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Abstract

We study the Euler equation on the rotating sphere in the case where the absolute vorticity is initially
sharply concentrated around several points. We follow the literature already concerning vorticity confinement
for the planar Euler equations, and obtain similar results on the rotating sphere, with new challenges due
to the geometry. More precisely, we show the improbability of collisions for point-vortices, logarithmic in
time absolute vorticity confinement for general configurations, the optimality of this last result in general,
and the existence of configurations with power-law long confinement. We take this opportunity to write a
unified, self-contained, and improved version of all the proofs, previously scattered across multiple papers
on the planar case, with detailed exposition for pedagogical clarity.
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1 Introduction

To study large-scale atmospheric or oceanic dynamics, one has to take into account the natural presence of
vortices of very high circulations. Going back to the work of Helmholtz [44], a first approximation of the motion
of such vortices is given by the so called point-vortex dynamics, which corresponds to assuming that the vortices
are singular: Dirac masses of vorticity. Numerous works studied this dynamics in many different context, and
we refer the interested reader to [2] for a review on point-vortex dynamics in the plane. An other important
question is the measure how good of an approximation the point-vortex system is to a solution of the Euler
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equations consisting of sharply concentrated vortices. This question can be answered in many different ways
and in this paper we will mainly focus on the problem of localization and confinement: given an initial data
sharply concentrated around several points, how long does the solution of the Euler equation remains both
concentrated and following the prediction of the point-vortex model ?

This question, first answered in [53], lead to an important series of work, and in the scope of the present
article, we put the emphasis on [9], which is the starting point of the present paper. To the best of our
knowledge, all known results on vorticity confinement are established in various fluids models, mostly the
planar Euler equations, but none on the rotating sphere.

The aim of this paper is to establish the results of [9, 21, 22] on vorticity confinement for the Euler equation
on the rotating sphere. In addition, to complete this work, we prove a necessary property of the point-vortex
dynamics on the sphere, which is the improbability of finite-time collisions.

1.1 Point-vortices and vorticity confinement on the plane

At first, let us contextualize our present work on the rotating sphere by recalling the planar point-vortex system
for Euler equations and the associated results. We consider the bidimensional homogeneous and incompressible
Euler equations in the plane

∂tω + u · ∇ω = 0, u = ∇⊥ψ, ∆ψ = ω. (1.1)

Solving the Laplace equation gives the following integral representation for the stream function ψ

ψ(t, z) =

ˆ
R2

GR2(z, ξ)ω(t, ξ)dξ, GR2(z, ξ) ≜
1

2π
log
(
|z − ξ|

)
.

The point-vortex dynamics describe the evolution of formal solutions to the 2D Euler equations where the
vorticity is concentrated on points, namely

ω(t) =

N∑
i=1

Γiδzi(t), N ∈ N∗, Γi ∈ R∗, zi(t) ∈ R2. (1.2)

Plugging (1.2) inside (1.1), we get formally the following set of ordinary differential equations called point-vortex
system

żi(t) =

N∑
j=1
j ̸=i

Γj

2π

(
zi(t)− zj(t)

)⊥
|zi(t)− zj(t)|2

=
1

Γi
∇⊥

ziH
(
z1(t), . . . , zN (t)

)
, H(z1, . . . , zN ) ≜

∑
1⩽i,j⩽N

i̸=j

ΓiΓj

4π
log
(
|zi − zj |

)
.

Due to the singularity in the velocity when zi(t) = zj(t), all initial data our not admissible for this dynamics,
and even admissible data can lead to non-trivial blow-up of solution, which we call vortex collapses, when
happens when there exists T ∗ <∞, and i ̸= j two indices such that

lim inf
t→T∗

|zi(t)− zj(t)| = 0.

However, the collisions are known to be improbable, in the sense the the measure of the set of initial data leading
to a collapse is 0. This result was proved in the torus in [26], in bounded domains in [20], and in unbounded
domains such as the whole plane in [54] and for other models of point-vortices in [32, 33], under an additional
condition on the vortex intensities (Γi)1⩽i⩽N . In the case of the sphere, we prove the same result, without the
additional assumption due to the fact that the sphere is a compact manifold.

We now introduce the problems of localization and confinement of vorticity. Given a set of pairwise distinct
points z01 , . . . , z

0
N , a set of intensities Γ1, . . . ,ΓN such that the associated solution to the point-vortex dynamics

has a global solution
(
t 7→ zi(t)

)
1⩽i⩽N

, let us consider, for every ε > 0, an initial datum ωε
0 for the Euler

equations satisfying the following assumptions.

Hypothesis 1.1. There exist constants M, ε0 > 0 and η ⩾ 2 such that for every ε ∈ (0, ε0),

• ωε
0 ∈ L1 ∩ L∞(R2), with ∥ωε

0∥L∞(R2) ⩽Mε−η,

• ωε
0 =

N∑
i=1

ωε
0,i where

ωε
0,i

Γi
⩾ 0, Γi ≜

ˆ
R2

ωε
0,i(x)dx ,

• supp ωε
0,i ⊂ B(z0i , ε).
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In view of these hypotheses, one has that ωε
i,0 −→

ε→0
δz0

i
in the sense of measures. Since ω solves the (nonlinear)

transport equation (1.1) by a velocity field u that is divergence free, then for all times, we have that the solution
ωε of the Euler equations such that ωε(0) = ωε

0 satisfies for all times t ≥ 0 that

• ωε(t, ·) ∈ L1 ∩ L∞(R2), with ∥ωε(t, ·)∥L∞(R2) ⩽Mε−η,

• ωε(t, ·) =
N∑
i=1

ωε
i (t, ·) where

ωε
i (t, ·)
Γi

⩾ 0,

ˆ
R2

ωε
i (t, x)dx = Γi.

Moreover, the maps ωε
i (t) are all compactly supported, at all times, however the information that we loose a

priori is both the localization and growth of the support. The naive bound on the growth of support would
be linear in t, and for a single blob of positive vorticies, this bound can be improved to (t ln t)1/4 ([48]). When
considering several sharply concentrated vortices, by assuming for instance Hypothesis 1.1, the vortices remain
concentrated for a time of order O(| ln ε|) around the point-vortex system. More precisely, let us consider for
any β < 1/2 and ε > 0:

τε,β ≜ sup

{
t ⩾ 0 s.t. ∀s ∈ [0, t], supp

(
ωε(s, ·)

)
⊂

N⋃
i=1

B
(
zi(s), ε

β
)}

.

This time τε,β is the first time the support of the vorticity exists the reunion of balls of radius εβ around the
point-vortex solution. Since εβ ≪ 1 for ε small enough, τε,β is a time during which both the solution remains a
sum of sharply concentrated vortices, and that those vortices are located near the solution of the point-vortex
dynamics. Regarding this time τε,β , Buttà and Marchioro proved the following.

Theorem 1.1 ([9]). Let (z0i )1⩽i⩽N be N pairwise distinct points of R2 and (Γi)1⩽i⩽N be some non-vanishing
intensities such that the solution of the point-vortex dynamics (1.7) with initial datum (z0i )1⩽i⩽N is global in
time and satisfies the following distance condition for some d0 > 0,

∀ 1 ⩽ i, j ⩽ N, i ̸= j ⇒ inf
t⩾0

|zi(t)− zj(t)| ⩾ d0.

Let ωε
0 satisfying Hypothesis 1.1. Then for every β < 1/2 there exists ε0 ≜ ε0(β, d0) > 0 and α ≜ α(β, d0) > 0

such that for every ε ∈ (0, ε0) the solution ωε of (1.1) with initial condition ωε
0 satisfies

τε,β ⩾ α| ln ε|.

In conclusion, Theorem 1.1 proves that the point-vortex dynamics is a good approximation of the Euler
equations for a time at least of order O(| ln ε|), where ε, which describes how concentrated the initial vortices
are, goes to 0. One can then wonder whether this logarithmic bound is optimal. In general, it is the case, as
proved in [21] using unstable configurations of point-vortices. However, there exist particular conditions under
which this bound can be improved. In [9], in addition to Theorem 1.1, the authors prove that three situations
lead to an estimate of the form τε,β ⩾ ε−α, with α > 0. The first case is taking N = 1, a single vortex, in
which case this bound becomes a rescaled version of the result of [48]. Then, taking a self-similar expanding
configuration of vortices (with an explicit example for N = 3), where the growth of the distances between the
point-vortices is enough to enhance the bound on τε,β . Last, they prove that power-law bound holds for a single
vortex placed at the center of a circular rigid boundary. In [24], it is then proved that other bounded domains
can be constructed satisfying the existence of a point around which a concentrated vortex satisfies the enhanced
confinement bound. In [22], it is this time with special configurations for arbitrary N ≥ 4 that this bound was
obtained. With new techniques, [57] proved that for general configurations, but assuming in addition the initial
vortices ωε

i,0 to be nearly radial functions, then the power-law bound holds, with larger α as the blobs are closer
to be radial.

This problem can be formulated for more complicated fluid equations, such as the SQG equations (see [16]),
the lake equations [45], and the three-dimensional Euler equations with axial ([8, 7, 23]) or helical ([25],[35])
symmetry, with a range of new difficulties arising due to changes in the Biot-Savart law. The present paper
aims to have the same discussion in the case of the Euler equations on the rotating sphere.

We end this paragraph by mentioning some constructions of periodic (or more general) solutions near special
point vortex configurations. In the plane, a single point vortex stays immobile, placed at the origine, and due to
the symmetries of Euler equations, it is possible to find via bifurcation techniques periodic solutions performing
a uniform rotation around it [6, 31, 18, 19, 50]. The search for quasi-periodic solutions is more delicate. In
this regime, one encounters small divisors and time–space resonances, which prevent a direct perturbative
construction and instead require techniques from infinite-dimensional Hamiltonian dynamics, notably KAM
theory and Nash–Moser schemes. In particular, quasi-periodic motions near the Rankine vortex were first
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established in 2021 in the second author’s PhD thesis for the quasi-geostrophic shallow-water equations [47],
and in the same period for generalized SQG models by Hassainia-Hmidi-Masmoudi [38]. Related results were
obtained for the Euler equations near Kirchhoff ellipses by Berti-Hassainia-Masmoudi [3], near Rankine vortices
in the unit disc by Hassainia-Roulley [42] and near annuluar patches by Hassaini-Hmidi-Roulley [41]. Also with
weak Birkhoff normal forms, the authors in [34] could find quasi-periodic vortex patches for the very singular
generalized SQG equations.

The contour dynamics approach has proved to be a powerful tool for constructing families of periodic vortex
patch solutions exhibiting either uniform rotation or uniform translation. The first results in this direction
were obtained by Hmidi and Mateu [46], who established the existence of symmetric pairs of patches (with
equal or opposite strengths). The asymmetric case was later treated by Hmidi and Hassainia [37]. These local
bifurcation results were subsequently complemented by global bifurcation analyses by Garćıa-Haziot [30], which
revealed the global structure of the solution branches. Extensions to configurations with more vortices were
developed by Garćıa, both near classical von Kármán vortex streets [27] and near Thomson polygon equilibria
[28]. Finally, Hassainia and Wheeler [43] addressed the general setting of non-degenerate point-vortex equilibria,
providing a unified desingularization framework. We also mention some related works using others approaches
like variational techniques [12, 14, 62, 63] or gluing methods [17].

Beyond perturbations of steady or rigidly rotating states, the construction of vortex patches near genuinely
time-dependent point-vortex motions remained largely open. A breakthrough in this direction was achieved with
the periodic desingularization of the four-vortex leapfrogging configuration by Hassainia, Hmidi, and Masmoudi
[39], providing the first example of patch dynamics shadowing a nontrivial periodic point-vortex orbit. More
recently, the longstanding problem of constructing periodic patch motions in general bounded simply connected
domains was resolved by Hassainia, Hmidi, and Roulley [40], through the desingularization of periodic orbits of
a single point vortex.

1.2 Barotropic model

Now and for the rest of the paper, we work on the unit sphere S2 defined by

S2 ≜
{
(x1, x2, x3) ∈ R3 s.t. x21 + x22 + x23 = 1

}
,

performing a uniform rotation around the vertical axis with constant angular speed γ ∈ R. Throughout the
document, we denote | · |R3 the Euclidean norm in R3, namely

∀(x1, x2, x3) ∈ R3, |(x1, x2, x3)|2R3 ≜ x21 + x22 + x23

and we shall use the following notation for x ∈ R3 and r > 0,

B(x, r) ≜
{
y ∈ R3 s.t. |x− y|R3 < r

}
.

Then, we consider an homogeneous and incompressible fluid on S2 described by its velocity field u and its
pressure P . The 2D Euler equations on the rotating sphere is

∂tω(t,x) + u(t,x) · ∇
(
ω(t,x)− 2γ x3

)
= 0. (1.3)

The equation must be supplemented by the following impermeability condition

∀φ ∈ T, uθ(0, φ) = 0 = uθ(π, φ).

The divergence-free property of the velocity field and the compactness of the manifold S2 implies that the
vorticity should satisfy the so-called Gauss constraint, namely

ˆ
S2
ω(t,x)dσ(x) = 0.

Finally, we define the absolute vorticity through the relation

ζ(t,x) ≜ ω(t,x)− 2γ x3.

According to (1.3), it is a solution to the following active scalar equation

∂tζ(t,x) + u(t,x) · ∇ζ(t,x) = 0. (1.4)

Moreover, the Gauss constraint is also satisfied by the absolute vorticity
ˆ
S2
ζ(t,x)dσ(x) = 0.
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The fact that u is solenoidal implies the existence of a stream function Ψ such that

u(t,x) = ∇⊥Ψ(t,x).

The stream function solves the Poisson equation

∆Ψ(t,x) = ω(t,x)

and therefore is linked to the vorticity via the following integral formula, see [4]

Ψ(t,x) = Ψ[ω](t,x) ≜
ˆ
S2
G(x,y)ω(t,y)dσ(y), G(x,y) ≜

1

2π
log (|x− y|R3) .

The norm | · |R3 is the usual Euclidean norm in R3. In general,

∆Ψ[f ] = f − 1

4π

ˆ
S2
f(x)dσ(x).

In terms of absolute vorticity, denoting θ ∈ (0, π) the colatitude, we have

u(t,x) = ∇⊥(Ψ[ζ](x) + γx3
)
= ∇⊥Ψ[ζ](t,x) + γ∇⊥(x · e3).

According to Lemma A.2, the Biot-Savart law on the rotating sphere is

u(t,x) =
1

2π

ˆ
S2

x ∧ y

|x− y|2R3

ζ(t,y)dσ(y) + γ e3 ∧ x.

Throughout the document, we shall denote the Biot-Savart kernel as

KS2(x,y) ≜
x ∧ y

|x− y|2R3

· (1.5)

1.3 Point-vortices on the rotating sphere

An absolute vorticity point vortex distribution is a formal solution of (1.3) in the form

ζ(t,x) =

N∑
i=1

Γiδxi(t),

where N ∈ N\{0, 1} is the number of points, x1(t), . . . ,xN (t) ∈ S2 are the points at time t ⩾ 0 and Γ1, . . . ,ΓN ∈
R are the intensities subject to the Gauss constraint

N∑
i=1

Γi = 0. (1.6)

In what follows, we denote
Γ ≜ {Γ1, . . . ,ΓN}.

The point-vortex system on the rotating unit 2-sphere is the time evolution law for the points, namely

∀ 1 ⩽ i ⩽ N,


d

dt
xi(t) =

N∑
j=1
j ̸=i

Γj

2π

xi(t) ∧ xj(t)

|xi(t)− xj(t)|2R3

+ γ e3 ∧ xi(t),

xi(0) = x0
i .

(1.7)

The model, introduced in [5], was later studied in many works, and we refer the interested reader to [49], and
in particular, the study of relative equilibria in [10, 51, 52], or in a more physically relevant context, [58]. Let
us mention that the dynamics (1.7) is Hamiltonian

∀ 1 ⩽ i ⩽ N,
d

dt
xi(t) =

1

Γi
∇⊥

xi
H
(
x1(t), . . . ,xN (t)

)
,

associated to the energy H (cf. Lemma A.2 and (A.3)) related to the kinetic energy and center of mass, which
are two conserved quantities

H(x1, . . . ,xN ) ≜
∑

1⩽i,j⩽N
i̸=j

ΓiΓj

4π
ln
(
|xi − xj |R3

)
+ γe3 ·

N∑
i=1

Γixi.
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In [13], the authors desingularized vortex pairs on the sphere at rest and briefly mention how to treat the
rotating case. Later Sakajo and Sun studied the C1 and patch-type regularization of Von-Kármán vortex
streets [60, 61]. The bifurcation of one and two-interface vortex caps from zonal (i.e., longitude independent)
solutions has been obtained in [29]. The filamentation phenomenon with linear growth of the perimeter near
monotone zonal vortex caps has been studied in [56] exploiting the stability result of monotone zonal flows of
Caprino-Marchioro [15] based on the conservation of the momentum with respect to the vertical axis.

On surfaces of non constant curvature, the point-vortex dynamics has a very different behaviour as the first
order term is then given by the derivative of the curvature, see [4]. One would expect on such manifold that
the confinement results that can be obtained would be similar to the three-dimensional-with-symmetry cases,
as previously discussed, coaxial vortex rings and helical filaments, or in the lake equation for instance. On the
sphere, the constant curvature means that instead, the result that we obtain are similar to the two-dimensional
results, resulting in the presence of non-trivial geometry, without the singularity of motion observed in the
curved cases.

1.4 Main results

Our first result is the improbability of point-vortex collisions, necessary to justify that most initial data have
global solutions. It reads informally as follows.

Theorem 1.2. (Improbability of point vortex collision)
Let N ∈ N \ {0, 1}. Then, for almost every initial conditions (x0

i )1⩽i⩽N ∈ (S2)N , the point vortex system (1.7)
has a global solution.

The precise statement and proof Theorem 2.1 are given in Section 2. We then turn to the localization
and confinement problems. Analogously to the planar case, for given pairwise distinct points on the sphere
x0
1, . . . ,x

0
N , and intensities satisfying the Gauss condition (1.6), let us consider a family (ζε0)ε>0 of initial data

to the Euler equation in absolute vorticity (1.4) satisfying the following assumptions.

Hypothesis 1.2. There exist constants M, ε0 > 0 and η ⩾ 2 such that for every ε ∈ (0, ε0),

• ζε0 ∈ L∞(S2), with ∥ζε0∥L∞(S2) ⩽Mε−η.

• ζε0 =

N∑
i=1

ζε0,i where
ζε0,i
Γi

⩾ 0, Γi ≜
ˆ
S2
ζε0,i(x)dσ(x) and

N∑
i=1

Γi = 0,

• supp ζε0,i ⊂ B(x0
i , ε),

These initial conditions provide a solution to equation (1.4) denoted ζε(t,x).

For the same reasons that in the planar case, the decomposition as a sum of complactly supported vortices
of circulation Γi remains true at all time (these facts are given in details in Section 3). Then, define for any
β < 1/2 and ε > 0 the exit time

τε,β ≜ sup

{
t ⩾ 0 s.t. ∀s ∈ [0, t], supp

(
ζε(s, ·)

)
⊂

N⋃
i=1

B
(
xi(s), ε

β
)}

, (1.8)

We then prove the following result, analogous to Theorem 1.1.

Theorem 1.3. (Logarithmic time scale for vorticity confinement)
Let (x0

i )1⩽i⩽N be N pairwise distinct points of S2 and (Γi)1⩽i⩽N be some non-vanishing intensities satisfying
the Gauss condition (1.6). Assume that such that the solution of the point-vortex dynamics (1.7) with initial
datum (x0

i )1⩽i⩽N is global in time and satisfies the following distance condition for some d0 > 0,

∀ 1 ⩽ i, j ⩽ N, i ̸= j ⇒ inf
t⩾0

|xi(t)− xj(t)|R3 ⩾ d0. (1.9)

Then for every β < 1/2 there exists ε0 ≜ ε0(β, d0) > 0 and α ≜ α(β, d0) > 0 such that for every ε ∈ (0, ε0) the
solution ζε of (1.4) with initial condition ζε0 subjected to the Hypothesis 1.2 near the points (x0

i )1⩽i⩽N satisfies

τε,β ⩾ α| ln ε|.

This bound is optimal, as we show in the following result, analogous to the one obtained in [21].
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Theorem 1.4. (Optimality of the logarithmic time confinement) There exists a choice of (x1, . . . ,xN )
and intensities Γ1, . . . ,ΓN satisfying (1.6) and (1.9) such that there exists β0 < 1/2, η ⩾ 2 such that for any
β ∈ (β0, 1), there exists α0 > 0 such that for any ε > 0 small enough, there exists ζε0 satisfying Hypothesis 1.2
such that

τε,β ⩽ α0| ln ε|.

Differently said, there exist configurations that realize a logarithmic exit time. However, under certain
conditions, discussed in Section 5 and Section 6, the bound can be improved.

Theorem 1.5. (Improved confinement time for special configurations)
There exists a choice of (x1, . . . ,xN ) and intensities Γ1, . . . ,ΓN satisfying (1.6) and (1.9) such that for every
β < 1/2 and α < min(β, 2− 4β), there exists ε0 > 0 such that for every ε ∈ (0, ε0), the solution ζε of (1.4) with
initial condition ζε0 subjected to the Hypothesis 1.2 near the points (x0

i )1⩽i⩽N satisfies

τε,β ⩾ ε−α.

Here note that it is only the choice of the configuration and intensities that ensure that any initial datum
satisfying (1.2) leads to a solution having a power-law exit time.

The paper is organized as follows. In Section 2, we prove Theorem 1.2. This section is completely independent
of the rest of the paper. Then in Section 3, we study general properties of the solution to equation (1.4) with
initial datum satisfying Hypothesis (1.2). With these estimates established, in Section 4, we prove Theorems 1.3.
Proofs of Theorems 1.4 and 1.5 are done in Sections 4 and 5 respectively, conditionally to the existence of suitable
configurations of point-vortices. Then in Section 6, we prove the existence of these configurations, closing the
proofs of these theorems, and discuss various examples.
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2 Improbability of point vortex collisions: proof of Theorem 1.2

This section is devoted to the proof of Theorem 1.2.

We denote B(S2) the Borel σ-algebra of the unit sphere S2. Let us recall that σ is the surface measure on(
S2,B(S2)

)
. It is well-known that the area of the unit sphere – that can be recovered by simple integration – is

σ(S2) = 4π. Therefore, the measure

P ≜
σ

4π

is a probability measure on
(
S2,B(S2)

)
. Fix N ∈ N \ {0, 1}, then the Borel σ-algebra on (S2)N is

B
(
(S2)N

)
≜ B(S2)⊗ . . .⊗ B(S2)︸ ︷︷ ︸

N times

.

We define the product probability measure on
(
(S2)N ,B

(
(S2)N

))
via

PN ≜ P⊗ . . .⊗ P︸ ︷︷ ︸
N times

.

Now, let us consider the set of admissible initial positions for the N -point-vortex dynamics.

AN ≜
{
X = (x1, . . . ,xN ) ∈ (S2)N s.t. ∀ 1 ⩽ i, j ⩽ N, i ̸= j ⇒ xi ̸= xj

}
. (2.1)

The set AN is an open subset of (S2)N . Therefore, AN ∈ B
(
(S2)N

)
. In addition, it is easy to show that it is of

full measure, namely
PN (AN ) = 1.

The Borel σ-algebra of AN is obtained by the trace topology

B(AN ) ≜ AN ∩ B
(
(S2)N

)
.
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We define the conditional probability measure PN (·|AN ) with respect to the almost sure event AN by

∀A ∈ B
(
(S2)N

)
, PN (A|AN ) ≜

PN (A ∩ AN )

PN (AN )
= PN (A ∩ AN ).

Notice that PN and PN (·|AN ) coincide on B(AN ). Therefore, in what follows, we still denote PN restriction of
PN (·|AN ) to the σ-algebra B(AN ) and we will work with the probability space (AN ,B(AN ),PN ) . For every
X = (x1, . . . ,xN ) ∈ AN , by a classical application of the local Cauchy-Lipschitz theory, the point-vortex
system (1.7) with initial configuration X has a unique solution t 7→ St(X) ≜

(
x1(t), . . . ,xN (t)

)
continuous on

a maximal time interval that we denote by [0, T (X)), with T (X) ∈ (0,+∞]. Let us observe that T (X) < +∞
if and only if there is a collision (in the broad sense).

Let us denote by CN the set of collisions, namely the set of initial data leading to a finite time collision in
the point-vortex dynamics

CN ≜ {X ∈ AN s.t. T (X) < +∞}. (2.2)

Remark 2.1. A priori, it is not immediate that the function X 7→ T (X) is measurable and therefore one cannot
a priori state that the set CN is measurable.

The Theorem 1.2 can be reformulated as follows.

Theorem 2.1. Let N ∈ N \ {0, 1}. Then,

CN ∈ B(AN ) and PN (CN ) = 0.

Proof. We consider the notion of almost collision and its associated regularized dynamics. Fix ε ∈ (0, 1) and
consider lnε ∈ C∞([0,+∞),R

)
a non-decreasing function satisfying the conditions

∀r ∈ [ε,+∞), lnε(r) = ln(r),

∀r > 0, | lnε(r)| ⩽ | ln(r)|,

∀r > 0, ln′ε(r) ⩽
1

r
·

(2.3)

Then, we define the regularized energy Hε : (S2)N → R by

Hε(x1, . . . ,xN ) ≜
∑

1⩽i,j⩽N
i̸=j

ΓiΓj

4π
lnε
(
|xi − xj |R3

)
+ γe3 ·

N∑
i=1

Γixi

leading, by virtue of (A.3), to the Hamiltonian regularized dynamics

∀ 1 ⩽ i ⩽ N,
d

dt
xε
i (t) =

1

Γi
∇⊥

xi
Hε

(
xε
1(t), . . . ,x

ε
N (t)

)
=

N∑
j=1
j ̸=i

Γj

2π
∇⊥

xi
lnε
(
|xε

i (t)− xε
j(t)|R3

)
+ γ e3 ∧ xε

i (t). (2.4)

Since lnε is smooth on [0,+∞), by a trivial application of the Cauchy-Lipshitz theory, this dynamics has a
global smooth solution for every initial data in (S2)N . We denote by (t,X) 7→ Sε

t (X) ≜
(
xε
1(t), . . . ,x

ε
N (t)

)
the

flow of the regularized system (2.4) that is continuous is both variables and therefore defines a stochastic process
(Sε

t )t⩾0 (i.e. a continuous family of measurable functions) over
(
(S2)N ,B

(
(S2)N

))
. Let us define for X ∈ AN

the first time of ε-collision Tε(X) given by

Tε(X) ≜ inf{t > 0 s.t. ∃ 1 ⩽ i0, j0 ⩽ N, i0 ̸= j0 and |xε
i0(t)− xε

j0(t)|R3 ⩽ ε}. (2.5)

Observe that we can write

Tε(X) = inf
{
t ⩾ 0 s.t. Sε

t (X) ∈ (S2)N \ Aε
N

}
,

where
Aε

N ≜
{
X = (x1, . . . ,xN ) ∈ (S2)N s.t. ∀ 1 ⩽ i, j ⩽ N, i ̸= j ⇒ |xi − xj |R3 > ε

}
.

With this expression, thanks to the measurability of (Sε
t )t⩾0, we can say that Tε is a random variable (i.e. a

measurable function) over
(
AN ,B(AN )

)
, that is a stopping time adapted to the natural filtration (Fε

t )t⩾0 of
(Sε

t )t⩾0 defined by
Fε

t ≜ σ(Sε
s , 0 ⩽ s ⩽ t).
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By construction of lnε and Tε in (2.3)-(2.5) and uniqueness of the local solutions, we have that

∀X ∈ AN , Tε(X) ⩽ T (X), (2.6)

∀X ∈ AN , ∀t ⩽ Tε(X), St(X) = Sε
t (X), (2.7)

Because of (2.7), the solution (t,X) 7→ Sε
t (X) is called regularized dynamics until ε-collisions since it coincides

with the real point-vortex dynamics until the first ε-collision. The set CN defined in (2.2) can be written

CN =
⋃

τ∈N∗

{X ∈ AN s.t. T (X) ⩽ τ}.

Fix τ ∈ N∗, then the inequality (2.6) implies the inclusion

{X ∈ AN s.t. T (X) ⩽ τ} ⊂ {X ∈ AN s.t. Tε(X) ⩽ τ}.

Now, we fix η ∈ (0, 1) and define the continuous function ϕε : (S2)N → R∗
+ through

ϕε(X) ≜
∑

1⩽i,j⩽N
i̸=j

exp
(
−η lnε

(
|xi − xj |R3

))
.

Assume now that X ∈ AN is such that Tε(X) < +∞. Then, there exists (i0, j0) ∈ J1, NK2 with i0 ̸= j0 such
that ∣∣xi0

(
Tε(X)

)
− xj0

(
Tε(X)

)∣∣
R3 = ε.

Since all the terms in the sum defining the function ϕε are positive, then

ϕε
(
Sε
Tε(X)(X)

)
⩾ exp

(
−η lnε

(∣∣xi0

(
Tε(X)

)
− xj0

(
Tε(X)

)∣∣
R3

))
= ε−η.

The previous estimate implies the following inclusion

{X ∈ AN s.t. Tε(X) ⩽ τ} ⊂

{
X ∈ (S2)N s.t. sup

t∈[0,τ ]

ϕε
(
Sε
t (X)

)
⩾ ε−η

}
.

Applying Markov inequality yields

PN

(
{X ∈ AN s.t. Tε(X) ⩽ τ}

)
⩽ εη

ˆ
(S2)N

sup
t∈[0,τ ]

ϕε
(
Sε
t (X)

)
dPN (X).

Then we claim the following.

Lemma 2.1. There exists a constant C depending only on N , the intensities Γ1, . . . ,ΓN , and η such that for
every τ ∈ N∗, ˆ

(S2)N
sup

t∈[0,τ ]

ϕε(S
ε
tX)dPN (X) ⩽ C(1 + τ).

We delay the proof of Lemma 2.1 for the time being, to conclude that

PN

(
{X ∈ AN s.t. Tε(X) ⩽ τ}

)
⩽ Cεη(1 + τ). (2.8)

We consider a sequence (εn)n∈N ∈ (0, 1)N decreasing and converging to 0. Therefore, by virtue of (2.8),

∀n ∈ N, PN

(
{X ∈ AN s.t. Tεn(X) ⩽ τ}

)
⩽ Cεηn(1 + τ). (2.9)

By decreasing property, the εn-collision must happen before the εn+1-collision. Hence, we have

∀X ∈ AN , ∀n ∈ N, Tεn(X) ⩽ Tεn+1(X). (2.10)

Invoking the monotone convergence theorem, the upper bound (2.6) implies the convergence of the increasing
sequence

(
Tεn(X)

)
n∈N. Since the solution lives on the sphere, by contraposition of the principle of a priori

majoration, one must have
lim

n→+∞
Tεn(X) = T (X).

The property (2.10) implies that the family(
{X ∈ AN s.t. Tεn(X) ⩽ τ}

)
n∈N
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is decreasing for the inclusion operation. Besides, as a countable intersection, the set

{X ∈ AN s.t. T (X) ⩽ τ} =
⋂
n∈N

{X ∈ AN s.t. Tεn(X) ⩽ τ} ∈ B(AN ).

Then, by continuity of the measure and (2.9), we get

PN

(
{X ∈ AN s.t. T (X) ⩽ τ}

)
= PN

(⋂
n∈N

{X ∈ AN s.t. Tεn(X) ⩽ τ}

)
= lim

n→+∞
PN ({X ∈ AN s.t. Tεn(X) ⩽ τ) = 0.

As a countable union,

CN =
⋃

τ∈N∗

{X ∈ AN s.t. T (X) ⩽ τ} ∈ B(AN )

and by Boole inequality

0 ⩽ PN (CN ) ⩽
∑
τ∈N∗

PN

(
{X ∈ AN s.t. T (X) ⩽ τ}

)
= 0, i.e. PN (CN ) = 0.

This concludes the proof of Theorem 2.1.

We are left to prove Lemma 2.1.

Proof of Lemma 2.1. Let τ ∈ N∗. We define

Φε(t,X) ≜ ϕε
(
Sε
t (X)

)
.

Then, since the system (2.4) is autonomous, then for any s, t ∈ [0, T (X)) with t+ s ∈ [0, T (X)), we have

Sε
t+s(X) = Sε

t

(
Sε
s(X)

)
.

Hence,

Φε(t,X) = ϕε
(
Sε
t (X)

)
= ϕε

(
Sε
0

(
Sε
t (X)

))
= Φε

(
0, Sε

t (X)
)
.

Therefore,

ϕε
(
Sε
t (X)

)
= ϕε

(
Sε
0(X)

)
+

ˆ t

0

∂tϕε
(
Sε
s(X)

)
ds

= ϕε(X) +

ˆ t

0

∂tΦε

(
0, Sε

s(X)
)
ds.

Consequently,

sup
t∈[0,τ ]

ϕε(S
ε
tX) ⩽ ϕε(X) +

ˆ τ

0

∣∣∂tΦε

(
0, Sε

s(X)
)∣∣ ds.

By using the Fubini-Tonelli Theorem and the fact that the flow t 7→ Sε
t is Hamiltonian, we infer

ˆ
(S2)N

sup
t∈[0,τ ]

ϕε(S
ε
tX)dPN (X) ⩽

ˆ
(S2)N

ϕε(X)dPN (X) +

ˆ τ

0

ˆ
(S2)N

∣∣∂tΦε

(
0, Sε

s(X)
)∣∣ dPN (X)ds

=

ˆ
(S2)N

ϕε(X)dPN (X) + τ

ˆ
(S2)N

|∂tΦε(0,X)|dPN (X).

This new expression only involves the computation of properties of the flow at time 0, meaning that at this
point the regularization is not needed anymore. Indeed, for X ∈ AN , therefore in particular for almost every
X ∈ (S2)N , using the conditions (2.3), we get

ϕε(X) ⩽ ϕ(X), |∂tΦε(0,X)| ⩽ |∂tΦ(0,X)|,

where

ϕ(X) ≜


∑

1⩽i,j⩽N
i̸=j

|xi − xj |−η
R3 , if X ∈ AN ,

0, otherwise

and Φ(t,X) ≜

{
ϕ
(
St(X)

)
, if X ∈ AN ,

0, otherwise.
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First remark that by Fubini-Tonelli Theoremˆ
(S2)N

ϕ(X)dPN (X) =
1

(4π)N

∑
1⩽i,j⩽N

i̸=j

ˆ
S2
. . .

ˆ
S2
|xi − xj |−η

R3 dσ(x1) . . . dσ(xN )

=
1

(4π)N

∑
1⩽i,j⩽N

i̸=j

ˆ
S2
. . .

ˆ
S2

(ˆ
S2
|xi − xj |−η

R3 dσ(xj)

)
dσ(x1) . . . dσ(xj−1)dσ(xj+1) . . . dσ(xN ).

But, using the rotation invariance and spherical coordinates, for any α > 0 and any 1 ⩽ i ⩽ N, we have (recall
that N is the north pole) ˆ

S2
|xi − xj |−α

R3 dσ(xj) =

ˆ
S2
|N− xj |−α

R3 dσ(xj)

=

ˆ 2π

0

ˆ π

0

sin(θ)

|N− ψ1(θ, φ)|αR3

dθdφ

= 22−απ

ˆ π

0

cos
(
θ
2

)
sinα−1

(
θ
2

)dθ ≜ 4πCα.

Consequently, the previous integral is independant of i and by comparison with Riemann integrals, we getˆ
S2
|xi − xj |−α

R3 dσ(xj) <∞ iff α < 2. (2.11)

Since η ∈ (0, 1), we get the integrability andˆ
(S2)N

ϕ(X)dPN (X) = N(N − 1)Cη < +∞.

Besides,

∂tΦ(0,X) = ∇ϕ(X) ·

 ẋ1(0)
...

ẋN (0)

 .

By (1.7), (A.1), and Cauchy-Schwarz inequality, we infer

|∂tΦ(0,X)| = η

∣∣∣∣∣∣∣
N∑
i=1

N∑
j=1
j ̸=i

N∑
k=1
k ̸=i

(
Γi

2π

xi ∧ xk

|xi − xk|2R3

+ γe3 ∧ xi

)
· xi − xj

|xi − xj |η+2
R3

∣∣∣∣∣∣∣
⩽ C

N∑
i=1

N∑
j=1
j ̸=i

N∑
k=1
k ̸=i

1

|xi − xk|R3

1

|xi − xj |η+1
R3

·

Since η + 1 < 2, proceeding as before and using (2.11), we can concludeˆ
(S2)N

|∂tΦ(0,X)|dPN (X) < +∞.

Combining the foregoing calculation ends the proof of Lemma 2.1.

3 Estimates on vortex evolutions

In this section, we establish some important properties on the solution to equations (1.4) with initial datum ζε0
satisfying Hypothesis 1.2. The initial positions x0

1, . . . ,x
0
N ∈ S2 and intensities Γ1, . . . ,ΓN ∈ R∗ are fixed once

and for all satisfying the Gauss constraint 1.6 such that the associated solution of the point-vortex dynamics (1.7)
satisfies (1.9). We denote constants whose value is not important by C, and those constants are allowed to
depend on N , x0

1, . . . ,x
0
N and intensities Γ1, . . . ,ΓN .

Let us consider an initial datum satisfying the Hypothesis 1.2, namely a superposition of compactly supported
blobs with disjoint supports. We denote (t,x) 7→ ζε(t,x) the unique global-in -time associated weak solution
of equations (1.4) provided by the Yudovich theory [64]. Due to the transport nature of the equation (1.4), the
blob structure is preserved (at least locally in time) that is the solution decomposes as

ζε =

N∑
i=1

ζεi ,
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with for any i ∈ {1, . . . , N}, the ζεi being a blob that satisfies the Lagrangian property

ζεi (t,x) = ζε0,i
(
ϕ−1
t (x)

)
, ∂tϕt(x) = u

(
t, ϕt(x)

)
, ϕ0(x) = x.

For the rest of this section, we fix an index i ∈ {1, . . . , N}. Since (at least for short time) the supports of the
blobs are disjoints, then the blob ζεi solves the following problem (locally in time)

∂tζ
ε
i + (uεi + F ε

i ) · ∇ζεi = 0,

uεi (t,x) ≜
1

2π

ˆ
S2

x ∧ y

|x− y|2R3

ζεi (t,y)dσ(y),
(3.1)

where the perturbation field F ε
i is defined by

F ε
i (t,x) ≜

1

2π

N∑
j=1
j ̸=i

ˆ
S2

x ∧ y

|x− y|2R3

ζεj (t,y)dσ(y) + γe3 ∧ x. (3.2)

Doing so, we simply denote the influence of the other blobs as an exterior velocity field F ε
i . Since for any y ∈ S2,

we have x · (x∧y) = 0, then F ε
i (t,x) ∈ TxS2 = span⊥(x) where the orthogonal is understood in the sense of the

usual scalar product in R3. By construction of the exit time τε,β in (1.8), for ε small enough, we obtain from
the minimal distance assumption (1.9) that for every t ⩽ τε,β and for every i ̸= j ∈ {1, . . . , N},

dist
(
B
(
xi(t), ε

β
)
, supp

(
ζεj (t, ·)

))
⩾
d0
2
, (3.3)

where by definition for two subsets A,B ⊂ R3,

dist (A,B) ≜ inf
a∈A
b∈B

∥a− b∥R3 .

As a consequence, the function Fi can be extended into

F ε
i ∈ C0

(
[0, τε,β ] , C

∞(B(xi(t), ε
β
)
,R3

))
. (3.4)

Due to (3.4), there exists a constant D independent of ε such that

max
t∈[0,τε,β ]

max
1⩽i⩽N

sup
x,y∈B(xi(t),εβ)

|F ε
i (t,x)− F ε

i (t,y)|
|x− y|

⩽ D. (3.5)

Definition 3.1. Let us denote by Dε the smallest constant such that for all t ⩽ τε,β, for all i ∈ {1, . . . , N},
there holds both that

• for all x, y ∈ B(xi(t), ε
β) such that x ̸= y,∣∣∣(F ε

i (t, x)− F ε
i (t, y)

)
· (x− y

)∣∣∣
|x− y|2

⩽ Dε (3.6)

• for all x ∈ B(xi(t), ε
β),∣∣∣∣(F ε

i (t, x)−
ˆ
S2
F ε
i (t,y)

ζεi (t,y)

Γi
dσ(y)

)
· (x− cεi (t)

)∣∣∣∣ ⩽ Dε|x− cεi (t)|
ˆ
S2
|x− y|ζ

ε
i (t,y)

Γi
dσ· (3.7)

One can easily check that by relation (3.5), Dε ⩽ D, which in particular ensures that Dε <∞. However, in
the proof of Theorem 1.5, the particular choice of configuration will lead to prove that Dε = O(εβ) as ε→ 0 in
the more precise bounds (3.6) and (3.7), which will be a crucial tool to obtain longer confinement times.

3.1 Estimates on the vorticity moments

A key point for describing the mass spreading is the control of the moments. Indeed, the first moment, the
center of mass, is used as a localization property, namely where in space is located the support of the absolute
vorticity. Higher-order moments are a measure of concentration, which we call weak confinement : when those
moments are small, it means that the support of the vorticity is mostly concentrated. Concluding the proof of
Theorem 1.1 cannot rely only on weak confinement, as it requires that support is completely controlled: in the
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end we obtain what we call this time strong confinement by controlling each particle trajectories carrying non
vanishing absolute vorticity, using the weak confinement estimates. This is the now standard method introduced
by Marchioro and Pulvirenti (see for instance [55]) and refined over time in many works. In particular, in this
paper we will obtain weak confinement estimates through the control of higher-order vorticity moments, as
introduced in [48], then used in [20] in the context of concentrated vortices.

Before defining the moments let us first reprove that the mass is a conserved quantity. By applying the
divergence Theorem and invoking the divergence-free property of uεi + F ε

i , we infer

d

dt

ˆ
S2
ζεi (t,x)dσ(x) =

ˆ
S2
∂tζ

ε
i (t,x)dσ(x)

= −
ˆ
S2

(
uεi (t,x) + F ε

i (t,x)
)
· ∇ζεi (t,x)dσ(x)

=

ˆ
S2
∇ ·
(
uεi (t,x) + F ε

i (t,x)
)
ζεi (t,x)dσ(x)

= 0.

Therefore,

∀t ⩾ 0,

ˆ
S2
ζεi (t,x)dσ(x) =

ˆ
S2
ζεi (0,x)dσ(x) =

ˆ
S2
ζεi,0(x)dσ(x) = Γi. (3.8)

Now, we define the center of vorticity (in R3) of ζεi by

cεi (t) ≜
1

Γi

ˆ
S2
xζεi (t,x)dσ(x) (3.9)

and its renormalized second moment

Iεi (t) ≜
1

Γi

ˆ
S2
|x− cεi (t)|2R3ζεi (t,x)dσ(x). (3.10)

Please note that, unlike the planar case, with our definition the center of vorticity does not lie within S2, but
instead within its convex envelope in R3 which is the unit ball. Then, we draw inspiration from [48, page 19] in
the planar case, by defining higher-order moments of ζε, for every n ∈ N∗, by

mε
n,i(t) ≜

1

Γi

ˆ
S2
|x− cεi (t)|4nR3ζεi (t,x)dσ(x). (3.11)

We start with the estimates at the initial time.

Lemma 3.1. We have that

|cεi (0)− x0
i |R3 ⩽ ε, Iεi (0) ⩽ 4ε2, mε

n,i(0) ⩽ 16nε4n.

Proof. In view of Hypothesis 1.2, we have

supp
(
ζεi (0, ·)

)
⊂ B(x0

i , ε).

Since B(x0
i , ε) is a convex set in R3, then by definition of the convex hull, we obtain

ConvR3

(
supp

(
ζεi (0, ·)

))
⊂ B(x0

i , ε).

Besides, by Hypothesis 1.2 and (3.9), the initial center of mass is a barycenter with positive coefficients of
elements in supp

(
ζεi (0, ·)

)
. Consequently,

cεi (0) ∈ ConvR3

(
supp

(
ζεi (0, ·)

))
,

and thus ∣∣cεi (0)− x0
i

∣∣ ⩽ ε. (3.12)

This is the first desired estimate. For the second one, we observe that (3.12) implies, by means of triangular
inequality, that

max
x∈supp

(
ζε
i (0,·)

) |x− cεi (0)|R3 ⩽ |x0
i − cεi (0)|R3 + max

x∈supp
(
ζε
i (0,·)

) |x− x0
i |R3 ⩽ 2ε. (3.13)
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Plugging the estimate (3.13) into (3.10) and using (3.8) yields

Iεi (0) ⩽ 4ε2.

Plugging the estimate (3.13) into (3.11) and using (3.8) yields

mε
n,i(0) ⩽ 16nε4n.

This concludes the proof of Lemma 3.1.

We now estimate the growth of the vorticity moments.

Lemma 3.2. For every t ⩽ τε,β and every i ∈ {1, . . . , N},∣∣∣∣ ddtIεi (t)
∣∣∣∣ ⩽ 2DεI

ε
i (t).

Proof. Differentiating in time the moment (3.10) leads to

d

dt
Iεi (t) =

2

Γi

d

dt
cεi (t) ·

ˆ
S2

(
x− cεi (t)

)
ζεi (t,x)dσ(x) +

1

Γi

ˆ
S2
|x− cεi (t)|2R3∂tζ

ε
i (t,x)dσ(x)

≜ Jε,i
1 (t) + Jε,i

2 (t).

First observe that from (3.8), we obtain

ˆ
S2

(
x− cεi (t)

)
ζεi (t,x)dσ(x) =

ˆ
S2
xζεi (t,x)dσ(x)− cεi (t)

ˆ
S2
ζεi (t,x)dσ(x)

= Γic
ε
i (t)− Γic

ε
i (t)

= 0.

(3.14)

Therefore, Jε,i
1 (t) = 0. Now, we turn to the estimation of Jε,i

2 (t). From (3.1), we can write

Jε,i
2 (t) = − 1

Γi

ˆ
S2
|x− cεi (t)|2R3

(
uεi (t,x) + F ε

i (t,x)
)
· ∇ζεi (t,x)dσ(x).

Using the divergence Theorem together with the divergence-free property of the vector field uεi + F ε
i , we infer

Jε,i
2 (t) =

2

Γi

ˆ
S2

(
x− cεi (t)

)
·
(
uεi (t,x) + F ε

i (t,x)
)
ζεi (t,x)dσ(x)

=
2

Γi

ˆ
S2

(
x− cεi (t)

)
· uεi (t,x)ζεi (t,x)dσ(x) +

2

Γi

ˆ
S2

(
x− cεi (t)

)
· F ε

i (t,x)ζ
ε
i (t,x)dσ(x).

Inserting the expression of uεi in (3.1) into the first term of the right hand-side above gives

ˆ
S2

(
x− cεi (t)

)
· uεi (t,x)ζεi (t,x)dσ(x) =

1

2π

ˆ
S2

ˆ
S2

(
x− cεi (t)

)
· (x ∧ y)

|x− y|2R3

ζεi (t,x)dσ(y)dσ(x)

= − 1

2π
cεi (t) ·

ˆ
S2

ˆ
S2

x ∧ y

|x− y|2R3

ζεi (t,y)ζ
ε
i (t,x)dσ(y)dσ(x).

We have used the fact that the vectors x and x ∧ y are orthogonal. Now, by a anti-symmetry of the role of x
and y, we find ˆ

S2

ˆ
S2

x ∧ y

|x− y|2R3

ζεi (t,x)ζ
ε
i (t,y)dσ(x)dσ(y) = 0. (3.15)

Hence,

Jε,i
2 (t) =

2

Γi

ˆ
S2

(
x− cεi (t)

)
· F ε

i (t,x)ζ
ε
i (t,x)dσ(x).

Using (3.14), we add a vanishing term in this expression to obtain that

Jε,i
2 (t) =

2

Γi

ˆ
S2

(
x− cεi (t)

)
·
(
F ε
i (t,x)− F ε

i

(
t, cεi (t)

))
ζεi (t,x)dσ(x),
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where F ε
i

(
t, cεi (t)

)
must be understood in the sense of the extension (3.4). Since the blob is of constant sign, by

using Cauchy-Schwarz inequality together with the definition of (3.1), more precisely of equation (3.6), we get

|Jε,i
2 (t)| ⩽ 2Dε

ˆ
S2
|x− cεi (t)|2R3

ζεi (t,x)

Γi
dσ(x)

= 2DεI
ε
i (t).

Combining the foregoing calculations gives ∣∣∣∣ ddtIεi (t)
∣∣∣∣ ⩽ 2DεI

ε
i (t).

This achieves the proof of Lemma 3.2.

We now turn to evolution of the center of vorticity. For this, we introduce the notations

c⃗ ε(t) ≜
(
cε1(t), . . . , c

ε
N (t)

)
(3.16)

and the point vortex vector field F given by

F ≜ (F1, . . . ,FN ), Fi(x1, . . . ,xN ) ≜
1

Γi
∇⊥

xi
H(x1, . . . ,xN ) =

1

2π

N∑
j=1
j ̸=i

Γj
xi ∧ xj

|xi − xj |R3

+ γe3 ∧ xi. (3.17)

A priori Fi : AN → TS2 is well-defined on the admissible set AN introduced in (2.1). However, for later
purposes, we may rather consider Fi as in (3.17) but defined on the set

DN ≜
N∏

k=1

⋃
t∈[0,τε,β ]

ConvR3

(
supp

(
ζεk(t, ·)

))
.

By continuity of the trajectories, the set DN is closed in R3. By construction, Fi is Lipschitz (actually smooth)
on DN .

Lemma 3.3. There exists a constant C such that for every t ⩽ τε,β and every i ∈ {1, . . . , N}, we have∣∣∣∣ ddt cεi (t)−Fi

(
c⃗ ε(t)

)∣∣∣∣
R3

⩽ C

N∑
j=1

√
Iεj (t),

where c⃗ ε(t) and Fi have been introduced in (3.16) and (3.17), respectively.

Proof. Differentiating in time cεi , we obtain from (3.9) and (3.1) that

d

dt
cεi (t) =

1

Γi

ˆ
S2
x∂tζ

ε
i (t,x)dσ(x)

= − 1

Γi

ˆ
S2
x
(
uεi (t,x) + F ε

i (t,x)
)
· ∇ζεi (t,x)dσ(x).

Applying, once again the divergence Theorem, we get

d

dt
cεi (t) =

1

Γi

ˆ
S2

(
uεi (t,x) + F ε

i (t,x)
)
ζεi (t,x)dσ(x)

=
1

Γi

ˆ
S2
F ε
i (t,x)ζ

ε
i (t,x)dσ(x) +

1

2πΓi

ˆ
S2

ˆ
S2

x ∧ y

|x− y|2R3

ζεi (t,x)ζ
ε
i (t,y)dσ(x)dσ(y).

From (3.15), we infer
d

dt
cεi (t) =

1

Γi

ˆ
S2
F ε
i (t,x)ζ

ε
i (t,x)dσ(x). (3.18)

Therefore, by using (3.8), the bound (3.5) and the Cauchy-Schwarz inequality, we obtain∣∣∣∣ ddt cεi (t)−Fi

(
t, c⃗ ε(t)

)∣∣∣∣
R3

=

∣∣∣∣ 1Γi

ˆ
S2
F ε
i (t,x)ζ

ε
i (t,x)dσ(x)−Fi

(
t, c⃗ ε(t)

)∣∣∣∣
R3

=

∣∣∣∣ 1Γi

ˆ
S2

(
F ε
i (t,x)− F ε

i

(
t, cεi (t)

))
ζεi (t,x)dσ(x)−

(
Fi

(
t, c⃗ ε(t)

)
− F ε

i

(
t, cεi (t)

))∣∣∣∣
R3

⩽ D
√
Iεi (t) +

∣∣Fi

(
t, c⃗ ε(t)

)
− F ε

i

(
t, cεi (t)

)∣∣
R3 .
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Using the definitions (1.5), (3.2), (3.16) and (3.17), we can write

Fi

(
t, c⃗ ε(t)

)
− F ε

i

(
t, cεi (t)

)
=

N∑
j=1
j ̸=i

Γj

2π
KS2

(
cεi (t), c

ε
j(t)
)
+ γ e3 ∧ cεi (t)

− 1

2π

N∑
j=1
j ̸=i

ˆ
S2
KS2

(
cεi (t),y

)
ζεj (t,y)dσ(y)− γe3 ∧ cεi (t)

=
1

2π

N∑
j=1
j ̸=i

ˆ
S2

(
KS2

(
cεi (t), c

ε
j(t)
)
−KS2

(
cεi (t),y

))
ζεj (t,y)dσ(y).

Thanks to (3.3), for t ⩽ τε,β , the function y 7→ K
(
cεi (t),y

)
is of class C1 on

N⋃
j=1
j ̸=i

Conv
(
supp

(
ζεj (t, ·)

))
. Hence,

by mean value Theorem, we have for any j ∈ {1, . . . , N} \ {i} and any y ∈ supp
(
ζεj (t, ·)

)
,∣∣K(cεi (t), cεj(t))−K

(
cεi (t),y

)∣∣
R3 ⩽ C

∣∣cεj(t)− y
∣∣
R3 .

Thus, by means of triangle and Cauchy-Schwarz inequalities, we find

∣∣Fi

(
t, c⃗ ε(t)

)
− F ε

i

(
t, cεi (t)

)∣∣
R3 ⩽

C

2π

N∑
j=1
j ̸=i

|Γj |
ˆ
S2
|cεj(t)− y|R3

√
ζεj (t,y)

Γj

√
ζεj (t,y)

Γj
dσ(y)

⩽ C

N∑
j=1
j ̸=i

√
Iεj (t).

This ends the proof of Lemma 3.3.

Lemma 3.4. For every ε small enough and for every t ⩽ τε,β,

d

dt
mε

n,i(t) ⩽
(
mε

n,i(t)
)n−1

n

(
70n2|Γi|

π
Iεi (t) + 4nDε

((
mε

n,i(t)
) 1

n + 2
√
Iεi (t)ε

3β

))
.

Proof. Throughout the proof, we fix n ∈ N∗. Differentiating in time (3.11) and using (3.1) leads to

d

dt
mε

n,i(t) =
4n

Γi

ˆ
S2
|x− cεi (t)|4n−1

R3

(
d

dt
|x− cεi (t)|

)
ζεi (t,x)dσ(x)

+
1

Γi

ˆ
S2
|x− cεi (t)|4nR3∂tζ

ε
i (t,x)dσ(x)

=
4n

Γi

ˆ
S2
|x− cεi (t)|4n−1

R3

(
d

dt
|x− cεi (t)|

)
ζεi (t,x)dσ(x)

− 1

Γi

ˆ
S2
|x− cεi (t)|4nR3

(
uεi (t,x) + F ε

i (t,x)
)
· ∇ζεi (t,x)dσ(x).

Applying the divergence theorem and using that uεi , F
ε
i are solenoidal yields

d

dt
mε

n,i(t) = −4n

Γi

ˆ
S2

d

dt
cεi (t) ·

(
x− cεi (t)

)
|x− cεi (t)|4n−2

R3 ζεi (t,x)dσ(x)

+
4n

Γi

ˆ
S2

(
x− cεi (t)

)
·
(
uεi (t,x) + F ε

i (t,x)
)
|x− cεi (t)|4n−2

R3 ζεi (t,x)dσ(x).

Using (3.18) and (3.1), we can rearrange the previous expression as

d

dt
mε

n,i(t) =
4n

2πΓi

¨
S2×S2

(x− cεi (t)) ·
x ∧ y

|x− y|2R3

|x− cεi (t)|4n−2
R3 ζεi (t,y)ζ

ε
i (t,x)dσ(y)dσ(x)

+
4n

Γi

ˆ
S2

(
x− cεi (t)

)
·
(
F ε
i (t,x)−

1

Γi

ˆ
S2
F ε
i (t,y)ζ

ε
i (t,y)dσ(y)

)
|x− cεi (t)|4n−2

R3 ζεi (t,x)dσ(x)

≜ Aε
1(t) +Aε

2(t).
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We first deal with the term Aε
1(t). Notice that by definition (3.9) and orthogonality argument, we have for every

x ∈ S2, ˆ
S2
(x− cεi (t)) ·

x ∧ y

|x− cεi (t)|2R3

ζεi (t,y)dσ(y) = Γ(x− cεi (t)) ·
x ∧ cεi (t)

|x− cεi (t)|2R3

= 0.

Therefore,

Aε
1(t) =

2n

πΓi

¨
S2×S2

Kε(t,x,y)|x− cεi (t)|4n−2
R3 ζεi (t,y)ζ

ε
i (t,x)dσ(y)dσ(x),

with

Kε(t,x,y) ≜
(
x− cεi (t)

)
· (x ∧ y)

(
1

|x− y|2R3

− 1

|x− cεi (t)|2R3

)
.

We now split the domain of integration S2 × S2 into three subdomains

Eε
1(t) ≜

{
(x,y) ∈ S2 × S2 s.t. |y − cεi (t)|R3 ⩽

(
1− 1

2n

)
|x− cεi (t)|R3

}
,

Eε
2(t) ≜

{
(x,y) ∈ S2 × S2 s.t.

(
1− 1

2n

)
|x− cεi (t)|R3 < |y − cεi (t)|R3 <

(
1− 1

2n

)−1

|x− cεi (t)|R3

}
,

Eε
3(t) ≜

{
(x,y) ∈ S2 × S2 s.t. |x− cεi (t)|R3 ⩽

(
1− 1

2n

)
|y − cεi (t)|R3

}
.

This leads to write
Aε

1 = Aε
1,1 +Aε

1,2 +Aε
1,3,

where for any k ∈ {1, 2, 3},

Aε
1,k(t) =

2n

πΓi

¨
Eε

k(t)

K(t,x,y)|x− cεi (t)|4n−2
R3 ζεi (t,y)ζ

ε
i (t,x)dσ(y)dσ(x).

We now work on the expression of Kε. We get the identity

1

|x− y|2R3

− 1

|x− cεi (t)|2R3

=

(
2
(
x− cεi (t)

)
−
(
y − cεi (t)

))
·
(
y − cεi (t)

)
|x− cεi (t)|2R3 |x− y|2R3

, (3.19)

and since
(
x− cεi (t)

)
· (x ∧ y) =

(
y − cεi (t)

)
· (x ∧ y), we conclude that

Kε(t,x,y) =
(
y − cεi (t)

)
· (x ∧ y)

(
2
(
x− cεi (t)

)
−
(
y − cεi (t)

))
·
(
y − cεi (t)

)
|x− cεi (t)|2R3 |x− y|2R3

· (3.20)

We now focus on Aε
1,1(t). Take (x,y) ∈ Eε

1(t). By definition,

|y − cεi (t)|R3 ⩽

(
1− 1

2n

)
|x− cεi (t)|R3 . (3.21)

Hence, by left-triangular inequality, we deduce that

|x− y|R3 ⩾ |x− cεi (t)|R3 − |y − cεi (t)|R3

⩾
1

2n
|x− cεi (t)|R3 .

(3.22)

Also, by right-triangular inequality and (3.21), we have

|2(x− cεi (t))− (y − cεi (t))|R3 ⩽ 2|x− cεi (t)|R3 + |y − cεi (t)|R3

⩽ 3|x− cεi (t)|R3 .
(3.23)

Putting together (3.20), (A.1), (3.22) and (3.23) gives, by using Cauchy-Schwarz inequality,

|Kε(t,x,y)| ⩽ |y − cεi (t)|R3 |x− y|R3

3|x− cεi (t)|R3 |y − cεi (t)|R3

|x− cεi (t)|2R3 |x− y|2R3

⩽
3|y − cεi (t)|2R3

|x− cεi (t)|R3 |x− y|R3

⩽
6n|y − cεi (t)|2R3

|x− cεi (t)|2R3

·
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Consequently, we obtain

|Aε
1,1(t)| ⩽

12n2|Γi|
π

¨
Eε

1(t)

|y − cεi (t)|2R3 |x− cεi (t)|4n−4
R3

ζεi (t,y)

Γi

ζεi (t,x)

Γi
dσ(y)dσ(x)

⩽
12n2|Γi|

π
Iεi (t)m

ε
n−1,i(t).

(3.24)

Now, we deal with the term Aε
1,3(t). Take (x,y) ∈ Eε

3(t). By definition,

|x− cεi (t)|R3 ⩽

(
1− 1

2n

)
|y − cεi (t)|R3 . (3.25)

Compared to (3.21), in (3.25) we have exchanged the roles of x and y, hence the bound (3.22) becomes

|x− y|R3 ⩾
1

2n
|y − cεi (t)|R3 , (3.26)

while (3.23) becomes
|2(x− cεi (t))− (y − cεi (t))|R3 ⩽ 3|y − cεi (t)|R3 . (3.27)

Putting together (3.20), (A.1), (3.26) and (3.27) gives, by Cauchy-Schwarz inequality,

|Kε(t,x,y)| ⩽ |y − cεi (t)|R3 |x− y|R3

3|y − cεi (t)|2R3

|x− cεi (t)|2R3 |x− y|2R3

⩽
3|y − cεi (t)|3R3

|x− cεi (t)|2R3 |x− y|R3

⩽
6n|y − cεi (t)|2R3

|x− cεi (t)|2R3

·

Thus, we obtain that

|Aε
1,3(t)| ⩽

12n2|Γi|
π

¨
Eε

3(t)

|y − cεi (t)|2R3 |x− cεi (t)|4n−4
R3

ζεi (t,y)

Γi

ζεi (t,x)

Γi
dσ(y)dσ(x)

⩽
12n2|Γi|

π
Iεi (t)mn−1,i(t).

(3.28)

Regarding Aε
1,2(t), we split into two terms

Aε
1,2(t) =

2n

πΓi

¨
E2(t)

(
x− cεi (t)

)
· x ∧ y

|x− y|2R3

|x− cεi (t)|4n−2
R3 ζεi (t,y)ζ

ε
i (t,x)dσ(y)dσ(x)

− 2n

πΓi

¨
E2(t)

(
x− cεi (t)

)
· (x ∧ y)|x− cεi (t)|4n−4

R3 ζεi (t,y)ζ
ε
i (t,x)dσ(y)dσ(x)

≜ Aε
1,2,1(t) +Aε

1,2,2(t).

Take (x,y) ∈ Eε
2(t). By definition, we have(

1− 1

2n

)
|x− cεi (t)|R3 < |y − cεi (t)|R3 <

(
1− 1

2n

)−1

|x− cεi (t)|R3 . (3.29)

In particular,
|x− cεi (t)| ⩽ 2|y − cεi (t)|.

Invoking one more time the Cauchy-Schwarz inequality and using (A.1) together with the right-triangle inequal-
ity, we infer ∣∣(x− cεi (t)

)
· (x ∧ y)

∣∣ ⩽ |x− cεi (t)|R3 |x− y|R3

⩽ 2|y − cεi (t)|R3 (|x− cεi (t)|R3 + |y − cεi (t)|R3)

⩽ 6|y − cεi (t)|2R3 .

We deduce that∣∣Aε
1,2,2(t)

∣∣ ⩽ 12n|Γi|
π

¨
Eε

2(t)

|y − cεi (t)|2R3 |x− cεi (t)|4n−4
R3

ζεi (t,y)

Γi

ζεi (t,x)

Γi
dσ(y)dσ(x)

⩽
12n|Γi|
π

Iεi (t)mn−1,i(t).

(3.30)
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As for Aε
1,2,1(t), noticing that

(x− cεi (t)) · x ∧ y = −cεi (t) · x ∧ y,

we then symmetrize and get

Aε
1,2,1(t) = −2ncεi (t)

2πΓi
·
¨

Eε
2(t)

x ∧ y

|x− y|2R3

(
|x− cεi (t)|4n−2

R3 − |y − cεi (t)|4n−2
R3

)
ζεi (t,y)ζ

ε
i (t,x)dσ(y)dσ(x)

= − n

πΓi

¨
Eε

2(t)

(y − cεi (t)) ·
x ∧ y

|x− y|2R3

(
|x− cεi (t)|4n−2

R3 − |y − cεi (t)|4n−2
R3

)
ζεi (t,y)ζ

ε
i (t,x)dσ(y)dσ(x).

Now, using (3.29), we obtain that

∣∣∣|x− cεi (t)|4n−2
R3 − |y − cεi (t)|4n−2

R3

∣∣∣ ⩽ |x− y|R3

4n−3∑
j=0

|x− cεi (t)|
4n−3−j
R3 |y − cεi (t)|

j
R3

⩽ |x− y|R3 |x− cεi (t)|4n−4
R3 |y − cεi (t)|R3

4n−3∑
j=1

(
1− 1

2n

)−(j−1)

+

(
1− 1

2n

)−1
 .

Standard computations give

4n−3∑
j=1

(
1− 1

2n

)−(j−1)

=

4n−4∑
j=0

(
1− 1

2n

)−j

=

(
1− 1

2n

)−(4n−3) − 1
2n

2n−1 − 1

= (2n− 1)

((
1− 1

2n

)−4n+3

− 1

)

⩽ 2n

(
1− 1

2n

)−4n

⩽ 32n.

To get the last inequality, we have used the fact that n 7→
(
1− 1

2n

)−2n
is decreasing. Added to the fact that(

1− 1

2n

)−1

⩽ 2 ⩽ 2n,

we deduce that ∣∣∣|x− cεi (t)|4n−2
R3 − |y − cεi (t)|4n−2

R3

∣∣∣ ⩽ 34n|x− y|R3 |x− cεi (t)|4n−4
R3 |y − cεi (t)|R3 .

With this in hand, then the Cauchy-Schwarz inequality and (A.1) imply

|Aε
1,2,1(t)| ⩽

34n2|Γi|
π

¨
Eε

2(t)

|y − cεi (t)|2R3 |x− cεi (t)|4n−4
R3

ζεi (t,y)

Γi

ζεi (t,x)

Γi
dσ(y)dσ(x)

⩽
34n2|Γi|

π
Iεi (t)m

ε
n−1,i(t).

(3.31)

Putting together (3.30) and (3.31), we infer

|Aε
1,2(t)| ⩽

46n2|Γi|
π

Iεi (t)m
ε
n−1,i(t). (3.32)

Combining (3.24), (3.28) and (3.32), we obtain

|Aε
1(t)| ⩽

70n2|Γi|
π

Iεi (t)m
ε
n−1,i(t). (3.33)

We now turn to the analysis of Aε
2(t), which we recall to be

Aε
2(t) =

4n

Γi

ˆ
S2

(
x− cεi (t)

)
·
(
F ε
i (t,x)−

1

Γi

ˆ
S2
F ε
i (t,y)ζ

ε
i (t,y)dσ(y)

)
|x− cεi (t)|4n−2

R3 ζεi (t,x)dσ(x).
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By definition 3.1 of Dε, more precisely by relation (3.7), we have that

|Aε
2(t)| ⩽ 4nDε

¨
S2×S2

|x− y|R3

ζεi (t,y)

Γi
dσ(y)|x− cεi (t)|4n−1

R3

ζεi (t,x)

Γi
dσ(x).

By right-triangular inequality, |x− y|R3 ⩽ |x− cεi (t)|R3 + |y − cεi (t)|R3 and therefore

|Aε
2(t)| ⩽ 4nDε

(
mε

n,i(t) +

ˆ
S2
|y − cεi (t)|R3

ζεi (t,y)

Γi
dσ(y)

ˆ
S2
|x− cεi (t)|4n−1

R3

ζεi (t,x)

Γi
dσ(x)

)
.

By Cauchy-Schwarz inequality and the definition of Γi, we get

ˆ
S2
|y − cεi (t)|R3

ζεi (t,y)

Γi
dσ(y) =

ˆ
S2
|y − cεi (t)|R3

√
ζεi (t,y)

Γi

√
ζεi (t,y)

Γi
dσ(y) ⩽

√
Iεi (t).

Besides, given x ∈ supp
(
ζεi (t, ·)

)
, since cεi belongs to the convex envelop of supp

(
ζεi (t, ·)

)
, we have that

|x− cεi (t)|R3 ⩽ 2εβ .

Combining the foregoing calculations leads to

|Aε
2(t)| ⩽ 4nDε

(
mε

n,i(t) + 2
√
Iεi (t)ε

3βmε
n−1,i(t)

)
. (3.34)

Gathering (3.33) and (3.34), we deduce

d

dt
mε

n,i(t) ⩽
70n2|Γi|

π
Iεi (t)m

ε
n−1,i(t) + 4nDε

(
mε

n,i(t) + 2
√
Iεi (t)ε

3βmε
n−1,i(t)

)
.

Using Hölder’s inequality, we notice that

mε
n−1,i(t) =

ˆ
S2

(
1

Γi
|x− cεi (t)|4nR3ζεi (t,x)

)n−1
n
(

1

Γi
ζεi (t,x)

) 1
n

dσ(x) ⩽
(
mε

n,i(t)
)n−1

n ,

which concludes the proof of this lemma.

All these estimates are weak confinement properties. We now introduce the strong confinement tools by
controlling the growth of the support of the absolute vorticity.

3.2 Growth of the support

Let us introduce for all t ⩾ 0,

Rε
i (t) ≜ inf

{
r > 0 s.t. supp

(
ζεi (t, ·)

)
⊂ B

(
cεi (t), r

)}
. (3.35)

By compactness of the support, we get the existence of Xε
i (t) ∈ supp

(
ζεi (t, ·)

)
such that

|Xε
i (t)− cεi (t)|R3 = Rε

i (t). (3.36)

We denote by s 7→ Xε
t,i(s) the trajectory passing through Xε

i (t) at time t, i.e. the solution of the Cauchy
problem

d

ds
Xε

t,i(s) = uεi
(
s,Xε

t,i(s)
)
+ F ε

i

(
s,Xε

t,i(s)
)
, Xε

t,i(t) = Xε
i (t). (3.37)

These trajectories are continuous, so t 7→ Rε
i (t) is also continuous. Then, we have the following lemma used to

estimate the growth of the support.

Lemma 3.5. For any t ⩽ τε,β we have that

d

ds

∣∣Xε
t,i(s)− cεi (s)

∣∣
R3

∣∣∣
s=t

⩽ DεR
ε
i (t) +

11Iεi (t)

2(Rε
i (t))

3
+

(
Mε−η|Γi|

π
mεt,i

(
Rε

i (t)

2

)) 1
2

,

where

mεt,i(r) ≜
ˆ
S2\C(cεi (t),r)

ζεi (t,x)dσ(x), (3.38)

with
∀x ∈ R3, ∀r > 0, C(x, r) ≜

{
y ∈ S2 s.t. |x− y|R3 ⩽ r

}
= B(x, r) ∩ S2.
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Proof. We follow the original proof by Buttà-Marchioro in the planar case [9, Lem 2.5] and adapt it to our
situation. We fix t ⩽ τε,β . By definition (3.37), one readily has by differenciating

d

ds
|Xε

t,i(s)− cεi (s)|R3

∣∣∣
s=t

=

(
uεi
(
t,Xε

i (t)
)
+ F ε

i

(
t,Xε

i (t)
)
− d

dt
cεi (t)

)
· Xε

i (t)− cεi (t)

|Xε
i (t)− cεi (t)|R3

·

Using (3.1), (3.8) and (3.18), we can write

d

ds

∣∣Xε
t,i(s)− cεi (s)

∣∣
R3

∣∣∣
s=t

=
1

2π

ˆ
S2

Xε
i (t) ∧ y

|Xε
i (t)− y|2R3

ζεi (t,y)dσ(y) ·
Xε

i (t)− cεi (t)

|Xε
i (t)− cεi (t)|R3

+
1

Γi

(ˆ
S2

[
F ε
i

(
t,Xε

i (t)
)
− F ε

i (t,y)
]
ζεi (t,x)dσ(y)

)
· Xε

i (t)− cεi (t)

|Xε
i (t)− cεi (t)|R3

·

Then, by definition of Dε in 3.1, using relations (3.7), (3.8) and the definition (3.35), we get∣∣∣∣ˆ
S2

[
F ε
i

(
t,Xε

i (t)
)
− F ε

i (t,y)
] ζεi (t,y)

Γi
dσ(y)

∣∣∣∣ ⩽ Dε

ˆ
S2
|Xε

i (t)− y|R3

ζεi (t,y)

Γi
dσ(y)

⩽ DεR
ε
i (t).

Now, we split

1

2π

ˆ
S2

Xε
i (t) ∧ y

|Xε
i (t)− y|2R3

ζεi (t,y)dσ(y) ·
Xε

i (t)− cεi (t)

|Xε
i (t)− cεi (t)|R3

= H1 +H2,

where

H1 ≜
1

2π

ˆ
C
(
cεi (t),

Rε
i
(t)

2

) Xε
i (t)− cεi (t)

|Xε
i (t)− cεi (t)|R3

· Xε
i (t) ∧ y

|Xε
i (t)− y|2R3

ζεi (t,y)dσ(y),

H2 ≜
1

2π

ˆ
S2\C

(
cεi (t),

Rε
i
(t)

2

) Xε
i (t)− cεi (t)

|Xε
i (t)− cεi (t)|R3

· Xε
i (t) ∧ y

|Xε
i (t)− y|2R3

ζεi (t,y)dσ(y).

Observe that(
Xε

i (t)− cεi (t)
)
·
ˆ
S2

(
Xε

i (t) ∧ y
)
ζεi (t,y)dσ(y) =

(
Xε

i (t)− cεi (t)
)
·
(
Xε

i (t) ∧
ˆ
S2
yζεi (t,y)dσ(y)

)
=
(
Xε

i (t)− cεi (t)
)
·
(
Xε

i (t) ∧ cεi (t)
)

= 0.

Consequently, we can write
H1 = H1,1 −H1,2,

with

H1,1 =
1

2π

ˆ
C
(
cεi (t),

Rε
i
(t)

2

) Xε
i (t)− cεi (t)

|Xε
i (t)− cεi (t)|R3

·
(
Xε

i (t) ∧ y
)( 1

|Xε
i (t)− y|2R3

− 1

|Xε
i (t)− cεi (t)|2R3

)
ζεi (t,y)dσ(y),

H1,2 ≜
1

2π

ˆ
S2\C

(
cεi (t),

Rε
i
(t)

2

) Xε
i (t)− cεi (t)

|Xε
i (t)− cεi (t)|

3
R3

·
(
Xε

i (t) ∧ y
)
ζεi (t,y)dσ(y).

Using the identities (3.19) and (3.36), the term H1,1 becomes

H1,1 =
1

2π (Rε
i (t))

3

ˆ
C
(
cεi (t),

Rε
i
(t)

2

) (Xε
i (t)−cεi (t)

)
·
(
Xε

i (t)∧y
)(2(Xε

i (t)− cεi (t)
)
−
(
y − cεi (t)

))
·
(
y − cεi (t)

)
|Xε

i (t)− y|2R3

ζεi (t,y)dσ(y).

Notice that
(
Xε

i (t)− cεi (t)
)
·
(
Xε

i (t) ∧ y
)
=
(
y − cεi (t)

)
·
(
Xε

i (t) ∧ y
)
. Hence,

H1,1 =
1

2π (Rε
i (t))

3

ˆ
C
(
cεi (t),

Rε
i
(t)

2

) (y−cεi (t))·(Xε
i (t)∧y

)(2(Xε
i (t)− cεi (t)

)
−
(
y − cεi (t)

))
·
(
y − cεi (t)

)
|Xε

i (t)− y|2R3

ζεi (t,y)dσ(y).

Now, remark that for y ∈ C
(
cεi (t),

Rε
i (t)
2

)
, we have |y − cεi (t)|R3 ⩽ Rε

i (t)
2 · Thus, by (3.36) and left-triangular

inequality, we infer

|Xε
i (t)− y|R3 ⩾ |Xε

i (t)− cεi (t)|R3 − |y − cεi (t)|R3 ⩾
Rε

i (t)

2
·
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As a consequence, by triangular inequality and (3.36),∣∣2(Xε
i (t)− cεi (t)

)
−
(
y − cεi (t)

)∣∣
R3 ⩽ |Xε

i (t)− y|R3 + |Xε
i (t)− cεi (t)|R3 ⩽ 3|Xε

i (t)− y|R3 .

Applying one more time the Cauchy-Schwarz inequality, we deduce that

|H1,1| ⩽
3|Γi|Iεi (t)
2π (Rε

i (t))
3 ·

Now we shall estimate H1,2. By construction (3.35)-(3.36), for y ∈ supp
(
ζεi (t, ·)

)
,

|Xε
i (t)− y|R3 ⩽ |Xε

i (t)− cεi (t)|R3 + |cεi (t)− y|R3 ⩽ 2Rε
i (t).

Hence, Cauchy-Schwarz ineaquality implies∣∣∣∣∣ Xε
i (t)− cεi (t)

|Xε
i (t)− cεi (t)|

3
R3

·
(
Xε

i (t) ∧ y
)∣∣∣∣∣ ⩽ 2

Rε
i (t)

·

Therefore,

|H1,2| ⩽
|Γi|

πRε
i (t)

ˆ
S2\C

(
cεi (t),

Rε
i
(t)

2

) ζεi (t,y)
Γi

dσ(y).

We consider the measure µε
t,i defined on the measurable space

(
S2,B(S2)

)
given by

µε
t,i(A) =

ˆ
A

ζεi (t,y)

Γi
dσ(y).

According to (3.8), µε
t,i is a probability measure on S2, which is absolutely continuous with respect to σ. The

classical Markov inequality gives

|H1,2| ⩽
|Γi|

πRε
i (t)

µε
t,i

({
y ∈ S2 s.t. |y − cεi (t)|R3 ⩾

Rε
i (t)

2

})
=

|Γi|
πRε

i (t)
µε
t,i

({
y ∈ S2 s.t. |y − cεi (t)|2R3 ⩾

(
Rε

i (t)

2

)2
})

⩽
4|Γi|

π (Rε
i (t))

3

ˆ
S2
|y − cεi (t)|2R3dµε

t,i(y)

=
4|Γi|

π (Rε
i (t))

3

ˆ
S2
|y − cεi (t)|2R3

ζεi (t,y)

Γi
dσ(y)

=
4|Γi|Iεi (t)
π (Rε

i (t))
3 ·

At last, we focus on the term H2. One readily gets

|H2| ⩽
|Γi|
2π

Iε
i (t), Iε

i (t) ≜
ˆ
S2\C

(
cεi (t),

Rε
i
(t)

2

) 1

|Xε
i (t)− y|R3

ζεi (t,y)

Γi
dσ(y).

The integrand is monotonically unbounded as y → Xε
i (t), so the maximum of the integral is obtained when we

rearrange the vorticity mass as close as possible to the singularity. In view of the Hypothesis 1.2 and since, by

(3.38), mεt,i

(
Rε

i (t)
2

)
is equal to the total amount of vorticity in S2 \ C

(
cεi (t),

Rε
i (t)
2

)
, this rearrangement gives

Iε
i (t) ⩽ max

{ˆ
S2

1

|N− y|R3

ζ(y)dσ(y),

ˆ
S2
ζ(y)dσ(y) = mεt,i

(
Rε

i (t)

2

)
, 0 ⩽ ζ ⩽

Mε−η

|Γi|

}
.

Let us recall that N denotes the North pole of the sphere. The previous maximum is obtained for ζ ≡ Mε−η

|Γi| on

the spherical cap C(N, r) for r > 0 such that

Mε−η

|Γi|

ˆ
C(N,r)

dσ(y) = mεt,i

(
Rε

i (t)

2

)
. (3.39)

Let us consider on the unit sphere, the geodesic distance dS2 . By definition of the function sin, one has

∀x,y ∈ S2, |x− y|R3 = 2 sin

(
dS2(x,y)

2

)
.

22



Therefore, ˆ
C(N,r)

dσ(y) = 2π

ˆ 2 arcsin( r
2 )

0

sin(θ)dθ = 2π
(
1− cos

(
2 arcsin

(
r
2

) ))
= πr2. (3.40)

Inserting (3.40) into (3.39), we find

r =

√
εη|Γi|
Mπ

mεt,i

(
Rε

i (t)

2

)
.

Besides,

ˆ
C(N,r)

1

|N− y|R3

dσ(y) = 2π

ˆ 2 arcsin( r
2 )

0

sin(θ)

2 sin
(
θ
2

)dθ = 2π

ˆ 2 arcsin( r
2 )

0

cos

(
θ

2

)
dθ = 2πr.

Hence,

Iε
i (t) ⩽

2πrMε−η

|Γi|
= 2π

√
Mε−η

π|Γi|
mεt,i

(
Rε

i (t)

2

)
.

Thus,

|H2| ⩽

√
Mε−η|Γi|

π
mεt,i

(
Rε

i (t)

2

)
.

This achieves the proof of Lemma 3.5.

4 Logarithmic confinement results

Here, we use the results of the previous section to prove Theorems 1.3 and 1.4.

4.1 Proof of Theorem 1.3

Recall the definition (3.5) of D, and that in all generality, Dε ⩽ D. Let α > 0 to be chosen later, and let

δ ≜ 2αD. (4.1)

We thus have the following estimates on the vorticity moments.

Lemma 4.1. There exists a constant C such that for ε > 0 small enough, for any i ∈ {1, . . . , N} and any
t ⩽ min(τε,β , α| ln ε|),

Iεi (t) ⩽ Cε2−δ, |cεi (t)− xi(t)|R3 ⩽ Cε1−
δ
2−α, mε

n,i(t) ⩽ Cnε
(2−δ−Cnα)n.

Proof. Fix i ∈ {1, . . . , N} and t ⩽ min(τε,β , α| ln ε|).
▶ First estimate : Since, t ⩽ τε,β , we can apply Lemma 3.2 and use Gronwall’s Lemma and the relation (3.5)
to get

|Iεi (t)| ⩽ Iεi (0) exp
(
2Dt).

Making appeal to Lemma 3.1, using the fact that t ⩽ α| ln ε| and the definition of δ in (4.1), we conclude that

Iεi (t) ⩽ Cε2−δ. (4.2)

▶ Second estimate : Since t ⩽ τε,β , we can apply Lemma 3.3 together with (4.2), to get∣∣∣∣ ddt c⃗ ε(t)−F
(
c⃗ ε(t)

)∣∣∣∣
R3N

⩽ Cε1−
δ
2 .

Denoting X(t) the point vortex solution
d

dt
X(t) = F

(
X(t)

)
,

we can apply the variant of Gronwall’s lemma provided in Lemma A.4 and deduce that

|⃗c ε(t)−X(t)|R3N ⩽
(
tCε1−

δ
2 + |⃗c ε(0)−X(0)|R3N

)
exp(Ct).

Therefore, using Lemma 3.1, we conclude that for ε small enough, for every i ∈ {1, . . . , N} and every t ⩽
min(τε,β , α| ln ε|) that

|cεi (t)− xi(t)| ⩽ Cε1−
δ
2−α.
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▶ Third estimate : Combining the estimate of Lemma 3.4 together with (4.2) and (3.5), we infer

d

dt
mε

n,i(t) ⩽ Cn2
(
mε

n,i(t)
)n−1

n

(
ε2−δ +

(
mε

n,i(t)
) 1

n + ε3β+1− δ
2

)
.

Assuming that 3β+1 > 2, namely that β > 1/3, which we can do since proving Theorem 1.3 for some β implies
it for any β′ < β, then the rightmost term is negligible compared to ε2−δ. Therefore, we obtain

d

dt
mε

n,i(t) ⩽ Cn2
(
mε

n,i(t)
)n−1

n

(
ε2−δ +

(
mε

n,i(t)
) 1

n

)
.

We apply Lemma A.5 together with Lemma 3.1, leading to

mε
n,i(t) ⩽

(
−ε2−δ +

(
ε2−δ + 16ε4

)
eCnt

)n
.

Thus, since t ⩽ α| ln ε|, by compared growth for ε small enough, we have that

mε
n,i(t) ⩽ Cnε

(2−δ−Cnα)n.

This ends the proof of Lemma 4.1.

The first result that we infer from these estimates is the following control on the vorticity far from the center
of mass, which we call weak confinement. Recall the definition of mεt,i given in (3.38).

Lemma 4.2. Let β′ ≜
β+ 1

2

2 ∈
(
β, 12

)
. For every ν > 0, there exists ε > 0 depending only on β and ν

such that provided α is chosen such small enough (depending on ν and β only), for every ε ∈ (0, ε0), every

t ⩽ min(τε,β , α| ln ε|) and any r ⩾ εβ
′

2 ,

max
1⩽i⩽N

mεt,i(r) ⩽
ε5+ν

r6
,

where mεt,i(r) is defined in (3.38).

Proof. We set

δ∗ ≜
2− 4β

4
·

Fix t ⩽ min
(
τε,β , α| ln ε|

)
. Invoking Lemma 4.1, we get by compared growth as ε→ 0 there exists αn > 0 small

enough that if α ⩽ αn, then
mε

n,i(t) ⩽ Cnε
(2−δ∗)n.

Therefore, for any r ⩾ εβ
′

2 and any ν > 0, we have

1

Γi

ˆ
S2\C(cεi (t),r)

ζεi (t,x)dσ(x) =
1

Γi

ˆ
S2\C(cεi (t),r)

|x− cεi (t)|4nR3

|x− cεi (t)|4nR3

ζεi (t,x)dσ(x)

⩽
mε

n,i(t)

r4n

⩽
Cnε

n(2−δ∗)

r4n

⩽ Cn
ε5+ν

r6
ε(2−δ∗)n−5−ν(

εβ′

2

)4n−6

⩽ Cn2
4n−6 ε

5+ν

r6
ε(2−δ∗−4β′)n−5−ν+6β′

.

Since 2− δ∗ − 4β′ = 1
2 − β, taking n =

⌊
5+ν
1
2−β

⌋
+ 2 there only remains to take ε small enough such that

εCn2
4n−6 < 1.

Since n depends only on β and ν, so does ε0 such that this holds for every ε ∈ (0, ε0).

We are now ready to prove Theorem 1.3. The idea is to use the previous estimates to show that for every

time t ⩽ min(τε,β , α| ln ε|) and for any 1 ⩽ i ⩽ N , we have that supp
(
ζεi (t)

)
⊂ B

(
cεi (t),

3εβ

4

)
. Thus, necessarily,

τε,β ⩾ α| ln ε|.
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Conclusion of the proof of Theorem 1.3

Fix i ∈ {1, . . . , N}. For every ε > 0 and t ⩾ 0, recall the notations of Section 3.2 concerning the existence of
a point Xε

i and a trajectory s 7→ Xε
t,i(s) such that relations (3.36) and (3.37) hold. Applying Lemma 4.1 to

Lemma 3.5, we have that

d

ds

∣∣Xε
t,i(s)− cεi (s)

∣∣
R3

∣∣∣
s=t

⩽ DRε
i (t) + C2

ε2−δ

(Rε
i (t))

3
+

(
Mε−η|Γi|

π
mεt,i

(
Rε

i (t)

2

)) 1
2

. (4.3)

Let fi be the solution of the ODE:

f ′i(t) = 2Dfi(t) + 2C2
ε2−δ

f3i (t)
+ 2

(
Mε−η|Γi|

π
mεt,i

(
fi(t)

2

)) 1
2

, (4.4)

with initial data
fi(0) = 2Rε

i (0). (4.5)

First observe that (4.3) and (4.4) imply

f ′i(t) >
d

ds

∣∣Xε
t,i(s)− cεi (s)

∣∣
R3

∣∣∣
s=t

. (4.6)

Then, we claim that
∀t ⩽ min(τε,β , α| ln(ε)|), fi(t) > Rε

i (t). (4.7)

Indeed, assume that the converse is true and take

t′ ≜ min{s ∈ [0,min(τε,β , α| ln(ε)|)] s.t. fi(s) = Rε
i (s)}.

According to (4.5), we have t′ > 0. In view of the definition (3.36), one has

|Xε
i (t

′)− cεi (t
′)|R3 = Rε

i (t
′) = fi(t

′). (4.8)

By construction, for any 0 < h < t′∣∣Xε
t′,i(t

′ − h)− cεi (t
′ − h)

∣∣
R3 ⩽ Rε

i (t
′ − h) < fi(t

′ − h). (4.9)

Combining (4.8) and (4.9), we obtain∣∣Xε
t′,i(t

′ − h)− cεi (t
′ − h)

∣∣
R3

− |Xε
i (t

′)− cεi (t
′)|R3

−h
>
fi(t

′ − h)− fi(t
′)

−h
· (4.10)

Passing to the limit h→ 0 in (4.10), we get a contradiction with (4.6). This proves the claim (4.7).
Let us now prove that there does not exist an index i ∈ {1, . . . , N} and a time t2 ⩽ α| ln ε| such that

fi(t2) ⩾ εβ/2. We proceed by contradiction: assume there exists such time. Let β′ = β+1/2
2 ∈ (β, 1/2) and

let t1 be the last time prior to t2 such that for every t ∈ [t1, t2], we have that εβ
′
⩽ fi(t) ⩽ εβ/2. Since

fi(t)/2 ⩾ εβ
′
/2, we can apply Lemma 4.2 with r = fi(t) and any positive ν such that ν ⩾ η + 6β′ − 4 to get

that for all t ∈ [t1, t2],

f ′i(t) ⩽ 2Dfi(t) + 2C2
ε2−δ

f3i (t)
+ 2

(
Mε−η|Γi|

π
26
ε5+ν

f6i (t)

) 1
2

⩽ 2Dfi(t) + 2C2
ε2−δ

f3i (t)
+ Cε(5+ν−η−6β′)/2

⩽ C

(
fi(t) +

ε2−δ

f3i (t)

)
,

where in the last inequality we used that 1
2 (5+ ν− η− 6β′) > β′ and thus ε

1
2 (5+ν−η−6β′) ≪ εβ ⩽ fi(t) as ε→ 0.

Multiplying by f3i (t) gives that
(f4i )

′(t) ⩽ C(f4i (t) + ε2−δ).

This in turns gives that

f4i (t2) ⩽ f4i (t1)e
C(t2−t1) + Cε2−δ(eC(t2−t1) − 1) = ε4β

′−Cα + Cε2−δ(ε−Cα − 1).
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Provided α is small enough so that β′ − Cα/4 > β, and ε is small enough, we have that

fi(t2) <
εβ

2 ,

which is a contradiction. No such time t2 exists for any index i, and thus provided α and ε are small enough,

for every i ∈ {1, . . . , N}, for every t ⩽ min(τε,β , α| ln ε|), Rε
i (t) < fi(t) <

εβ

2 . Therefore, for every such t and i,
for every point x ∈ supp

(
ζεi (t, ·)

)
, we have that

|x− xi(t)|R3 ⩽ |x− cεi (t)|R3 + |xi(t)− cεi (t)|R3 ⩽ Rε
i (t) + |xi(t)− cεi (t)|R3 ⩽

3

4
εβ ,

where we used Lemma 4.1 provided ε and α are small enough. Applying this last equality in τε,β would then
be a contradiction as by definition of τε,β , there exists i0 ∈ {1, . . . , N} and x ∈ supp

(
ζεi0(τε,β , ·)

)
such that

|x− xi0(t)|R3 = εβ .

Therefore, this inequality cannot be applied in τε,β , so min(τε,β , α| ln ε|) = α| ln ε|, meaning that τε,β ⩾ α| ln ε|.
Theorem 1.3 is now proved.

4.2 Optimality of the bound

We now prove that the logarithmic bound is optimal conditionally to the existence of a proper configuration
of point-vortices. Let (x0

1, . . . ,x
0
N ) be pairwise distinct points on the sphere S2, intensities Γ1, . . . ,ΓN satisfy-

ing (1.6), and
(
t 7→ xi(t)

)
1⩽i⩽N

be the solution to the point-vortex dynamics (1.7). We assume the following.

Hypothesis 4.1. There exists a constant µβ > 0 and ε0 > 0 such that for all ε ∈ (0, ε0), there exist a time
τ∗ε,β ⩽ µβ | ln ε| and a set of points xε

1, . . . ,x
ε
N such that the solution

(
t 7→ xε

i (t)
)
1⩽i⩽N

of the point-vortex

dynamics (1.7) with initial data
(
xε
i,0

)
1⩽i⩽N

and intensities Γ1, . . . ,ΓN satisfies{
|x0

i − xε
i,0|R3 ⩽ ε

2 ,

|xi(τ
∗
ε,β)− xε

i (τ
∗
ε,β)|R3 ⩾ 4εβ .

We prove the following.

Theorem 4.1. Assuming Hypothesis 4.1, there exists β0 < 1/2, η ⩾ 2 such that for any β ∈ (β0, 1), there
exists α0 > 0 such that for any ε > 0 small enough, there exists ζε0 satisfying Hypothesis 1.2 such that

τε,β ⩽ α0| ln ε|.

Proof. For η to be chosen later, consider

ζε0,i =
Γi

πε2η
1C

(
xε
i,0,ε

η
2

).
In view of (3.40), we have ˆ

S2
ζε0,i(y)dσ(y) = Γi.

One can check by direct computation that the maps ζε0,i satisfy Hypothesis (1.2) provided ε is small enough.
But in addition, it satisfies that

Iεi (0) ⩽ Cεη.

Therefore, applying Lemma 3.2 and integrating by Gronwall’s Lemma, recalling relation (3.5), we obtain that
for every t ⩽ τε,β ,

Iεi (t) ⩽ Cεηe2Dt.

Then, using Lemma 3.3, we have that∣∣∣∣ ddt(cεi (t)−Fi

(
c⃗ ε(t)

))∣∣∣∣
R3

⩽ Cε
η
2 eDt.

Up to renaming D, assume thatD also bounds the Lipschitz norm of F over DN . Using the variant of Gronwall’s
Lemma A.4, we obtain that∣∣∣cεi (t)− xε

i (t)
∣∣∣
R3

⩽

(ˆ t

0

Cε
η
2 eDsds+ |cεi (0)− xε

i (0)|R3

)
eDt

⩽ C
(
ε

η
2 eDt + εη

)
eDt
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and thus provided ε is small enough, ∣∣∣cεi (t)− xε
i (t)
∣∣∣
R3

⩽ Cε
η
2−2Dt| ln ε|−1

(4.11)

Recall that by hypothesis (4.1), there exists τ∗ε,β ⩽ µβ | ln ε| such that∣∣∣xi(τ
∗
ε,β)− xε

i (τ
∗
ε,β)
∣∣∣ ⩾ 4εβ .

Let η be large enough such that
η
2 − β

2D
> µβ .

Then,
η

2
− 2Dτ∗ε,β | ln ε|−1 > β.

Assume now that τε,β ⩾ τ∗ε,β . We deduce from the previous relation and from (4.11) that for ε small enough,∣∣∣cεi (τ∗ε,β)− xε
i (τ

∗
ε,β)
∣∣∣ ⩽ εβ

and thus by triangular inequality, ∣∣∣cεi (τ∗ε,β)− xi(τ
∗
ε,β)
∣∣∣ ⩾ 2εβ .

This implies that τε,β < τ∗ε,β , which is a contradiction, proving indeed that

τε,β < τ∗ε,β ⩽ µβ | ln ε|,

which concludes the proof of Theorem 4.1

5 Power-law confinement result

Similarly to what we did in Section 4.2, we prove Theorem 1.5 conditionnally to the existence of suitable
point-vortex configurations.

5.1 Super-stability hypotheses

Recall the notation (1.5), and the fact that a priori the function KS2 is well-defnied on

DS2
K ≜

{
(x,y) ∈ S2 × S2 s.t. x ̸= y

}
.

Fixing y ∈ S2, the partial application x 7→ KS2(x,y) is an application from S2 \ {y} into R3 that is smooth.
Given x ∈ S2 \ {y}, the associated tangent linear map is denoted

D1KS2(x,y) : TxS2 → R3

z 7→ D1KS2(x,y)[z].

Observe that the notation (1.5) also makes sense in the ambient Euclidean space so that actually KS2 is well-
defined on

DR3

K ≜
{
(x, y) ∈ R3 × R3 s.t. x ̸= y

}
.

If one denote by KR3 the extension, since S2 is a submanifold of R3, we have

D1KS2(x,y) = D1KR3(x,y)|TxS2 .

We then continue to keep the notation KS2 for its R3 extension. The curvature of the sphere might create some
instabilities in the internal radial direction. Therefore, one might need the following refined hypothesis with
respect to the planar case.

Hypothesis 5.1. Assume that (x0
1, . . . ,x

0
N ) is such that the solution of the point-vortex dynamics satisfies

∀t ⩾ 0, ∀i ∈ {1, . . . , N}, ∀h ∈ R3,

N∑
j=1
j ̸=i

ΓjD1KS2
(
xi(t),xj(t)

)
[h] · h = 0.
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Hypothesis 5.2. Assume that (x0
1, . . . ,x

0
N ) satisfies that for every ε > 0 small enough, and every family of

functions
(
t 7→ xε

i (t))1⩽i⩽N defined on a time interval [0, Tε], such that

∀i ∈ {1, . . . , N}, |x0
i − xε

i (0)|R3 ⩽ ε (5.1)

and satisfying the existence of a constant C such that

∀i ∈ {1, . . . , N},
∣∣∣∣ ddtxi(t)−Fi

(
xε
1(t), . . . ,x

ε
N (t)

)∣∣∣∣
R3

⩽ Cε, (5.2)

then this family of trajectories satisfies that for every β < 1/2 and every α < β,

τ̄ε,β ≜ inf
{
t ∈ [0, Tε] s.t. ∃i ∈ {1, . . . , N}, |xi(t)− xε

i (t)|R3 = εβ

2

}
⩾ min(ε−α, Tε).

5.2 The conditional theorem

Theorem 5.1. (Improved confinement time for special configurations)
There exists a choice of N , of (x1, . . . ,xN ) and intensities Γ1, . . . ,ΓN satisfying (1.6) and (1.9) as well as
Hypotheses 5.1 and 5.2, such that for every β < 1/2 there exists ε0 > 0 and α > 0 such that for every
ε ∈ (0, ε0), the solution ζε of (1.4) with initial condition ζε0 subjected to the Hypothesis 1.2 near the points
(x0

i )1⩽i⩽N satisfies
τε,β ⩾ ε−α.

Proof of Theorem 5.1.
The proof follows the same outline as that of Theorem 1.3, except that we use Hypotheses 5.1 and 5.2

to improve the estimates of the vorticity moments and obtain these estimates for longer times. We start by
observing how Hypothesis 5.1 allows to bound the constant Dε as follows.

Lemma 5.1. There exists a constant D such that for every ε small enough,

Dε ⩽ Dεβ .

Proof. Let i ∈ {1, . . . , N} and t ⩽ τε,β . Take x, y ∈ B
(
xi(t), ε

β
)
. By definition,

F ε
i (t, x)− F ε

i (t, y) =
1

2π

N∑
j=1
j ̸=i

ˆ
S2

(
KS2(x, z)−KS2(y, z)

)
ζεj (t, z)dσ(z) + γ e3 ∧ (x− y).

Then, fix j ∈ {1, . . . , N} \ {i} and z ∈ supp
(
ζεj (t, ·)

)
⊂ B

(
xj(t), ε

β
)
. We compute by Taylor expanding the last

expression that

KS2(x, z)−KS2(y, z) = D1KS2(y, z)(x− y) +
1

2

ˆ 1

0

(1− τ)(x− y)⊤H1KS2(y + τ(x− y), z)(x− y)dτ

= D1KS2
(
xi(t), z

)
(x− y) +

(
D1KS2(y, z)−D1KS2

(
xi(t), z

))
(x− y)

+
1

2

ˆ 1

0

(1− τ)(x− y)⊤H1KS2(y + τ(x− y), z)(x− y)dτ.

By the Mean Value Theorem, we get that∣∣∣(D1KS2(y, z)−D1KS2
(
xi(t), z

))
(x− y)

∣∣∣
R3

⩽ C|y − xi(t)|R3 |x− y|R3

⩽ Cεβ |x− y|R3 .

Then, we compute that∣∣∣∣12
ˆ 1

0

(1− τ)(x− y)⊤H1KS2(y + τ(x− y), z)(x− y)dτ

∣∣∣∣ ⩽ C|x− y|2R3

⩽ Cεβ |x− y|R3 .

Besides,

D1KS2
(
xi(t), z

)
(x− y) = D1KS2

(
xi(t),xj(t)

)
(x− y) +

(
D1KS2

(
xi(t), z

)
−D1KS2

(
xi(t),xj(t)

))
(x− y).
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By the Mean Value Theorem,∣∣∣(D1KS2
(
xi(t), z

)
−D1KS2

(
xi(t),xj(t)

))
· (x− y)

∣∣∣ ⩽ C |z− xj(t)|R3 |x− y|R3

⩽ Cεβ |x− y|R3 .

Combining the foregoing calculations yields

F ε
i (t, x)− F ε

i (t, y) =
1

2π

N∑
j=1
j ̸=i

ΓjD1KS2(xi(t),xj(t))(x− y) + γe3 ∧ (x− y) +O(εβ |x− y|R3). (5.3)

We have that
(
γe3 ∧ (x − y)

)
· (x − y) = 0, so taking the scalar product with x − y and using Hypothesis 5.1,

we have that ∣∣∣(F ε
i (t, x)− F ε

i (t, y)
)
· (x− y)

∣∣∣ ⩽ Cεβ |x− y|2R3 . (5.4)

Coming back to (5.3), integrating in y against the measure 1
Γi
ζεi (t, ·), then taking the scalar product with

x− cεi (t), we have that(
F ε
i (t, x)−

ˆ
S2
F ε
i (t,y)

ζεi (t,y)

Γi
dσ(y)

)
· (x− cεi (t)

)
=

1

2π

N∑
j=1
j ̸=i

ΓjD1KS2
(
xi(t),xj(t)

)
[x− cεi (t)] ·

(
x− cεi (t)

)
+O

(
εβ
ˆ
S2
|x− y|R3

ζεi (t,y)

Γi
dσ(y)|x− cεi (t)|R3

)
.

Using Hypothesis 5.1, we conclude that∣∣∣∣(F ε
i (t, x)−

ˆ
S2
F ε
i (t,y)

ζεi (t,y)

Γi
dσ(y)

)
·
(
x− cεi (t)

)∣∣∣∣ ⩽ Cεβ |x− cεi (t)|R3

ˆ
S2
|x− y|R3

ζεi (t,y)

Γi
dσ(y). (5.5)

Up to renaming D, equations (5.4) and (5.5) prove, referring to Definition 3.1, that Dε ⩽ Dεβ .

Then we bound the vorticity moments. Let us denote by α > 0 a positive number to be chosen later.

Lemma 5.2. There exists a constant C such that for ε > 0 small enough, for any i ∈ {1, . . . , N} and any
t ⩽ min(τε,β , ε

−α),

Iεi (t) ⩽ 5ε2, |cεi (t)− xi(t)|R3 ⩽ εβ

2 , mε
n,i(t) ⩽ Cnε

(2−α)n.

Proof. ▶ First estimate : using Lemma 3.2, with the bound on Dε given by Lemma 5.1, we have that for all
i ∈ {1, . . . , N} and for any t ⩽ τε,β , ∣∣∣∣ ddtIεi (t)

∣∣∣∣ ⩽ 2DεβIεi (t),

which we integrate, recalling Lemma 3.1, as

Iεi (t) ⩽ 4ε2e2Dεβt.

Therefore, provided ε is small enough and α < β, for every t ⩽ min(τε,β , ε
−α), we have that

Iεi (t) ⩽ 5ε2. (5.6)

▶ Second estimate : this one differs significantly from Lemma 4.1. We use Lemma 3.3 to get that∣∣∣∣ ddt cεi (t)−Fi

(
c⃗ ε(t)

)∣∣∣∣
R3

⩽ Cε,

and recalling from Lemma 3.1 that |cεi (t)− x0
i |R3 ⩽ ε, we deduce that the trajectories (t 7→ cεi (t)

)
1⩽i⩽N

defined

until Tε = min(τε,β , ε
−α) satisfy relations (5.1) and (5.2), and thus from Hypothesis 5.2, we have, at the

condition that α < β/2, that

∀t ⩽ min(τε,β , ε
−α),

∣∣∣∣ ddt cεi (t)− xi(t)

∣∣∣∣
R3

⩽ εβ

2 ·

▶ Third estimate : plugging estimate (5.6) and Lemma 5.1 into Lemma 3.4, we have that

d

dt
mε

n,i(t) ⩽ Cn2
(
mε

n,i(t)
)n−1

n

(
ε2 + εβ

((
mε

n,i(t)
) 1

n + ε1+3β
))

,
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provided ε is small enough. If 1 + 4β > 2, namely β > 1/4 which we recall is an assumption we can make as
proving Theorem 5.1 for a certain β < 1/2 also proves it for every β′ < β, then we are reduced to

d

dt
mε

n,i(t) ⩽ εβCn2
(
mε

n,i(t)
)n−1

n

(
ε2−β +

(
mε

n,i(t)
) 1

n

)
.

Integrating this inequality using Lemma A.5 and Lemma 3.1, we obtain that

mε
n,i(t) ⩽

(
−ε2−β +

(
ε2−β + 16ε4

)
eCnεβt

)n
.

For ε small enough, for α < β and t ⩽ ε−α, we thus have that

eCnεβt ⩽ 1 + 2Cnεβ−α

and therefore
mε

n,i(t) ⩽ (2Cnε2−α)n.

We now obtain the corollary of the estimate of the higher order moments in terms of a control on mεt,i.

Lemma 5.3. For every ν > 0, provided α < 2 − 4β, there exists ε0 > 0 such that for all ε ∈ (0, ε0), and for

any t ⩽ min(τε,β , ε
−α) and any r ⩾ εβ

4 ,

max
1⩽i⩽N

mεt,i(r) ⩽
ε5+ν

r6
, (5.7)

where mεt,i(r) is defined in (3.38).

Proof. Fix t ⩽ min
(
τε,β , ε

−α
)
. Invoking Lemma 5.2, for any r ⩾ εβ

4 and any ν > 0, we have

1

Γi

ˆ
S2\C(cεi (t),r)

ζεi (t,x)dσ(x) =
1

Γi

ˆ
S2\C(cεi (t),r)

|x− cεi (t)|4nR3

|x− cεi (t)|4nR3

ζεi (t,x)dσ(x)

⩽
mε

n,i(t)

r4n

⩽
Cnε

n(2−α)

r4n

⩽ Cn
ε5+ν

r6
ε(2−α)n−5−ν(

εβ

4

)4n−6

⩽ Cn4
4n−6 ε

5+ν

r6
ε(2−α−4β)n−5−ν+6β .

Taking n =
⌊

5+ν
2−4β−α

⌋
+2 we get that there exists ε0 depending only on β, ν and α such that for every ε ∈ (0, ε0),

(5.7) holds.

We are now ready to prove Theorem 5.1 in a similar way to the end of the proof of Theorem 1.3.

Conclusion of the proof of Theorem 5.1

Fix i ∈ {1, . . . , N}. For every ε > 0 and t ⩾ 0, recall the notations of Section 3.2 concerning the existence of a
point Xε

i and a trajectory s 7→ Xε
t,i(s) such that relations (3.36) and (3.37) hold. Applying Lemmas 5.1 and 5.2

to Lemma 3.5, we have that for all t ⩽ min(τε,β , ε
−α),

d

ds

∣∣Xε
t,i(s)− cεi (s)

∣∣
R3

∣∣∣
s=t

⩽ DεβRε
i (t) + C2

ε2

(Rε
i (t))

3
+

(
Mε−η|Γi|

π
mεt,i

(
Rε

i (t)

2

)) 1
2

.

Let fi be the solution of the ODE:

f ′i(t) = 2Dεβfi(t) + 2C2
ε2

f3i (t)
+ 2

(
Mε−η|Γi|

π
mεt,i

(
fi(t)

2

)) 1
2

,

with initial data
fi(0) = 2Rε

i (0).
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Then by the same argument that was performed in Section 4.1, we have that

∀t ⩽ min(τε,β , ε
−α), fi(t) > Rε

i (t).

Let us now prove that there does not exist an index i ∈ {1, . . . , N} and a time t2 ⩽ ε−α such that fi(t2) ⩾
εβ/2. We proceed by contradiction: assume there exists such time. Let t1 be the last time prior to t2 such that
for every t ∈ [t1, t2], we have that εβ/4 ⩽ fi(t) ⩽ εβ/2. Since fi(t)/2 ⩾ εβ/8, we can apply Lemma 5.3 with
r = fi(t) and any positive ν such that ν ⩾ η + 6β − 3 to get that for all t ∈ [t1, t2],

f ′i(t) ⩽ 2Dεβfi(t) + 2C2
ε2

f3i (t)
+ 2

(
Mε−η|Γi|

π
26
ε5+ν

f6i (t)

) 1
2

⩽ 2Dεβfi(t) + 2C2
ε2

f3i (t)
+ Cε

1
2 (5+ν−η−6β)

⩽ C

(
εβfi(t) +

ε2

f3i (t)

)
,

where in the last inequality we used that 1
2 (5 + ν − η − 6β) > β and thus ε

1
2 (5+ν−η−6β) ≪ ε2β ⩽ εβfi(t) as

ε→ 0. Multiplying by f3i (t) gives that

(f4i )
′(t) ⩽ Cεβ(f4i (t) + ε2−β).

This in turns gives that

f4i (t2) ⩽ f4i (t1)e
Cεβ(t2−t1) + ε2−β(eCεβ(t2−t1) − 1) ⩽

1

44
ε4βeCεβ−α

+ ε2−β2Cεβ−α.

Hence, provided 2− α > 4β, and β > α, for ε small enough,

fi(t2) <
εβ

2 ,

which is a contradiction. No such time t2 exists for any index i, and thus for every i ∈ {1, . . . , N}, for every

t ⩽ min(τε,β , ε
−α), Rε

i (t) < fi(t) <
εβ

2 . Therefore, for every such t and i, for every point x ∈ supp
(
ζεi (t, ·)

)
, we

have that

|x− xi(t)|R3 ⩽ |x− cεi (t)|R3 + |xi(t)− cεi (t)|R3 ⩽ Rε
i (t) + |xi(t)− cεi (t)|R3 ⩽

3

4
εβ ,

where we used Lemma 5.2 provided ε and α is small enough. Applying this last equality in τε,β would then be
a contradiction as by definition of τε,β , there exists i0 ∈ {1, . . . , N} and x ∈ supp

(
ζεi0(τε,β , ·)

)
such that

|x− xi0(τε,β)|R3 = εβ .

Therefore, this inequality cannot be applied in τε,β , and thus τε,β ⩾ ε−α. Theorem 5.1 is now proved.

6 Existence of point-vortex configurations leading to each stability
hypothesis

In this section, we construct configurations satisfying Hypothesis 4.1, as well as Hypotheses 5.1 and 5.2 and
conclude that the conditional Theorem 4.1 and Theorem 5.1 prove Theorem 1.4 and Theorem 1.5.

We start with the sufficient conditions to satisfy Hypotheses 5.2 and 4.1 in terms of linear stability and
instability.

6.1 Link between Hypotheses 4.1-5.2 and linear stability

6.1.1 Linear stability or neutrality implies Hypothesis 5.2

Let X0 = (x0
1, . . . ,x

0
N ) be a rotative relative equilibrium of the point vortex dynamics on the rotating sphere,

namely that the solution t 7→ X(t) satisfies that for all i ∈ {1, . . . , N},

xi(t) = R(Ωt)x0
i ,

for some Ω ∈ R, where Rθ is defined at relation (A.4), a fact that we write

X(t) = RΩtX
0, (6.1)

with the appropriate definition of the multidimensional rotation Rθ. Then, we have the following.
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Proposition 6.1. If t 7→ X(t) is a vortex crystal solution, namely satisfies (6.1) for some ν ∈ R, and that
DF(X0) satisfies that for every H ∈ Tx0

1
S2 × . . .× Tx0

N
S2 that

DF(X0)[H] ·H ⩽ 0, (6.2)

then X0 satisfies Hypothesis 5.2.

Proof. First, let us notice that since t 7→ X(t) is a vortex crystal solution, and that relation (6.2) is invariant
by the action of the rotations Rθ, then for all t ⩾ 0,

DF
(
X(t)

)
[H] ·H ⩽ 0. (6.3)

The interested reader can also see this fact through the formula (6.7) given later. Throughout the proof, we
denote

|X|2N ≜
N∑
i=1

|xi|2R3 .

Let us compute

d

dt
|Xε(t)−X(t)|2N = 2

d

dt

(
Xε(t)−X(t)

)
·
(
Xε(t)−X(t)

)
= 2
(
F
(
Xε(t)

)
−F

(
X(t)

))
·
(
Xε(t)−X(t)

)
.

We then split the solution

Xε(t) = Xε
⊥(t) +Xε

⊤(t), with Xε
⊤ −X(t) ∈ Txε

1(t)
S2 × . . .× Txε

N (t)S2,

so that

d

dt
|Xε(t)−X(t)|2N = 2

(
F
(
Xε

⊤(t)
)
−F

(
X(t)

))
·
(
Xε

⊤(t)−X(t)
)

+ 2
(
F
(
Xε(t)

)
−F

(
X(t)

))
·Xε

⊥(t)

+ 2
(
F
(
Xε(t)

)
−F

(
Xε

⊤(t)
))

·
(
Xε

⊤(t)−X(t)
)
.

Using relation (6.3), we find(
F
(
Xε

⊤(t)
)
−F

(
X(t)

))
·
(
Xε

⊤(t)−X(t)
)
= DF

(
X(t)

)
[Xε

⊤(t)−X(t)] ·
(
Xε

⊤(t)−X(t)
)
+ C|Xε

⊤(t)−X(t)|3N
⩽ C|Xε

⊤(t)−X(t)|3N .

Then, by Lipschitz and Cauchy-Schwarz estimates, we get

d

dt
|Xε(t)−X(t)|2N ⩽ C|Xε(t)−X(t)|N |Xε

⊥(t)|N + C|Xε(t)−Xε
⊤(t)|N |Xε

⊤(t)−X(t)|N + C|Xε
⊤(t)−X(t)|3N .

Now recall that Xε
⊥(t) = Xε(t)−Xε

⊤(t) and that, by definition of the orthogonal projection, we have

|Xε
⊤(t)−X(t)|N ⩽ |Xε(t)−X(t)|N .

With this in hand, we obtain

d

dt
|Xε(t)−X(t)|2N ⩽ C|Xε(t)−X(t)|N |Xε

⊥(t)|N + C|Xε
⊤(t)−X(t)|3N .

Additionally, since for all i ∈ {1, . . . , N}, xε
i (t),xi(t) ∈ S2, we have by virtue of (A.2) that

|xε
i (t)− xi(t)|2R3 = 2

(
1− xε

i (t) · xi(t)
)
,

and by definition, xε
i (t) = xε

i,⊥(t) + xε
i,⊤(t), with(

xε
i,⊤(t)− xi(t)

)
· xi(t) = 0, i.e. xε

i,⊤(t) · xi(t) = 1.

Therefore, combining the last three identities and using the fact that xε
i,⊥(t) is colinear to xi(t), we obtain

|xε
i (t)− xi(t)|2R3 = −2xε

i,⊥(t) · xi(t) = 2|xε
i,⊥(t)|R3 .
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In conclusion, the normal perturbation is quadratic

|Xε
⊥(t)|N ⩽ C|Xε(t)−X(t)|2N .

We have proved that
d

dt
|Xε(t)−X(t)|2N ⩽ C|Xε(t)−X(t)|3N .

We then make a quick bootstrap argument. For all t ⩽ τ̄ε,β , |xi(t)−xε
i (t)| < εβ/2, thus |Xε(t)−X(t)|2 ⩽ 1

2

√
Nεβ

so that
d

dt
|Xε(t)−X(t)|N ⩽ Cεβ |Xε(t)−X(t)|N ,

which yields that

|Xε(t)−X(t)|N ⩽ |Xε(0)−X0|NeCεβt ⩽ εeCεβt.

Therefore, for any α < β, for every t ⩽ ε−α and provided ε is small enough, we have that

max
i∈{1,...,N}

|xε
i (t)− xi(t)|∞ ⩽ |Xε(t)−X(t)|N ⩽ 2ε.

which proves by continuity of the trajectories that τ̄ε,β ⩾ ε−α.

6.1.2 Linear Instability implies Hypothesis 4.1

Let us recall Theorem 6.1, Chapter 9 of [36].

Theorem 6.1. Let f : (S2)N → (S2)N . We consider the differential equation

d

dt
X̃(t) = F

(
X̃(t)

)
. (6.4)

Assume that there exists X∗ ∈ (R2)N is such that f(X∗) = 0. Assume furthermore that Df(Z∗) has an

eigenvalue with positive real part λ0 > 0. Then there exists a solution X̃ of (6.4) such that X̃(t) exists some
fixed neighborhood of X∗, that

X̃(t) −→
t→−∞

X∗,

and that
1

t
ln |X̃(t)−X∗|∞,N −→

t→−∞
λ0.

where | · |∞,N is the norm defined by

|X|∞,N ≜ max
i∈{1,...,N}

|xi|R3 .

We claim that since Theorem 6.1 is purely local, it is also true on (S2)N by writing in a local chart, and with
|Z(t)−Z∗| replaced with the S2 distance, or equivalently and suiting better our notations, the R3 distance. Let
us now prove the following.

Proposition 6.2. Assume that X∗ is an equilibrium of the point-vortex dynamics such that DF(X∗) has an
eigenvalue with positive real part. Then Hypothesis 4.1 is satisfied.

Proof. Let β ∈ (0, 1) and let X̃ a solution of the point-vortex dynamics given by Theorem 6.1. Since X̃(t) −→
t→−∞

X∗ and since X̃ exits some fixed neighborhood of X∗, for ε small enough, there exist t0 and t1 such that
−∞ < t0 < t1

t1 → −∞ as ε→ 0

|X̃(t1)−X∗|∞ = 4εβ

|X̃(t0)−X∗|∞ = ε
2 .

Let Xε(t) = X̃(t + t0), we have that |Xε(0) − X∗|∞ = ε
2 and that τ∗ε,β ⩽ t1 − t0 since Xε(t1 − t0) = 4εβ .

Moreover, since
ln |X(t)−X∗|∞ = λ0t+ ot→−∞(t),

then for any κ ∈ (0, 1), for −t big enough we have that

1− κ <
ln |Xε(t)−X∗|∞

λ0t
< 1 + κ.
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Therefore, for ε small enough, applying in t0 and t1 (we recall that t1 → −∞ as ε→ 0) we have that

t1 <
ln |Xε(t1)−X∗|∞

λ0(1 + κ)
=
β ln ε+ ln 2

λ0(1 + κ)
=

−β| ln ε|+ ln 2

λ0(1 + κ)

and

−t0 < − ln |Xε(t0)−X∗|∞
λ0(1− κ)

=
| ln ε|+ ln 2

λ0(1− κ)
·

Thus,

t1 − t0 < | ln ε|
(

1

λ0(1− κ)
− β

λ0(1 + κ)
+

ln 2

λ0| ln ε|

(
1

1 + κ
+

1

1− κ

))
.

Therefore, by letting κ→ 0, for any λ < λ0, for ε small enough,

t1 − t0 ⩽
1− β

λ
| ln ε|.

By definition, τ∗ε,β ⩽ t1 − t0 ⩽ 1−β
λ | ln ε|. This concludes the proof.

6.2 Computing the differential matrix

The goal of this subsection is to provide the explicit general computation of the matrix DF(X) associated
with the point vortex functional in (3.17). Here one must deal with difficulties coming from the non-Euclidean
geometry that appear through a projection analysis on the tangent bundle.

Let us compute the Jacobian matrix D1KS2(x,y). Let p ∈ R3. We have that

KS2(x+ p,y)−KS2(x,y) =
(x+ p) ∧ y

|x+ p− y|2R3

− x ∧ y

|x− y|2R3

=
p ∧ y

|x+ p− y|2R3

+
x ∧ y

|x− y|2R3

 1

1 + 2p · x−y
|x−y|2

R3
+ o(|p|)

− 1


=

p ∧ y

|x− y|2R3

− 2p · (x− y)
x ∧ y

|x− y|4R3

+ o(|p|R3).

Therefore, for every h ∈ TxS2,

D1KS2(x,y)[h] =
h ∧ y

|x− y|2R3

− 2h · (x− y)
x ∧ y

|x− y|4R3

· (6.5)

By symmetry, the differential with respect to the second variable can be obtained by exchanging the roles of x
and y and using the antisymmetry of the wedge product. More precisely, since

KS2(x,y) = −KS2(y,x),

we obtain, for every k ∈ TyS2,

D2KS2(x,y)[k] =
x ∧ k

|x− y|2R3

+ 2 k · (x− y)
x ∧ y

|x− y|4R3

· (6.6)

The Jacobian matrix of the function F is by definition

DF(X) =

(
∂Fi

∂xj
(X)

)
1⩽i,j⩽N

≜ (Aij)1⩽i,j⩽N ,

where each component is the projection on the tangent space of the differential in the ambient space, namely,

Aij =


Πxi

 N∑
k=1
k ̸=i

Γk

2π
D1K(xi,xk) + γ(e3 ∧ ·)


Txi

S2→R3

, if i = j,

Πxi

[
Γj

2π
D2K(xi,xj)

]
Txj

S2→R3

, if i ̸= j,
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where we denoted Πx ≜ Id−x⊗x the projection onto the tangent plane TxS2. Combining the exact expression
(3.17) with (6.5) and (6.6), given a direction H = (h1, . . . , hN ) ∈ Tx1

S2 × . . . × TxN
S2, we have that for any

i, j ∈ {1, . . . , N},

Aij [hj ] =


Πxi

 N∑
k=1
k ̸=i

Γk

2π

(
hi ∧ xk

|xi − xk|2R3

− 2hi · (xi − xk)
xi ∧ xk

|xi − xk|4R3

)
+ γe3 ∧ hi

 , if i = j,

Πxi

[
Γj

2π

(
xi ∧ hj

|xi − xj |2R3

+ 2hj · (xi − xj)
xi ∧ xj

|xi − xj |4R3

)]
, if i ̸= j.

(6.7)

By a quick computation, one can check that for any x,y ∈ S2, and any h ∈ TxS2, we have that

Πx(y ∧ h) = (y · x)(x ∧ h).

Also, for any x ∈ S2 and any h ∈ R3,
Πx(x ∧ h) = x ∧Πxh.

Noticing that the application
Rx : TxS2 → TxS2

h 7→ x ∧ h

is exactly the rotation of angle π
2 in TxS2. Given B = (b1, b2) an orthonormal basis of TxS2 such that (x, b1, b2)

is a direct orthonormal basis of R3, the matrix of Rx in the basis B is

Mat
B

(Rx) =

(
0 −1
1 0

)
≜ J.

We now choose once for all for any i ∈ {1, . . . , N} an orthonormal basis Bi ≜ (b1,i, b2,i) such that the triplet
(xi, b1,i, b2,i) is a direct orthonormal basis of R3. Next, denote by

Mik ≜ Mat
Bi

(fik), fik : TxiS2 → TxiS2

h 7→ 2h · (xi − xk)
xi ∧ xk

|xi − xk|2R3

,

Nij ≜ Mat
Bj ,Bi

(gij), gij : TxjS2 → TxiS2

h 7→ 2h · (xi − xj)
xi ∧ xj

|xi − xj |2R3

and
Pij ≜ Mat

Bj ,Bi

(pij), pij : TxjS2 → TxiS2
h 7→ Πxi

(h) = h− (xi · h)xi.

In conclusion, in the basis B1 × . . .×BN of Tx1
S2 × . . .× TxN

S2, the block Aij is represented by the matrix

Aij =



N∑
k=1
k ̸=i

−Γk

2π|xi − xk|2R3

(xi · xkJ +Mik) + γe3 · xiJ, if i = j,

Γj

2π|xi − xj |2R3

(JPij +Nij), if i ̸= j.

(6.8)

6.3 Proof of Theorem 1.5

Let us recall that in the planar case, without boundaries, [9] obtained two configurations that realize the im-
proved bound τε,β ⩾ ε−α: by taking N = 1, or by taking self-similar expanding configurations of point-vortices.
Both are not possible on the sphere. Indeed, due to the Gauss constraint, the point-vortex problem cannot be
stated with N = 1. As for the second situation, the compactness of the sphere prevents expansion.

Let us consider the case of polar counter-rotating vortices, namely

N = 2, (x1,x2) = (e3,−e3), (Γ1,Γ2) = (Γ,−Γ). (6.9)

By construction, the Gauss constraint (1.6) is satisfied. In addition, in view of Lemma A.3, the configuration
(6.9) is stationary and (1.9) holds with d0 = 2.
▶ Hypothesis 5.1 : Using the relation (6.5), we compute that for any h ∈ R3,

D1KS2(e3,−e3)[h] = −h ∧ e3
4

= −D1KS2(−e3, e3)[h].
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In particular, that for any h ∈ R3, we have

D1KS2(e3,−e3)[h] · h = 0 = D1KS2(−e3, e3)[h] · h.

Therefore, this configuration satisfies Hypothesis 5.1.
▶ Hypothesis 5.2 : With the notations of Section 6.2, since e3 ∧ (−e3) = 0, we readily get

M12 =M21 = N12 = N21 = 0.

Also, due to the orientation convention, one has

P12 = P21 =

(
1 0
0 −1

)
.

Therefore, for any (h1, h2) ∈ Te3
S2 × T−e3

S2 we can write matricially

DF(e3,−e3)[h1, h2] =

(
(− Γ

8π + γ)J − Γ
8πS

Γ
8πS ( Γ

8π − γ)J

)(
h1
h2

)
, (6.10)

where

S ≜ JP12 =

(
0 −1
−1 0

)
.

The matrix in (6.10) is skew-symmetric, hence satisfies

DF(x,−x)[h1, h2] · (h1, h2) = 0.

Applying Proposition 6.1, we conclude that the configuration (6.9) satisfies Hypothesis 5.2.

In conclusion, for any couple Γ, γ ∈ R, the configuration of point-vortices X0 = (e3,−e3) with intensities
(Γ1,Γ2) = (Γ,−Γ) satisfies Hypotheses 5.1 and 5.2. We can thus apply conditional Theorem 5.1 to this
configuration, which proves Theorem 1.5.

6.4 Proof of Theorem 1.4

We now consider the following configuration: let N = 4, a ∈ (0, 1), Γ ̸= 0, γ ∈ R and let us consider the
configuration:

x1 = e3, x2 = −e3, x3 =

 a
0√

1− a2

 , x4 =

 −a
0√

1− a2

 ,

where we impose that Γ3 = Γ4 ≜ Γ ̸= 0, that Γ1 = κΓ where κ is to be determined and Γ2 is such that
Γ1 + Γ2 + Γ3 + Γ4 = 0 so that the Gauss constraint in satisfied.

Lemma 6.1. There exists a unique choice of κ such that the previsously described configuration is a stationary
solution of the point-vortex dynamics (1.7) for any choice of Γ ̸= 0 and γ ∈ R.

Proof. We need to prove that for all i ∈ {1, . . . , 4},

0 =

4∑
j=1
j ̸=i

Γj

2π

xi ∧ xj

|xi − xj |2R3

+ γ e3 ∧ xi

For i = 1, 2, we have that | ± e3 − x3| = | ± e3 − x4| and x3 + x4 = 2
√
1− a2e3, so that

4∑
j=1
j ̸=i

Γj

2π

xi ∧ xj

|xi − xj |2R3

+ γ e3 ∧ xi =
Γ

2π

±e3 ∧ (x3 + x4)

| ± e3 − x3|2R3

= 0.

For i = 3 we compute first that x3 ∧ x4 = 2
√
1− a2x3 ∧ e3, and thus

4∑
j=1
j ̸=3

Γj

2π

x3 ∧ xj

|x3 − xj |2R3

+ γ e3 ∧ x3 = x3 ∧ e3

(
Γ1

2π|x3 − e3|2R3

− Γ2

2π|x3 + e3|2R3

+
Γ42

√
1− a2

2π|x3 − x4|2R3

− γ

)
.
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We introduce the notation

s =
√

1− a2, α− =
1

|x3 − e3|2R3

=
1

2(1− s)
, α+ =

1

|x3 + e3|2R3

=
1

2(1 + s)
, Υ =

1

|x3 − x4|2R3

=
1

4a2
·

Therefore, this is 0 if and only if

Γ1α− − Γ2α+ + Γ4Υ2
√

1− a2 − 2πγ = 0,

which is equivalent to

κ (α− + α+) = −2sΥ− 2α+ + 2π
γ

Γ

This gives a unique choice of κ such that this equation holds. By symmetry, we have the same result for
i = 4.

Let us make this choice of κ. Since only the ratio γ/Γ is relevant, up to renaming γ, we can choose
Γ = 1, leading to Γ2 = −(2 + κ). Let us denote the resulting equilibrium by X∗. With the method presented
in Section 6.2, we can construct DF(X∗) for this configuration. Serving as example, let us compute A11.
Relation (6.8) yields

A11 =
∑

k∈{2,3,4}

−Γk

2π|x1 − xk|2R3

(
(x1 · xk)J +M1k

)
+ γ (e3 · x1) J. (6.11)

Since x1 = e3, we have e3 · x1 = 1, hence
γ(e3 · x1)J = γJ.

We now turn to the term k = 2 in the sum. We have

|x1 − x2|2R3 = |e3 − (−e3)|2R3 = 4, x1 · x2 = e3 · (−e3) = −1, x1 ∧ x2 = 0.

In particular, x1 ∧ x2 = 0 implies M12 = 0. Therefore the k = 2 term in (6.11) is

−Γ2

2π · 4

(
(x1 · x2)J +M12

)
=

−Γ2

8π
(−J) = −(κ+ 2)

8π
J.

Let us now look at the term k = 3. We first collect the geometric quantities

x1 − x3 = (−a, 0, 1− s), |x1 − x3|2R3 = a2 + (1− s)2 = 2(1− s), x1 · x3 = s,

x1 ∧ x3 = e3 ∧ (a, 0, s) = (0, a, 0) = a e2.

Let h ∈ Te3
S2, we have that h · e3 = 0. Then

h · (x1 − x3) = −a h · e1

(where e1 is the ambient unit vector). Hence the vector-valued map defining M13 reads

h 7−→ 2h · (x1 − x3)
x1 ∧ x3

|x1 − x3|2R3

= 2 (−a h · e1)
a e2

2(1− s)
= − a2

1− s
(h · e1) e2.

Choosing B1 = (e1, e2) (the simplest oriented choice), then the above map is represented by the matrix

M13 =

 0 0

− a2

1− s
0

 .

Using now (6.11), the full k = 3 contribution is

−Γ3

2π|x1 − x3|2R3

(
(x1 · x3)J +M13

)
=

−1

2π · 2(1− s)

(
sJ +M13

)
.

We turn to the term k = 4. The computation is identical up to the sign change a 7→ −a in x4. In particular,

|x1 − x4|2R3 = 2(1− s), x1 · x4 = s, x1 ∧ x4 = e3 ∧ (−a, 0, s) = (0,−a, 0) = −a e2.

Moreover h ·(x1−x4) = +a h ·e1, so that the two signs compensate and one obtains the same rank-one operator
as for k = 3. In particular, for B1 = (e1, e2) we again have

M14 =M13, hence
−Γ4

2π|x1 − x4|2R3

(
(x1 · x4)J +M14

)
=

−1

2π · 2(1− s)

(
sJ +M13

)
.
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Summing the contributions of k = 2, 3, 4 and adding the Coriolis term, we obtain

A11 =

(
γ − κ+ 2

8π
− s

2π(1− s)

)
J − 1

2π(1− s)
M13

=

(
0 −γ + κ+2

8π + s
2π(1−s)

γ − κ+2
8π − s

2π(1−s) +
a2

2π(1−s)2 0

)

We now see that the full 8×8 matrix will be very hard to manipulate since it depends on the two paramters
a and γ. Instead of looking to the albebraic properties of this matrix, we look instead for a set of parameters
simplifying it enough so that it is computable. We claim the following.

Lemma 6.2. Take a = 1 and γ = 1/2. Then DF(X∗) has a positive eigenvalue.

Proof. With this set of parameters, we compute that

DF(X∗) =



0
1− 3π

8π
0 −π + 1

8π
− 1

4π
0 − 1

4π
0

3(π + 1)

8π
0 −π + 1

8π
0 0

1

4π
0

1

4π

0
π − 1

8π
0

3π + 1

8π

1

4π
0

1

4π
0

π − 1

8π
0

3(1− π)

8π
0 0 − 1

4π
0 − 1

4π
1− π

4π
0 −π + 1

4π
0 0

3

8π
0

1

8π

0
π − 1

4π
0

π + 1

4π

1

8π
0

1

8π
0

1− π

4π
0 −π + 1

4π
0 0

1

8π
0

3

8π

0
π − 1

4π
0

π + 1

4π

1

8π
0

1

8π
0



.

One can then compute that

χ(λ) = det
(
λI8 −DF(X∗)

)
=

1

512π2
λ2 (4λ2 + 1)

(
128π2λ4 + (32 + 8π2)λ2 + 3

)
and conclude that

spec
(
DF(X∗)

∣∣
γ= 1

2

)
=

{
0, ± i

2
, ±√

µ+, ±i
√

−µ−

}
, µ± =

−(π2 + 4)±
√
π4 − 16π2 + 16

32π2
,

where µ+ ≈ 0.049 > 0. Therefore, by Proposition 6.2, we can apply the conditional Theorem 4.1 to prove
Theorem 1.4.

6.5 A short discussion on polar vortex crystals

On the poles of Jupiter (see [1]), are evolving rather stable large vortices arranged in a relative equilibrium
of vortices, consisting in a polar vortex surrounded by equally distributed vortices around it. The stability
properties of these vortex crystals have been studied, see for instance [11], and for some of them with well-
chosen intensities, [22] proved the improved confinement bound.

On the sphere, we can easily construct this configuration by adding more vortices and taking a close to 0,
while ensuring the Gauss constraint with a vortex on the opposite pole. More precisely, consider the configuration
consisting

xi = R 2π
N−2 i

 a
0√

1− a2

 , ∀i ∈ {1, . . . , N − 2}, xN−1 = e3, xN = −e3 (6.12)

with Γ1 = . . . = ΓN−2 = 1, ΓN−1 = κ and ΓN = −(N − 2) − κ. One can check that this configuration is
a relative equilibrium of the point-vortex dynamics. In Figure 1, a numerical simulation of this configuration
with N = 8 was made of the fluid equation, where very small viscosity is added for numerical purposes, which
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Figure 1: Numerical simulation of the Navier-Stokes equations with Reynold’s number 105, and an initial data
concentrated near the vortex crystal (6.12) with N = 8 and κ = 1. Credit: Matthieu Brachet, Université de
Poitiers, CNRS, LMA, Poitiers, France.

Figure 2: Maximum real part of the eigenvalues of DF(X∗) for the N = 4 stationary configuration in the case
a = 0.1 (left), a = 0.3 (right), depending on γ.

illustrates Theorem 1.3: the vortices remain concentrated around the vortex crystal solution of the point-vortex
dynamics.

Taking N = 4, we recover the configuration constructed in Section 6.4. We observe that in that case, with
the stationary condition computed in Lemma 6.1, letting a → 0, we find that κ → − 1

2 , which leads to the
well-known equilibria of three aligned vortices, which is unstable. One can check numerically that for small
values of a, the configuration with the choice of κ made in Section 6.4 is unstable for every value of γ of order 1,
when for larger values of a, non-trivial behavior appears, as observed in Figure 2. The problem degenerates near
a = 1, see Figure 3. On the contrary, one can wonder whether for every value of γ, it is possible to find κ such
that Hypothesis 5.1 and 5.2 are satisfied. We do not perform this study here but we established all necessary
tools to make the computations at least for small values of N , else, some more refined algebraic properties of
DF (X∗) will be necessary. We refer to the works of [11, 10, 51, 52, 59] for methods about point-vortex stability.
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Figure 3: Maximum real part of the eigenvalues of DF(X∗) for the N = 4 stationary configuration for values
of a close to 1, depending on γ.

A Technical lemmas

In this appendix, we gather some technical results used along the manuscript.

Lemma A.1. For every x,y ∈ S2, there holds that

|x ∧ y|R3 ⩽ |x− y|R3 . (A.1)

Proof. First of all, take x,y ∈ S2. On one hand

|x ∧ y|2R3 = |x|2R3 |y|2R3 − (x · y)2 = 1− (x · y)2 = (1− x · y)(1 + x · y).

On the other hand
|x− y|2R3 = |x|2R3 + |y|2R3 − 2x · y = 2(1− x · y). (A.2)

In addition, by Cauchy-Schwarz inequality,

1 + x · y ⩽ 1 + |x|R3 |y|R3 = 2.

Combining the foregoing calculations leads to relation (A.1).

Lemma A.2 (Biot-Savart law on the rotating sphere). For any x,y ∈ S2, we have

∇⊥
x (x · y) = −x ∧ y and ∇⊥

x

(
ln |x− y|R3

)
=

x ∧ y

|x− y|2R3

·

Consequently, one obtains the following Biot-Savart law on the rotating sphere at speed γ

∀x ∈ S2, u(t,x) =
1

2π

ˆ
S2

x ∧ y

|x− y|2R3

ζ(t,y)dσ(y) + γe3 ∧ x.

Proof. Let us first recall from (A.2) that for x,y ∈ S2,

|x− y|2R3 = |x|2R3 + |y|2R3 − 2x · y = 2(1− x · y).

Therefore,

∇⊥
x (ln |x− y|R3) =

1

2
∇⊥

x

(
ln |x− y|2R3

)
= −∇⊥

x (x · y)
|x− y|2R3

·

The unit sphere is a manifold with principal co-latitude/longitude local chart

ψ1(θ, φ) ≜
(
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

)
, θ ∈ (0, π), φ ∈ (0, 2π).
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The interested reader can perform the same computations working in an other local chart, covering the missing
points, and get the same result. On each point x ∈ S2 in the form x = ψ1(θ, φ) for some (θ, φ) ∈ (0, π)× (0, 2π),
the tangent space TxS2 has an orthonormal basis e =

(
eθ(x), eφ(x)

)
given by

eθ(x) ≜ ∂θψ1(θ, φ) =

cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

 , eφ(x) ≜
∂φψ1(θ, φ)

sin(θ)
=

− sin(φ)
cos(φ)

0

 .

The operator ∇⊥ is defined by

∇⊥f(θ, φ) =
∂φf(θ, φ)

sin(θ)
eθ − ∂θf(θ, φ)eφ.

We denote y = ψ1(θ
′, φ′), then

∇⊥
x (x · y) = ∇⊥(ψ1(θ, φ) · y

)
= −

(
eθ(x) · y

)
eφ(x) +

(
eφ(x) · y

)
eθ(x).

But

eφ(x) · y =

− sin(φ)
cos(φ)

0

 ·

sin(θ′) cos(φ′)
sin(θ′) sin(φ′)

cos(θ′)

 = cos(φ) sin(θ′) sin(φ′)− sin(φ) sin(θ′) cos(φ′)

and

eθ(x) · y =

cos(θ) cos(φ)
cos(θ) sin(φ)
− sin(θ)

 ·

sin(θ′) cos(φ′)
sin(θ′) sin(φ′)

cos(θ′)


= cos(θ) cos(φ) sin(θ′) cos(φ′) + cos(θ) sin(φ) sin(θ′) sin(φ′)− sin(θ) cos(θ′).

Therefore, after simplifications, we find

∇⊥
x (x · y) = −

 sin(θ) sin(φ) cos(θ′)− cos(θ) sin(θ′) sin(φ′)
cos(θ) sin(θ′) cos(φ′)− sin(θ) cos(φ) cos(θ′)

sin(θ) cos(φ) sin(θ′) sin(φ′)− sin(θ) sin(φ) sin(θ′) cos(φ′)

 .

Besides,

x ∧ y =

sin(θ) cos(φ)
sin(θ) sin(φ)

cos(θ)

 ∧

sin(θ′) cos(φ′)
sin(θ′) sin(φ′)

cos(θ′)


=

 sin(θ) sin(φ) cos(θ′)− cos(θ) sin(θ′) sin(φ′)
cos(θ) sin(θ′) cos(φ′)− sin(θ) cos(φ) cos(θ′)

sin(θ) cos(φ) sin(θ′) sin(φ′)− sin(θ) sin(φ) sin(θ′) cos(φ′)

 .

Thus, we have proven
∇⊥

x (x · y) = −x ∧ y. (A.3)

Consequently,

∇⊥
x

(
ln |x− y|R3

)
=

x ∧ y

|x− y|2R3

·

The proof of Lemma A.2 is now complete.

Throughout the document, give θ ∈ R, the direct rotation of angle θ around the vertical axis is denoted

R(θ) ≜

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 . (A.4)

We have the following characterization of uniformly rotating point vortex configurations (vortex crystals).

Lemma A.3. Let
(
(x1(t), ,Γ1) . . . , (xN (t),ΓN )

)
be a point vortex dynamical system on S2. Then, this system

performs a uniform rotation around the vertical axis at constant speed Ω ∈ R if and only if for any i ∈ {1, . . . , N},

(
Ω− γ)e3 ∧ xi(0) =

N∑
j=1
j ̸=i

Γj

2π

xi(0) ∧ xj(0)

|xi(0)− xj(0)|2R3

·
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Remark A.1. The previous result gives in particular that two antipodal points with opposite circulations might
rotate at the sphere rotation speed γ.

Proof. Observe that a point x(t) on S2 performs a uniform rotation around the vertical axis at constant speed
Ω if and only if

x(t) = R(Ωt)x(0).

Therefore,

d

dt
x(t) = ∂t

(
R(Ωt)

)
x(0) = Ω

− sin(Ωt) − cos(Ωt) 0
cos(Ωt) − sin(Ωt) 0

0 0 0

x(0).

Denoting x(0) ≜ (x01, x
0
2, x

0
3)

⊤, we get

d

dt
x(t) = −Ω

x01 sin(Ωt) + x02 cos(Ωt)
x02 sin(Ωt)− x01 cos(Ωt)

0

 .

Now notice that

R(Ωt)
(
e3 ∧ x(0)

)
= e3 ∧R(Ωt)x(0) =

0
0
1

 ∧

x01 cos(Ωt)− x02 sin(Ωt)
x01 sin(Ωt) + x02 cos(Ωt)

x03

 = −

x01 sin(Ωt) + x02 cos(Ωt)
x02 sin(Ωt)− x01 cos(Ωt)

0

 .

Thus, we get
d

dt
x(t) = ΩR(Ωt)

(
e3 ∧ x(0)

)
.

Inserting this information into the point vortex system gives that for any i ∈ {1, . . . , N},

ΩR(Ωt)
(
e3 ∧ xi(0)

)
=

N∑
j=1
j ̸=i

Γj

2π

R(Ωt)xi(0) ∧R(Ωt)xj(0)

|R(Ωt)xi(0)−R(Ωt)xj(0)|2R3

+ γ e3 ∧R(Ωt)xi(0)

= R(Ωt)

 N∑
j=1
j ̸=i

Γj

2π

xi(0) ∧ xj(0)

|xi(0)− xj(0)|2R3

+ γ e3 ∧ xi(0)

 .

We have use the fact that R(Ωt) ∈ SO3(R). In particular it is invertible, so composing on the left by its inverse
gives the desired result. This concludes the proof of Lemma A.3

Lemma A.4 (A variant of Gronwall’s Lemma). Let f : Rn → Rn such that there exists κ > 0 such that

∀x, y ∈ Rn,
∣∣f(x)− f(y)

∣∣ ⩽ κ|x− y|.

Let g ∈ L1(R+,R+) and T ⩾ 0. We assume that z : R+ → Rn satisfies

∀t ∈ [0, T ], z′(t) = f
(
z(t)

)
and that y : R+ → Rn satisfies

∀t ∈ [0, T ],
∣∣y′(t)− f

(
y(t)

)∣∣ ⩽ g(t).

Then,

∀t ∈ [0, T ], |y(t)− z(t)| ⩽
(ˆ t

0

g(s)ds+ |y(0)− z(0)|
)
eκt.

Proof. The proof was already provided in [21, Lemma B.2] and is recalled here for the sake of completeness.
Fix t ∈ [0, T ]. One readily has

|y(t)− z(t)| ⩽
∣∣∣∣ˆ t

0

(
y′(s)− z′(s)

)
ds

∣∣∣∣+ |y(0)− z(0)|

⩽
ˆ t

0

g(s)ds+

∣∣∣∣ˆ t

0

[
f
(
y(s)

)
− f

(
z(s)

)]
ds

∣∣∣∣+ |y(0)− z(0)|

⩽
ˆ t

0

g(s)ds+ |y(0)− z(0)|+ κ

ˆ t

0

|y(s)− z(s)|ds.
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Applying the classical Gronwall’s inequality, since t 7→
´ t
0
g(s)ds+|y(0)−z(0)| is non-negative and differentiable,

we obtain

|y(t)− z(t)| ⩽
(ˆ t

0

g(s)ds+ |y(0)− z(0)|
)
eκt.

This concludes the proof of Lemma A.4.

Lemma A.5 (Solving the high-order moments ODE). Let a > 0, b ⩾ 0, n ∈ N∗. Consider y : [0,+∞) → R+

a differentiable function satisfying the following differential inequality

∀t ⩾ 0, y′(t) ⩽ ay
n−1
n (t)

(
b+ y

1
n (t)

)
.

Then, the following upper bound holds

∀t ⩾ 0, y(t) ⩽
(
−b+

(
b+ y

1
n (0)

)
e

a
n t
)n

. (A.5)

Proof. Consider the associated differential equation

z′(t) = az
n−1
n (t)

(
b+ z

1
n (t)

)
, z(0) = y(0). (A.6)

By the comparison lemma for differential equations, we have

∀t ⩾ 0, y(t) ⩽ z(t).

In order to solve (A.6), we set w ≜ z
1
n . Then,

∀t ⩾ 0, w′(t) =
z′(t)

nz
n−1
n (t)

=
az

n−1
n (t)

(
b+ z

1
n (t)

)
nz

n−1
n (t)

=
a

n

(
b+ w(t)

)
.

This is a linear differential equation of order 1 with constant coefficients whose solution is given by

∀t ⩾ 0, w(t) = −b+
(
b+ w(0)

)
e

a
n t = −b+

(
b+ z

1
n (0)

)
e

a
n t = −b+

(
b+ y

1
n (0)

)
e

a
n t.

Coming back to z, we infer

∀t ⩾ 0, z(t) = wn(t) =
(
−b+

(
b+ y

1
n (0)

)
e

a
n t
)n

.

Thus, the upper bound (A.5) follows directly.
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