequality,

This implies that 7. 3 < 77 5, which is a contradiction, proving indeed that
Tep < 7o p < pgllnel,

which concludes the proof of Theorem [£1]

5 Power-law confinement result
Similarly to what we did in Section we prove Theorem conditionnally to the existence of suitable

point-vortex configurations.

5.1 Super-stability hypotheses
Recall the notation (1.5, and the fact that a priori the function Kg2 is well-defnied on
DS & {(X7y) €S*xS? st x# y}.

Fixing y € S?, the partial application x + Kga(x,y) is an application from S? \ {y} into R?® that is smooth.

= DiKs:(x,y)[z].

Given x € §?\ {y}, the associated tangent linear map is denoted
D Kge(x,y): TxS? — R?
zZ

Observe that the notation ([1.5)) also makes sense in the ambient Euclidean space so that actually Kg2 is well-
A

defined on .
DR £ {(w,y) ER*xR® st. z# y}

If one denote by Kgs the extension, since S? is a submanifold of R?, we have
D1 Ksz(x,y) = D1 Kgs (X, ¥)|1,s2-

We then continue to keep the notation Kg2 for its R® extension. The curvature of the sphere might create some
instabilities in the internal radial direction. Therefore, one might need the following refined hypothesis with

) is such that the solution of the point-vortex dynamics satisfies

respect to the planar case.
Hypothesis 5.1. Assume that (x9,...,x%
N
N}, VheR?, Y T;DiKs(xi(t),x;(t))[h] - h =0
j=1
Ji

VE>0, Vie{l,...
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Hypothesis 5.2. Assume that (x9,...,x%) satisfies that for every € > 0 small enough, and every family of

functions (t — x5(t))1<i<n defined on a time interval [0,T.], such that
Vie{l,...,N}, [x?—x5(0)|gs <¢ (5.1)
and satisfying the existence of a constant C' such that

Vie{l,...,N}, %xi(t)f]-'i(xf(t),...,xiv(t)) < Ce, (5.2)

R3

then this family of trajectories satisfies that for every 8 < 1/2 and every a < 3,

mp2imf{te0, ] st Fe{l  NL o |x(t) - xi(@l = 5 | > minE, 1),

5.2 The conditional theorem

Theorem 5.1. (Improved confinement time for special configurations)

There exists a choice of N, of (x1,...,Xn) and intensities T'1,..., Ty satisfying and as well as
Hypotheses and such that for every 8 < 1/2 there exists e > 0 and o > 0 such that for every
e € (0,e9), the solution (¢ of with initial condition (5 subjected to the Hypothesis near the points
(xN)1<icn satisfies

—Q

Tes 2 €

Proof of Theorem [5.1

The proof follows the same outline as that of Theorem [I.3] except that we use Hypotheses and [5.2]
to improve the estimates of the vorticity moments and obtain these estimates for longer times. We start by
observing how Hypothesis [5.1] allows to bound the constant D. as follows.

Lemma 5.1. There exists a constant D such that for every e small enough,
D. < DeP.

Proof. Let i € {1,...,N} and t < 7. g. Take z,y € B(xi(t),eﬂ). By definition,

N
FE(t,x) — FE(t,y) = % Z/S2 (Ks2(2,2) — Ks2(y,2)) ¢ (t,2)do (z) + ves A (z —y).

J#i

Then, fix j € {1,...,N}\{i} and z € supp ((5(t,-)) C B(x;(t),£”). We compute by Taylor expanding the last
expression that

1
Ks2(v,2) — Ks2(y,2) = D1Ks2(y,2)(z — y) + 1/0 (1-7)(z—y) HiKs2(y + 7(x — y),z)(x — y)dr

2
=D Ke2 (x4(t),2) (z — y) + (DlKS2 (y,2) — D1 Kg2 (x4(t), Z))(Jf )
+3 [ 0= Ry 4 o - )2 - )

By the Mean Value Theorem, we get that

‘ (Dlng (y,2) — D1 Kgz2 (x,(t), Z)) (v —y)

RS < C|y — Xi(t)|R3|1' — y|R3
< CePlz — ylgs.

Then, we compute that

1 1

5] 0 ) B R+ (e - ). - )| < Ol ol
0

< Ccfﬂll' — les

Besides,

DlKSz (Xz<t), Z) (.’17 - y) = D1K§2 (Xz(t)7 X (t))(a: - y) + (DlKS2 (X,L(t)7 Z) - D1K82 (Xi(t), X (t))) (37 - y)
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By the Mean Value Theorem,
[ (D1 K2 (xi(0),2) = D1 K (xa(8),33(9) ) - (2 = )| < Cla = 550 b — oo
< CeP|z — y|gs.

Combining the foregoing calculations yields

Fi(t,z) — F(t,y) ZF Dy K (x(t), %, (1)) (z — y) + ves A (x —y) + O’ |z — ylrs).  (5.3)

We have that (7e3 A(x — y)) - (z —y) = 0, so taking the scalar product with  — y and using Hypothesis
we have that
|(FE(t2) = Fi ) - (o= )| < O =yl (5.4)

Coming back to (5.3), integrating in y against the measure Fi(:f (t,-), then taking the scalar product with
x — 5 (t), we have that

(Frea) - [ P aom) - - o)

S2 i
LS Dy K (a0, 0) o — 0] (- i) + 0 (27 [ o — vl LDty e — Do )
2T — S2 Fl

Using Hypothesis [5.1] we conclude that

(ra - [ eS8 a0m) - (o i) < 0l — 0l [ o=y EeDaoty). 659

)

Up to renaming D, equations (5.4)) and (5.5)) prove, referring to Definition that D, < De”. O

Then we bound the vorticity moments. Let us denote by a > 0 a positive number to be chosen later.

Lemma 5.2. There exists a constant C' such that for € > 0 small enough, for any i € {1,...,N} and any
t < min(7. g, g™ %),

() <56 |0 —xilt)les < F0 mi (1) < G

n,t

Proof. » First estimate : using Lemma with the bound on D, given by Lemma we have that for all
ie€{l,...,N} and for any t < 7. g,

d
—I5(t)| < 2DEPTIE(t
§770| <2015

which we integrate, recalling Lemma as
I£() < 4e2e2D5"
Therefore, provided ¢ is small enough and a < 3, for every ¢ < min(7. g,e~*), we have that
I (t) < be?. (5.6)

» Second estimate : this one differs significantly from Lemma [I.0] We use Lemma [3.3] to get that

0 - EE©)

and recalling from Lemma [3.1|that |cS(t) — 0|R3 e, we deduce that the trajectories (¢t — 5 (t))1<i<N defined

until 7, = min(7. g,e~*) satisfy relations and -, and thus from Hypothesis we have, at the
condition that o < /2, that

< Ce,

R3

B
€
< .

2
R3

—CCZ)

Vit < min(re g, " 'dt’

» Third estimate : plugging estimate (5.6) and Lemma into Lemma we have that

%mfhi(t) < On? (s (1) T (&2 4+ ()7 +499))
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provided ¢ is small enough. If 1 + 48 > 2, namely 5 > 1/4 which we recall is an assumption we can make as
proving Theorem for a certain S < 1/2 also proves it for every 5’ < 8, then we are reduced to

d e e ) (2 c (E
() <ECn (me(0) T (827 + (ml (1))

Integrating this inequality using Lemma and Lemma we obtain that

ms, () < (—52_6 + (277 + 16¢) ecnaﬁt) .

n,:
For e small enough, for a < 8 and t < e~%, we thus have that
eCne’t <14 2Cnef

and therefore
mé (1) < (2Cne®=*)".

n,t

We now obtain the corollary of the estimate of the higher order moments in terms of a control on mj ;.

Lemma 5.3. For every v > 0, provided o < 2 — 43, there exists eg > 0 such that for all e € (0,ep), and for

. 8
any t < min(7. 5,e~) and any r > <,

€5+V
g
(r) < — .
121135\7 mt,z (T) = 76 ’ (5 7)
where mg ;(r) is defined in (3.38).
. . —a . B
Proof. Fix t < min (7575, € ) Invoking Lemma for any 7 > - and any v > 0, we have
1 1 |x — ¢ (t)|ga
6300 = - [ o
L Jsa\e(es(0),r) T Jsove(es (. 1% — 5 (1) |55
me . (t
< n,l( )
,'n4n
Cngn(Zfa)
< ,r4n
gbtv 6(2704)77,7571/
n 76 8 4n—6
(%)
€5+V
<C 447176 5(27(174[3)71757111%3,3.
X n 7"6
Taking n = LQ—S‘:%V_O‘J +2 we get that there exists gg depending only on 3, v and « such that for every e € (0, o),
(5.7) holds. O

We are now ready to prove Theorem in a similar way to the end of the proof of Theorem

Conclusion of the proof of Theorem

Fix i € {1,...,N}. For every € > 0 and ¢ > 0, recall the notations of Section concerning the existence of a
point X and a trajectory s — Xj ,(s) such that relations (3.36) and (3.37) hold. Applying Lemmas and

to Lemma we have that for all ¢ < min(r, g,e~ %),
& Me|Ty| . (Ri(H)\)*
+ m; , .
(R (1))? Q A2
Let f; be the solution of the ODE:

’ 2 Me="|T; . Lt 3
10 =202 0 20 2 (M (1))

d
X (5) — 9

< DEPRS(t) + Co
t

s=

with initial data

fi(0) = 2R;(0).
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Then by the same argument that was performed in Section [4.1 we have that
YVt <min(re g, e ), fi(t) > R;(t).

Let us now prove that there does not exist an index i € {1,..., N} and a time ¢3 < £ such that f;(t2) >
€8 /2. We proceed by contradiction: assume there exists such time. Let #; be the last time prior to t5 such that
for every t € [t1,ts], we have that £°/4 < fi(t) < €7/2. Since f;(t)/2 > £/8, we can apply Lemma with
r = f;(t) and any positive v such that v > n+ 65 — 3 to get that for all ¢ € [ty, t2],

/ 8y g2 Me="T;| ¢ €5+ >§
Jill) < 2R 2 Ce sy 2 ( 0
2
< 2D f(t) + 202% + Ce3(5+v—1-68)
8 e?
<c(#10+ 775),

1
where in the last inequality we used that (5 + v —n — 63) > 8 and thus g2OTV=n=68) « 26 C Bfi(t) as
e — 0. Multiplying by f3(¢) gives that

(f)' () S CP(f(t) + 7).

This in turns gives that

1 e
FA(ta) < fA(t1)eCF i) 4 278 (o0 (tamt) _ 1) ¢ 480" | (2-Bgche

44
Hence, provided 2 — « > 40, and 8 > «, for £ small enough,

filt2) < 5,
which is a contradiction. No such time ¢y exists for any index 4, and thus for every ¢ € {1,..., N}, for every

t <min(7. g,e”%), R5(t) < fi(t) < %. Therefore, for every such ¢ and i, for every point x € supp ((F(¢,-)), we
have that

3
x = xi(t)lre < |x = ¢ (B)lrs + [xilt) = ¢ (B)lzs < R7 (1) + [xi(t) — ¢ (£)[zo < 37,

where we used Lemma provided ¢ and « is small enough. Applying this last equality in 7. 3 would then be
a contradiction as by definition of 7. 5, there exists iy € {1,..., N} and X € supp (¢, (7,4, -)) such that

i0
X — X (Te,8) 2 = .

Therefore, this inequality cannot be applied in 7. g, and thus 7. g > ¢~“. Theorem is now proved.

6 Existence of point-vortex configurations leading to each stability
hypothesis

In this section, we construct configurations satisfying Hypothesis as well as Hypotheses and and
conclude that the conditional Theorem [.1] and Theorem [5.1] prove Theorem [T.4] and Theorem [I.5

We start with the sufficient conditions to satisfy Hypotheses [5.2] and 1] in terms of linear stability and
instability.

6.1 Link between Hypotheses and linear stability
6.1.1 Linear stability or neutrality implies Hypothesis

Let X% = (x9,...,x%) be a rotative relative equilibrium of the point vortex dynamics on the rotating sphere,
namely that the solution t — X(t) satisfies that for all ¢ € {1,..., N},

xi(t) = R(QU)x7,
for some Q € R, where Ry is defined at relation (A.4), a fact that we write
X(t) = R X", (6.1)

with the appropriate definition of the multidimensional rotation Ry. Then, we have the following.
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Proposition 6.1. Ift — X(t) is a vortex crystal solution, namely satisfies (6.1) for some v € R, and that
DF(X?) satisfies that for every H € TX?S2 X .. X TX%SQ that

DF(X%)[H]-H <0, (6.2)

then X9 satisfies Hypothesis .

Proof. First, let us notice that since ¢ — X(t) is a vortex crystal solution, and that relation (6.2)) is invariant
by the action of the rotations Ry, then for all ¢t > 0,

DF(X(t))[H] - H < 0. (6.3)

The interested reader can also see this fact through the formula (6.7]) given later. Throughout the proof, we
denote

N
X[% 2 xilfs.
i=1
Let us compute

SXE(0) — X0 = 25 (X°(6) — X(1)) - (X° (1) ~ X(1)
= 2(F(XE(1) — F(X() ) - (X5(0) — X(1)).
We then split the solution
XE(t) = X (t) + X5 (1), with X5 — X(t) € T (nS? x ... X Ty, (1)S?,

so that

Using relation (6.3]), we find

(FX5(0) ~ FOX(0) ) - (%5 (1) — X(0)) = DF(X(0)[X5(1) — X(0] - (X5(1) — X(1)) + CIXE (1) ~ X()

< CIX5 (1) - XD}

Then, by Lipschitz and Cauchy-Schwarz estimates, we get

d € g g € 13 13 €

71X = XOIR < CIXE() = X0 v XL () [v + CIXE(t) = X5 () [ w[XF(8) = X (8)| v+ C[XF(t) = X (1)[}-
Now recall that X9 () = X°(¢) — X5 (¢) and that, by definition of the orthogonal projection, we have

X5 (1) = X() v < [X5() = X(1) |-

With this in hand, we obtain
d
dt

Additionally, since for all i € {1,..., N}, x5(¢),x;(t) € S?, we have by virtue of (A.2)) that

x5 (1) = xi(t)[gs = 2(1 — x{(1) - x4(t)),

and by definition, x7(t) = x§ | (t) + x; +(¢), with

XE(t) = XD}y < CIXE() = X(8)|v[X (1) v + CIX5 (1) — X(1)[}-

(x5 (1) = xi(t)) - xi(t) = 0, fe.  xiq(t)-x(t) =1

Therefore, combining the last three identities and using the fact that x{ , (¢) is colinear to x;(t), we obtain
x5 (1) — xi(£)[2s = —2xF 1 (8) - xi() = 2/, ()]s

32



In conclusion, the normal perturbation is quadratic
XL (t)|v < OIX(t) — X(t) |3

We have proved that
d
dt
We then make a quick bootstrap argument. For all t < 7. g, |x;(t) —x5(t)| < €7 /2, thus | X () —X(t)]2 < %\/Neﬂ
so that

X(t) = X ()% < C1X5(t) = X(1)[3-

X (1) - X0l < CAIXE@) - X (D),

which yields that
X2 () — X(8)| v < [X5(0) — XO el < et

[

Therefore, for any o < 3, for every t < e~® and provided ¢ is small enough, we have that

S(t) — x3(t)]oo < |XE(E) — X(2 < 2e.
o (1) = x(t) | < [XE() - X(B)]y < 2¢

which proves by continuity of the trajectories that 7. g > ¢=. O

6.1.2 Linear Instability implies Hypothesis
Let us recall Theorem 6.1, Chapter 9 of [36].
Theorem 6.1. Let f: (S®)N — (S)N. We consider the differential equation

d ~ -
aX(t) = F(X(t)). (6.4)
Assume that there evists X* € (R%)N is such that f(X*) = 0. Assume furthermore that Df(Z*) has an

eigenvalue with positive real part Ag > 0. Then there exists a solution X of (6.4]) such that f((t) exists some
fixed neighborhood of X*, that

and that

where | - |oo,N s the norm defined by
I X|oo,y & max }|Xi|]R3.
We claim that since Theorem is purely local, it is also true on (S?)" by writing in a local chart, and with
|Z(t) — Z*| replaced with the S? distance, or equivalently and suiting better our notations, the R? distance. Let
us now prove the following.

Proposition 6.2. Assume that X* is an equilibrium of the point-vortexr dynamics such that DF(X*) has an

etgenvalue with positive real part. Then Hypothesis is satisfied.

Proof. Let 8 € (0,1) and let X a solution of the point-vortex dynamics given by Theorem Since f((t) , —
——00

X* and since X exits some fixed neighborhood of X*, for € small enough, there exist tg and ¢; such that

—o0 < tg < 1ty

t1 > —o0 ase — 0
X (t1) — X*|oo = 46

X(to) = X*|oo = §-

Let X=(t) = X(t + to), we have that |X¢(0) — X*|o = 5 and that 775 < 1 — to since X°(t1 — to) = 4P,
Moreover, since

In |X(t) — X*|oo = Aot + 01— oo (1),
then for any « € (0,1), for —¢ big enough we have that

In|X*(t) — X*|oo
_ InfX<(t) - X

1 _
s Aot

<1l+k.
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Therefore, for € small enough, applying in o and ¢; (we recall that t; — —oco as € — 0) we have that

In|X*(t;) = X*|oo  Blne+In2 —f|lnel+1n2

t <

Ao(1+ k) Xo(1+8)  Xo(1+r)
and
» ~In[X®(t) = X*[oc _ |Ine[+In2
0 MI—r)  X(l—k)
Thus,

t1 —tg < |lng| L - b + In2 ! + !
e XI=r) X(l+r) Ajlne\1+x 1-x/))"

Therefore, by letting xk — 0, for any A < Ag, for € small enough,

1-5
A

tlftog |h’l€|.

By definition, Tig Sti—to < ¥| Ing|. This concludes the proof. O

6.2 Computing the differential matrix

The goal of this subsection is to provide the explicit general computation of the matrix DF(X) associated
with the point vortex functional in (3.17). Here one must deal with difficulties coming from the non-Euclidean
geometry that appear through a projection analysis on the tangent bundle.

Let us compute the Jacobian matrix D; Ks2(x,y). Let p € R®. We have that

(x+p)Ay XAy
Ks:(x +p,y) — Ks2(x,y) = |x—|—p—y|2 - |x—y\2
R3 R3

PAY XAy 1

X+ =yl x-VlEs \ 142 250 + ollpl)
R
PAY XNy
= —— 2 (x—y)——— + o(|p|r2)-
x—yl, XYy e
Therefore, for every h € TyS?,
hAy XAy
DiKs:(x,y)[h] = 5 = 2h- (x=y)i——1— (6.5)

|X—Y|]12§3 |X_Y‘]14e3

By symmetry, the differential with respect to the second variable can be obtained by exchanging the roles of x
and y and using the antisymmetry of the wedge product. More precisely, since

KS2 (X7y) = 7KS2 (Ya X)a
we obtain, for every k € Ty S?,

XAk XAy

DoKer(x.y)k] = — 2% Lok (x—y) LY
2 Sz( y)[ ] |x—y|]§3 ( y) |X—y\§3

The Jacobian matrix of the function F is by definition

OF;
D]:(X) = (X) £ (Aij)lgi,jgN,
Ox; 1<i,j<N

where each component is the projection on the tangent space of the differential in the ambient space, namely,

N
Ty
I, — D1 K (x4, g A , ifi=y,
; ;27r 1K (xi,x1) +v(e3 A-) o=y
Aij = ki Ty, S?—R3
T /
Hxi [J D2K(Xivxj>:| ’ if i 7& ja
2m Ty, S2—R?
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where we denoted II, £ Id — x ® x the projection onto the tangent plane Ty S?. Combining the exact expression

(13.17) with (6.5) and , given a direction H = (h1,...,hy) € Tx,S? x ... x Tx,S?, we have that for any
i,je{l,...,N},

N
r h; A FIVAN e .
Iy, Z - (Xk—2hz"(xi—xk)w>+7€3/\hi , ifi =,

— 21 \ [x; — X |2 Ixi — Xi|3
Aijlhs] = i R3 ® (6.7)
I x; A\ h; X; A X;
I, J(H_i_gh” xi—x»Z])}, if ¢ i
i |:2’/T |Xi_xj|]§3 J ( J)|Xi_xj ?RS 7é.]

By a quick computation, one can check that for any x,y € S?, and any h € TyS?, we have that
Ix(y Ah) = (y-x)(xAh).
Also, for any x € S? and any h € R3,
Iy (x A h) = x AlLch.

Noticing that the application
Ry: TuS? — T,S?
h — xAh

is exactly the rotation of angle 7 in T S%. Given B = (b1, b2) an orthonormal basis of Ty S? such that (x, by, b2)
is a direct orthonormal basis of R?, the matrix of Ry in the basis B is

_ (0 —1\ &
MBat(Rx)—<1 O>_J.

We now choose once for all for any i € {1,..., N} an orthonormal basis B; £ (b1 ;,ba,;) such that the triplet
(xi,b1.i,b2,) is a direct orthonormal basis of R3. Next, denote by
M & Mat(£ix), £k : T, S* — T,S?

h = 2h-(x; —Xg) X A Xk

|x; — Xi|3s

lI>

Ny = Mat (gi;), g1 TS — TS

5, Bi i A X
h Qh'(Xif}(]‘)l){in

2
and

Pij gdajéc.(pij>’ Pij - ijSQ - sz'SQ
o oo () = h— (x; - h)x.

In conclusion, in the basis By x ... x By of Ty, S? x ... x Tx, S?, the block A;; is represented by the matrix

N
I
Z 7’62 (xi - xpJ + Myg) +ves - x;J, if i =3,
1 271'|X1' — Xk|]R3
A=y (6.8)
T
2 (JPy + Nig), if i # j.

27T|Xi — Xj |]§3

6.3 Proof of Theorem [1.5]

Let us recall that in the planar case, without boundaries, [9] obtained two configurations that realize the im-
proved bound 7. g > £~ “: by taking N = 1, or by taking self-similar expanding configurations of point-vortices.
Both are not possible on the sphere. Indeed, due to the Gauss constraint, the point-vortex problem cannot be
stated with IV = 1. As for the second situation, the compactness of the sphere prevents expansion.

Let us consider the case of polar counter-rotating vortices, namely
N = 2, (X17X2) = (93, —63), (F17F2) = (P, —F) (69)

By construction, the Gauss constraint (1.6 is satisfied. In addition, in view of Lemma the configuration

is stationary and (|1.9)) holds with dy = 2.
» Hypothesis : Using the relation (6.5)), we compute that for any h € R?,

hAe
D1K82 (e3, 783)[h] = 7T3 = 7D1KS2(763, 63)[h]
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In particular, that for any h € R?, we have
D1K52 (837 —eg)[h] -h=0= D1K52(—83,63)[h] - h.

Therefore, this configuration satisfies Hypothesis
» Hypothesis : With the notations of Section since e3 A (—e3) = 0, we readily get

My = My = Nig = Noy = 0.

Also, due to the orientation convention, one has

1 0
Py =Py = (O _1>~

Therefore, for any (hy,ha) € Te,S? X T_e,S? we can write matricially

_r _r
D]:(e:;, —83)[h1,h2] = <( 87;1;—;7)(] (% ?TS)J> (Z;) ) (6~10)

0 -1
SéJP12:<_1 0).

The matrix in (6.10)) is skew-symmetric, hence satisfies

where

D‘F(X, —X) [hl, hg} . (hl, hg) =0.
Applying Proposition we conclude that the configuration satisfies Hypothesis

In conclusion, for any couple I,y € R, the configuration of point-vortices X? = (e3, —e3) with intensities
(I'1,Ty) = (T, -T') satisfies Hypotheses and We can thus apply conditional Theorem to this
configuration, which proves Theorem [1.5

6.4 Proof of Theorem [1.4]

We now consider the following configuration: let N = 4, a € (0,1), ' # 0, v € R and let us consider the
configuration:

a —a

X1 = es, X9 = —es, X3 = 0 y Xy = 0

v1—a? Vv1—a?

where we impose that I's = Ty = T # 0, that I'y = kI’ where & is to be determined and I's is such that
I't + 'y +I's + 'y = 0 so that the Gauss constraint in satisfied.

)

Lemma 6.1. There exists a unique choice of k such that the previsously described configuration is a stationary
solution of the point-vortex dynamics (1.7) for any choice of I' # 0 and v € R.

Proof. We need to prove that for all ¢ € {1,...,4},

4

', x;Ax;
— —J v J .
O—ZQW T +ve3ANx;
= % 7R3

i

For i = 1,2, we have that | + e5 — x3| = | + e3 — x4| and x3 + x4 = 2v/1 — a?e3, so that

4

I, x; Ax; I' +e3 A (x3+ X4
227371 ]2 —&—'yeg/\xi:——( 5 ):0
j=1 71'|Xiij|]R3 27 |ieS*X3|R3
G

For i = 3 we compute first that x5 A x4 = 2v/1 — a?x3 A e3, and thus

4
;i x3AX; r r T'42v1 — a?
Z JM+’Y€3/\X3X3/\€3< ! 2 + 1 "Y)

o |x3 — xj|ﬂ2§3 27|x3 — e3|ﬂ2{3 B 27|x3 + e3|]12§3 27|x3 — X4|D2§3 B

j=1
§#3
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We introduce the notation

1 1 1 1 1
s=1+1-a?, a_ oy Y=—"—75 =

T lxz—esZs 2(1-s) T lxstesZs  2(1+s) T lxs —xaf2s  4a®

Therefore, this is 0 if and only if

Fla_ — F2a+ + F4T2\/ 1—a2— 27'("}/ = 07
which is equivalent to
klao +ay)=-2sT — 204 + QW%
This gives a unique choice of x such that this equation holds. By symmetry, we have the same result for

1 =4. O

Let us make this choice of k. Since only the ratio v/T is relevant, up to renaming +y, we can choose
I' =1, leading to T's = —(2 4+ k). Let us denote the resulting equilibrium by X*. With the method presented
in Section [6.2] we can construct DF(X*) for this configuration. Serving as example, let us compute Aj;.
Relation yields

_Fk
A = 7( . J+ M . J. 6.11
11 E Gl a——cy (x1-xi)J + 1k>+’)’(63 X1) (6.11)
ke{2,3,4}

Since x; = e3, we have ez - x; = 1, hence
~v(es - x1)J =~J.
We now turn to the term k& = 2 in the sum. We have
|X1 — X2|f§3 = |e3 — (7e3)|f§3 = 4, X1 X9 —=6€3 - (763) = 71, X1 A Xo = 0
In particular, x; A xo = 0 implies My2 = 0. Therefore the £ = 2 term in (6.11)) is

—I'y . —I'y . —(K+2)
27r-4<(x1 .XQ)J—’_MH) 87 (=)= s

Let us now look at the term k& = 3. We first collect the geometric quantities

J.

x; —x3 = (—a,0,1—s), Ix1 — x3[fs = a® + (1 —8)* =2(1 — s), X1 - X3 =8,

x1 Ax3 =e3 A (a,0,s) =(0,a,0) = aes.
Let h € Te,S?, we have that h-e3 = 0. Then

h-(x1—x3)=—ah-e
(where e; is the ambient unit vector). Hence the vector-valued map defining M3 reads

2
aesy a
" _—9(—ah- = — h- .
|x1—X3\H2@3 (—a el)Q(l—s) 1—3( e1) e

X1 A X3

h}—)2h'(X17X3)

Choosing By = (e1,e2) (the simplest oriented choice), then the above map is represented by the matrix

0 0
My = a?

Using now ((6.11)), the full k£ = 3 contribution is

T
2m|xy — X3|]§3

((x1 “x3)J + Mlg) = 5303

<5J+ Mlg).

We turn to the term k = 4. The computation is identical up to the sign change a — —a in x4. In particular,
Ix1 — x4)3s = 2(1 — ), X1 X4 =8, x1 Axqy =e3A(—a,0,8) =(0,—a,0) = —aes.

Moreover h-(x7 —x4) = +a h-eq, so that the two signs compensate and one obtains the same rank-one operator
as for k = 3. In particular, for B; = (e1,e2) we again have

-y

My =My,  hence —— 1
27|x1 — X4l5s

((x1 -x4)J + M14> = (sJJr Mlg).

e
or - 2(1— 5)
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Summing the contributions of k = 2,3,4 and adding the Coriolis term, we obtain

K+ 2 s 1
A= (- - - M
1 <7 st 2n(1— s)> T o =M

_ 0 Y+ 52 + miy
Ty e g 0
87 2m(1—s) 27 (1—s)2

We now see that the full 8 x 8 matrix will be very hard to manipulate since it depends on the two paramters
a and ~. Instead of looking to the albebraic properties of this matrix, we look instead for a set of parameters
simplifying it enough so that it is computable. We claim the following.

Lemma 6.2. Take a =1 and v =1/2. Then DF(X*) has a positive eigenvalue.
Proof. With this set of parameters, we compute that
1—-37 m+1 1 1

0 &7 0 gt a0 T
3(mr+1) T+ 1 1 1
8 0 T 0 0 Ar 0 Am
T—1 3r+1 1 1
0 8 0 8 Am 0 An
1 _
T o U=m 0 -+ o -1
DF(X*) = 8 8T 47 47
1—m T+1 3 1
0 — 0 0 — 0 —
47 47 8w 8
T—1 T+ 1 1 1
0 in 0 i & Y &
1—7 T+1 1 3
0 — 0 0 — 0 —
47 47 8w 8
T—1 T+ 1 1 1
0 47 0 47 87 87
One can then compute that
* 1 2 2 214 2112
x(A) = det (/\Ig -DF(X )) = t1a.2 A (AN +1) (1287r A+ (324 81%)A° + 3)

and conclude that

. i . —(n% +4) £ AT — 16721 16
speC(D]:(X )|ﬂ{:%) = {0, iia SSvr izﬁ}7 Pt = ( ) 3272 ’

where py ~ 0.049 > 0. Therefore, by Proposition [6.2] we can apply the conditional Theorem to prove
Theorem L4l
O

6.5 A short discussion on polar vortex crystals

On the poles of Jupiter (see [1]), are evolving rather stable large vortices arranged in a relative equilibrium
of vortices, consisting in a polar vortex surrounded by equally distributed vortices around it. The stability
properties of these vortex crystals have been studied, see for instance [I1], and for some of them with well-
chosen intensities, [22] proved the improved confinement bound.

On the sphere, we can easily construct this configuration by adding more vortices and taking a close to 0,
while ensuring the Gauss constraint with a vortex on the opposite pole. More precisely, consider the configuration
consisting

a
XiZR%i 0 , VZE{L,N—Q}, XN_1 =€3, XNy = —eg (612)

V1—a?
with Ty = ... =Tny_o =1, Ty_y = kand 'y = —(IN — 2) — k. One can check that this configuration is

a relative equilibrium of the point-vortex dynamics. In Figure |1} a numerical simulation of this configuration
with N = 8 was made of the fluid equation, where very small viscosity is added for numerical purposes, which
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Figure 1: Numerical simulation of the Navier-Stokes equations with Reynold’s number 10°, and an initial data
concentrated near the vortex crystal (6.12) with N = 8 and x = 1. Credit: Matthieu Brachet, Université de
Poitiers, CNRS, LMA, Poitiers, France.

27 4

-

max R(A;)

Figure 2: Maximum real part of the eigenvalues of DF(X*) for the N = 4 stationary configuration in the case
a = 0.1 (left), a = 0.3 (right), depending on 7.

illustrates Theorem the vortices remain concentrated around the vortex crystal solution of the point-vortex
dynamics.

Taking N = 4, we recover the configuration constructed in Section We observe that in that case, with
the stationary condition computed in Lemma letting a — 0, we find that k — —%, which leads to the
well-known equilibria of three aligned vortices, which is unstable. One can check numerically that for small
values of a, the configuration with the choice of k made in Section [6.4]is unstable for every value of « of order 1,
when for larger values of a, non-trivial behavior appears, as observed in Figure[2] The problem degenerates near
a =1, see Figure On the contrary, one can wonder whether for every value of +, it is possible to find x such
that Hypothesis and are satisfied. We do not perform this study here but we established all necessary
tools to make the computations at least for small values of IV, else, some more refined algebraic properties of

DF(X*) will be necessary. We refer to the works of [11], 10} 51}, [52] [59] for methods about point-vortex stability.
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Figure 3: Maximum real part of the eigenvalues of DF(X™*) for the N = 4 stationary configuration for values
of a close to 1, depending on .

A Technical lemmas

In this appendix, we gather some technical results used along the manuscript.

Lemma A.1. For every x,y € S?, there holds that
(X Aylps < X = ylrs. (A1)
Proof. First of all, take x,y € S2. On one hand
X AylEs = [XlEslylis — (x-¥)? =1-(x-y)? =(1-x-y)(1+xy).

On the other hand
|x = ylgs = [x[fs + |ylRs —2x-y =2(1 —x-y). (A2)

In addition, by Cauchy-Schwarz inequality,

L4y < 1+ [xlslyles = 2.
Combining the foregoing calculations leads to relation . O
Lemma A.2 (Biot-Savart law on the rotating sphere). For any x,y € S?, we have

XAy

Viboy)=xay and V(b yle) = 00
R3

Consequently, one obtains the following Biot-Savart law on the rotating sphere at speed -y

1 XAy
Vx €S2, u(t x :7/ _XAY  (ty)do(y) + ves Ax.
( ) o1 2 ‘X_y|]§3<( ) ( ) ves
Proof. Let us first recall from (A.2)) that for x,y € S%,
x = ¥lgs = Ix[Zs +IylRs —2x -y =2(1 —x-y).

Therefore,
Vil(x-y)
Ix — Y‘nzgs

The unit sphere is a manifold with principal co-latitude/longitude local chart

Vi (in e = ylo) = 5V (e~ ) =
V1(0, ) £ (sin(0) cos(p), sin(0) sin(y), cos(6)), 0 € (0,m), @ € (0,2m).
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The interested reader can perform the same computations working in an other local chart, covering the missing
points, and get the same result. On each point x € S? in the form x = 11 (6, ¢) for some (6, ¢) € (0, 7) x (0,27),
the tangent space TxS? has an orthonormal basis e = (ey(x),e,(x)) given by

cos(f) cos(p) —sin(ep)
es(x) 2 0yt (6,) = (cosw) Sin(w)) e ( cos() ) |
—sin(6) 0
The operator V* is defined by

0p1(0, )

1 —
\Y f(97 QO) - sm(0)

eg — 0o f(0,p)e,

We denote y = ¢1(6',¢), then

Vi(xoy) =V (n(6.9) - y)
= —(e(x) - ¥)ep(x) + (ep(x) - ¥)en(x).

But
—sin(yp) sin(#’) cos(¢’)
ey(x)-y=| cos(p) |- | sin(®)sin(¢’) | = cos(p)sin(d’)sin(¢’) — sin(p) sin(0’) cos(¢)
0 cos(#)
and

cos(f) cos(p) sin(6”) cos(¢")
ep(x) -y = | cos(9)sin(p) | - | sin(8’) sin(¢’)
— sin(6 cos(6")

= cos(f) cos(p) sin(’) cos(’) + cos() sin(y) sin(0’) sin(p’) — sin () cos(¢’).

Therefore, after simplifications, we find

Vix-y) ( cos(0) sin(0") cos(¢’) — sin(6) cos(¢) cos(8”)
sin () cos(p) sin(6’) sin(¢") — sin(6) sin(p) sin(8”) cos(¢’)

sin(6 cos sin(6’) cos 8]
x Ay = | sin(d sm sin(#") sin(y /
cos(

cos(6")
sm(@ n(y) cos(f’) — cos(#) sin(f’) sin(¢’)
= ( cos(@) n(6") cos(¢’) — sin(0) cos(p) cos(d’) )
sin(0) cos(p) sin(0’) sin(¢’) — sin(6) sin(¢) sin(6’) cos(y’)

SlnE ) sin(¢) cos(8”) — cos(8) sin(#’) sin(¢’) )

Besides,

A

Thus, we have proven

Vi(x-y)=—xAy (A.3)
Consequently,
XNy
Vi(ln|x - ylgs
(nbe=vle) = 5y,
The proof of Lemma is now complete. O

Throughout the document, give 6 € R, the direct rotation of angle 6 around the vertical axis is denoted

(cos(@) —sin(6) O)
R(0) = | sin(d) cos(d) 0. (A.4)
0 0 1

We have the following characterization of uniformly rotating point vortex configurations (vortex crystals).

Lemma A.3. Let ((x1 t),,Ty)..., (XN(t),FN)) be a point vortex dynamical system on S?. Then, this system
performs a uniform rotation around the vertical axis at constant speed 2 € R if and only if for anyi € {1,..., N},

ST, xi(0) Ax;(0
(2 —es Axi(0) = Z:; 2 |Xi((§) )— "‘j((()”)ll%3 .
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Remark A.1. The previous result gives in particular that two antipodal points with opposite circulations might
rotate at the sphere rotation speed 7.

Proof. Observe that a point x(¢) on S? performs a uniform rotation around the vertical axis at constant speed
Q if and only if

x(t) = R(Q)x(0).

Therefore,
d —sin(Qt)  —cos(Qt) 0
—x(t) = 0;(R(Q))x(0) =Q | cos(Q) —sin(Qt) 0] x(0).
dt
0 0 0
Denoting x(0) = (29, 29,23) 7, we get
d 29 sin(Qt) + 9 cos(Q)
ﬁx(t) = —Q [ 29sin(t) — 29 cos(Qt)
0
Now notice that
0 29 cos(Qt) — 23 sin(Qt) 29 sin(Qt) + 29 cos(t)
R(Qt)(e3 Ax(0)) = ez AR(QU)x(0) = [ 0 | A | 29sin(Qt) + 2§ cos() | = — | 3 sin(Qt) — 2 cos(Qt)
1 9 0
Thus, we get
d
%x(t) = QR()(es Ax(0)).
Inserting this information into the point vortex system gives that for any ¢ € {1,..., N},
N

T, R(20xi(0) A R(Q)x;(0)

QR(Qt) (63 A x¢(0)) = = 21 |R(Qt)x;(0) — R(Qt)xj(o)ﬁ@

+ Y €3 A ’R(Qt)xz(())

_ ST, xi(0) Ax;(0) _
= R(Qt) ;ﬂm(O) O + v es Ax;(0)

J#i

We have use the fact that R(Qt) € SO3(R). In particular it is invertible, so composing on the left by its inverse
gives the desired result. This concludes the proof of Lemma [A73] O

Lemma A.4 (A variant of Gronwall’s Lemma). Let f : R™ — R™ such that there exists k > 0 such that
Yo,y €R", [f(z) = f(y)] < sle—yl.
Let g€ LY(Ry,Ry) and T > 0. We assume that z : Ry — R™ satisfies
vee[0,T], 2'(t) = f(2(t))

and that y : Ry — R™ satisfies
vt e [0,7], [y (t) - Fly®)] < g(t).
Then,

WeMﬂ,wm—4m<(ég@w+y@—dm0w#

Proof. The proof was already provided in [2I, Lemma B.2] and is recalled here for the sake of completeness.
Fix ¢ € [0,T]. One readily has

t

@@) #(s))ds
$)ds + \ / ~ f(2(5))]ds
<A (Mwwm>—z|+«/Wy ) — 2(s)lds.

ly(t) — 2()] < +1y(0) — 2(0)]

+1y(0) — 2(0)]
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Applying the classical Gronwall’s inequality, since ¢ — fg g(s)ds+]y(0) —z(0)] is non-negative and differentiable,
we obtain

t
(0) 20 < ([ 9te)as +14(0) - =] e
0
This concludes the proof of Lemma O

Lemma A.5 (Solving the high-order moments ODE). Let a >0, b > 0, n € N*. Consider y : [0,400) — R4
a differentiable function satisfying the following differential inequality

>0, () <ay' (1) (b+yr ).
Then, the following upper bound holds
vtz 0, y(t) < (<b+ (b+y7(0) e%t)n. (A.5)

Proof. Consider the associated differential equation

—1

0 (b+z%(t)), 2(0) = y(0). (A.6)

By the comparison lemma for differential equations, we have

Z(t) =az

VE>0, y(t) <z()

In order to solve (A.G), we set w £ zw. Then,

o az" v (1) (b+2n(t))
nz"g)(t) - nzn(n_l(t) ) =, (b w®).

Vi 0, w(t)=
This is a linear differential equation of order 1 with constant coefficients whose solution is given by
¥ >0, w(t) = —b+ (b+w(0))ett = —b+ (b+ z%(O)) L (b+y%(0)) est.

Coming back to z, we infer

VE>0, z(t)=uw(t) = (—b + (b + y%(o)) e%t)" .

Thus, the upper bound (A.5)) follows directly. O
References

[1] A. Adriani, A. Mura, G. Orton, et al. Clusters of cyclones encircling jupiter’s poles. Nature, 555:216-219,
2018.

[2] H. Aref. Point vortex dynamics: A classical mathematics playground. Journal of Mathematical Physics,
48(6):065401, 06 2007.

[3] M. Berti, Z. Hassainia, and N. Masmoudi. Time quasi-periodic vortex patches of euler equation in the
plane. Inventiones mathematicae, 233(3):1279-1391, 2023.

[4] S. Boatto and D. G. Dritschel. The motion of point vortices on closed surfaces. Proceedings of the Royal
Society A - Mathematical, Physical and Engineering Sciences, 471(2176):20140890, 25, 2015.

[5] V. A. Bogomolov. Dynamics of vorticity at a sphere. Fluid Dynamics, 12:863-870, 1977.
[6] J. Burbea. Motions of vortex patches. Letters in Mathematical Physics, 6(1):1-16, 1982.

[7] P. Butta, G. Cavallaro, and C. Marchioro. Leapfrogging vortex rings as scaling limit of Euler equations.
SIAM J. Math. Anal., 57(1):789-824, 2025.

[8] P. Butta, G. Cavallaro, and M. Marchioro. Global time evolution of concentrated vortex rings. Zeitschrift
fiir angewandte Mathematik und Physik, 73, 2022.

[9] P. Butta and C. Marchioro. Long time evolution of concentrated Euler flows with planar symmetry. SIAM
J. Math. Anal., 50(1):735-760, 2018.

43



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

H. E. Cabral and S. Boatto. Nonlinear stability of a latitudinal ring of point-vortices on a nonrotating
sphere. SIAM Journal on Applied Mathematics, 64(1):216-230, 2003.

H. E. Cabral and D. S. Schmidt. Stability of Relative Equilibria in the Problem of N+1 Vortices. SIAM
Journal on Mathematical Analysis, 31(2):231-250, 1999.

D. Cao, S. Lai, and W. Zhan. Traveling vortex pairs for 2d incompressible euler equations. Calculus of
Variations and Partial Differential Equations, 60(190), 2021.

D. Cao, S. Li, and G. Wang. Desingularization of vortices for the incompressible euler equation on a sphere.
Calculus of Variations and Partial Differential Equations, 64(279), 2025.

D. Cao, J. Wan, G. Wang, and W. Zhan. Rotating vortex patches for the planar euler equations in a disk.
Journal of Differential Equations, 275:509-532, 2021.

S. Caprino and C. Marchioro. On nonlinear stability of stationary euler flows on a rotating sphere. Journal
of Mathematical Analysis and Applications, 129(1):24-36, 1988.

G. Cavallaro, R. Garra, and C. Marchioro. Long time localization of modified surface quasi-geostrophic
equations. Discrete & Continuous Dynamical Systems - B, 26(9):5135-5148, 2021.

J. Davila, M. Del Pino, M. Musso, and J. Wei. Gluing methods for vortex dynamics in euler flows. Archive
for Rational Mechanics and Analysis, 235(3):1467-1530, 2020.

F. de la Hoz, Z. Hassainia, T. Hmidi, and J. Mateu. An analytical and numerical study of steady patches
in the disc. Analysis & PDE, 9(7):1609-1670, 2016.

F. dela Hoz, T. Hmidi, J. Mateu, and J. Verdera. Doubly connected V-states for the planar Euler equations.
SIAM Journal on Mathematical Analysis, 48(3):1892-1928, 2016.

M. Donati. Two-dimensional point vortex dynamics in bounded domains: Global existence for almost every
initial data. SIAM Journal on Mathematical Analysis, 54(1):79-113, 2022.

M. Donati. Construction of unstable concentrated solutions of the Euler and gSQG equations. Discrete
and Continuous Dynamical Systems, 44(10):3109-3134, 2024.

M. Donati. Long-time Confinement near Special Vortex Crystals. Journal of Mathematical Fluid Mechanics,
27:75, 2025.

M. Donati, L. E. Hientzsch, C. Lacave, and E. Miot. On the dynamics of leapfrogging vortex rings. 2025.
arXiv:2503.21604 [math.AP].

M. Donati and D. Iftimie. Long time confinement of vorticity around a stable stationary point vortex in a
bounded planar domain. Annales de I'Institut Henri Poincaré C, Analyse non linéaire, 38(5):1461-1485,
2021.

M. Donati, C. Lacave, and E. Miot. Dynamics of helical vortex filaments in non viscous incompressible
flows. To appear in Bull. Soc. Math. France, 2024. arXiv:2403.00389 [math.AP].

D. Dirr and M. Pulvirenti. On the vortex flow in bounded domains. Communications in Mathematical

Physics, pages 265-273, 1982.
C. Garcia. Kdrman vortex street in incompressible fluid models. Nonlinearity, 33(4):1625-1676, 2020.

C. Garcia. Vortex patches choreography for active scalar equations. Journal of Nonlinear Science, 31(5):Pa-
per No. 75, 31, 2021.

C. Garcia, Z. Hassainia, and E. Roulley. Dynamics of vortex cap solutions on the rotating unit sphere.
Journal of Differential Equations, 417:1-63, 2025.

C. Garcia and S. V. Haziot. Global bifurcation for corotating and counter-rotating vortex pairs. Commu-
nications in Mathematical Physics, 402:1167-1204, 2023.

C. Garcia, T. Hmidi, and J. Mateu. Time periodic solutions close to localized radial monotone profiles for
the 2D euler equations,. Annals of PDE, 10(1), 2024.

C. Geldhauser and M. Romito. Point vortices for inviscid generalized surface quasi-geostrophic models.
Am. Ins. Math. Sci., 25(7):2583-2606, 2020.

44



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]
[51]
[52]

[53]

[54]

[55]

[56]

L. Godard-Cadillac. Vortex collapses for the Euler and quasi-geostrophic models. Discrete and Continuous
Dynamical Systems. Series A, 42(7):3143-3168, 2022.

J. Gémez Serrano, A. D. Tonescu, and J. Park. Quasiperiodic solutions of the generalized SQG equation.
2023. arXiv:2303.03992 [math.AP].

D. Guo and L. Zhao. Long Time Dynamics for Helical Vortex Filament in Euler Flows, 2024.
arXiv:2403.09071 [math.AP].

P. Hartman. Ordinary Differential Equations: Second Edition. Secaucus, New Jersey, U.S.A.: Birkhauser,
1982.

Z. Hassainia and T. Hmidi. Steady asymmetric vortex pairs for Euler equations. Discrete and Continuous
Dynamical Systems. Series A, 41(4):1939-1969, 2021.

Z. Hassainia, T. Hmidi, and N. Masmoudi. Kam theory for active scalar equations. Memoirs of the
American Mathematical Society, 2025.

Z. Hassainia, T. Hmidi, and N. Masmoudi. Rigorous derivation of the leapfrogging motion for planar euler
equations. Inventiones mathematicae, 242(3):725-825, 2025.

Z. Hassainia, T. Hmidi, and E. Roulley. Desingularization of time-periodic vortex motion in bounded
domains via kam tools. 2024. arXiv:2408.16671 [math.AP].

7. Hassainia, T. Hmidi, and E. Roulley. Invariant kam tori around annular vortex patches for 2D Euler
equations. Communications in Mathematical Physics, 405(270):1-127, 2024.

Z. Hassainia and E. Roulley. Boundary effects on the emergence of quasi-periodic solutions for euler
equations. Nonlinearity, 38(1), 2025.

Z. Hassainia and M. H. Wheeler. Multipole vortex patch equilibria for active scalar equations. SIAM
Journal on Mathematical Analysis, 54(6):6054-6095, 2022.

H. Helmholtz. Uber Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen
entsprechen. J. Reine Angew. Math., 55:25-55, 1858.

L. E. Hientzsch, C. Lacave, and E. Miot. Dynamics of several point vortices for the lake equations. 2022.
arXiv:2207.14680 [math.AP].

T. Hmidi and J. Mateu. Existence of corotating and counter-rotating vortex pairs for active scalar equations.
Communications in Mathematical Physics, 350(2):699-747, 2017.

T. Hmidi and E. Roulley. Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations.
To appear in Mémoires de la Société Mathématique de France, 2021. arXiv:2110.13751 [math.AP].

D. Iftimie, T. C. Sideris, and P. Gamblin. On the evolution of compactly supported planar vorticity.
Communications in Partial Differential Equations, 24(9-10):1709-1730, 1999.

R Kidambi and P. K. Newton. Motion of three point vortices on a sphere. Physica D: Nonlinear Phenomena,
116(1):143-175, 1998.

Gustav R. Kirchhoff. Vorlesungen uber mathematische Physik. Mechanik. Teubner, Leipzig, 1876.
F. Laurent-Polz. Point vortices on a rotating sphere. Regular and Chaotic Dynamics, 10(1):39-58, 2005.

F. Laurent-Polz, J. Montaldi, and M. Roberts. Point vortices on the sphere: Stability of symmetric relative
equilibria. Journal of Geometric Mechanics, 3(4):439-486, 2011.

C. Marchioro and M. Pulvirenti. Euler evolution for singular initial data and vortex theory. Communica-
tions in Mathematical Physics, 91(4):563 — 572, 1983.

C. Marchioro and M. Pulvirenti. Vortexr methods in two-dimensional fluid dynamics. Lecture notes in
physics. Springer-Verlag, 1984.

C. Marchioro and M. Pulvirenti. Vortices and localization in Euler flows. Comm. Math. Phys., 154(1):49-61,
1993.

G. M. Marin and E. Roulley. Filamentation near monotone zonal vortex caps. 2025. arXiv:2505.12197
[math.AP].

45



[57] D. Meyer. Long time confinement of multiple concentrated vortices. 2025. arXiv:2506.01477 [math.AP].

[58] I. I. Mokhov, S. G. Chefranov, and A. G. Chefranov. Interaction of Global-scale Atmospheric Vortices:
Modeling based on Hamiltonian Dynamic System of Antipodal Point Vortices on Rotating Sphere. Procedia
IUTAM, 8:176-185, 2013.

[59] G. E. Roberts. Stability of relative equilibria in the planar n-vortex problem. STAM Journal on Applied
Dynamical Systems, 12(2):1114-1134, 2013.

[60] T.Sakajo and C. Zou. C1 type regularization for point vortices on s2. 2024. arXiv:2411.15176 [math.AP].
[61] T. Sakajo and C. Zou. Regularization for point vortices on S2. Nonlinearity, 38(11), 2025.

[62] D. Smets and J. J.Van Schaftingen. Desingulariation of vortices for the euler equation. Archive for Rational
Mechanics and Analysis, 198:869-925, 2010.

[63] B. Turkington. Corotating steady vortex flows with n-fold symmetry. Nonlinear Analysis: Theory, Methods
& Applications, 9(4):351-369, 1985.

[64] V. I. Yudovich. Non-stationary flow of an ideal incompressible liquid. USSR Computational Mathematics
and Mathematical Physics, 3(6):1407-1456, 1963.

Martin Donati
CNRS, Université de Poitiers, LMA, Poitiers, France
Email martin.donati@math.univ-poitiers.fr

Emeric Roulley

Universita degli Studi di Milano (UniMi), Dipartimento di Matematica Federigo Enriques, Via Cesare Saldini,
50, 20133 Milano, Italy

Email emeric.roulley@unimi.it

46



	Introduction
	Point-vortices and vorticity confinement on the plane
	Barotropic model
	Point-vortices on the rotating sphere
	Main results

	Improbability of point vortex collisions: proof of Theorem 1.2
	Estimates on vortex evolutions
	Estimates on the vorticity moments
	Growth of the support

	Logarithmic confinement results
	Proof of Theorem 1.3
	Optimality of the bound

	Power-law confinement result
	Super-stability hypotheses
	The conditional theorem

	Existence of point-vortex configurations leading to each stability hypothesis
	Link between Hypotheses 4.1-5.2 and linear stability
	Linear stability or neutrality implies Hypothesis 5.2
	Linear Instability implies Hypothesis 4.1

	Computing the differential matrix
	Proof of Theorem 1.5
	Proof of Theorem 1.4
	A short discussion on polar vortex crystals

	Technical lemmas

