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Abstract

We prove a bifurcation result of uniformly-rotating/stationary non-trivial vortex sheets near the circular
distribution for a model of two irrotational fluids with same density taking into account surface tension
effects. As bifurcation parameters, we play with either the speed of rotation, the surface tension coefficient
or the mean vorticity.
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1 Introduction

We consider a planar Euler system for two irrotational fluids with same density (constant equal to 1) separated
by an interface Γ(t) homeomorphic to a circle and parametrized by z(t, ·) : T → R2. This interface divides the
plane into two open components Ω±(t) with Ω−(t) bounded and Ω+(t) unbounded. The evolutionary system is
thus composed of the following equations

u±t + u± · ∇u± +∇p± = 0, in Ω±(t),(
zt − u±|Γ(t)

)
· z⊥x = 0, at Γ(t),

(p− − p+)|Γ(t) = σK(z), at Γ(t),

u+(t,x) → 0, as |x| → +∞,

∇ · u± = 0, in Ω±(t),

∇⊥ · u± = 0, in Ω±(t).

(1.1)

In the above set of equations, the quantities u±, p± are respectively the velocity field and pressure inside the
domain Ω±. The parameter σ ⩾ 0 is the surface tension coefficient and K(z) is the curvature defined by

K(z) ≜ −z
⊥
x · zxx
|zx|3

·

The last equation in (1.1) implies that the vorticity distribution ω is localized on the curve Γ(t) at time t,
namely

ω(t,x) = ω(t, x)δ
(
x− z(t, x)

)
, x ∈ R2, x ∈ T. (1.2)

Such a solution is called vortex sheet. The velocity fields are recovered through the so-called Biot-Savart law

u±(t,x) =

�
T

(
x− z(t, y)

)⊥∣∣x− z(t, y)
∣∣2 ω(t, y)dy, (1.3)
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where we used the following convention for the integral on the torus T
�
T
f(y)dy ≜

1

2π

� 2π

0

f(y)dy.

The equations for the system (1.1) in the case in which the vorticty is a vortex sheet (i.e. (1.2)) are called
Kelvin-Helmholtz system. From (1.3) and standard suppression of the pressure via Leray projectors it is clear
that the bulk quantities u± and p± can be expressed in terms of the interface quantities ω and z, thus recasting
(1.1) as a Contour Dynamic Equation (CDE) on T. The resulting system, derived in Appendix A.1, writes as

(
zt − BR(z)ω

)
· z⊥x = 0,

ωt =

(
ω

(zt − BR(z)ω) · zx
|zx|2

)
x

− σ (K (z))x .
(1.4)

where the Birkhoff-Rott integral operator is defined by

BR(z)ω(t, x) ≜ p.v.

�
T

(
z(t, x)− z(t, y)

)⊥
|z(t, x)− z(t, y)|2

ω(t, y)dy.

Let us choose a parametrization in the form

z(t, x) = R(t, x)eix, R(t, x) ≜
√

1 + 2η(t, x). (1.5)

The choice of the parametrization (1.5), which is a graph on the unit circle, allows us to recast the system (1.4)
in a more congenial form. The detailed computations are performed in Appendix A.2 and produce the system

ηt = −1

2
H (η)[ω],

ωt = −
(ω
2

D0(η)[ω]
)
x
− σ

(
K (η)

)
x
,

(1.6)

where

H (η)[ω] ≜ ηxD0(η)[ω] + H0(η)[ω], (1.7)

D0(η)[ω](x) ≜ p.v.

�
T

1−
√

1+2η(y)
1+2η(x) cos(x− y)

1 + η(x) + η(y)−
√
1 + 2η(x)

√
1 + 2η(y) cos(x− y)

ω(y)dy, (1.8)

H0(η)[ω](x) ≜ p.v.

�
T

√
1 + 2η(x)

√
1 + 2η(y) sin(x− y)

1 + η(x) + η(y)−
√
1 + 2η(x)

√
1 + 2η(y) cos(x− y)

ω(y)dy, (1.9)

K (η) ≜
ηxx − 2

(
ηx
R

)2(
R2 +

(
ηx
R

)2) 3
2

−
(
R2 +

(ηx
R

)2)− 1
2

. (1.10)

Using the divergence free property of the flow, Stokes’ Theorem, the second equation in (1.1) and the first
equation in (A.9), we get

0 =

�
Ω−(t)

∇ · u−(t,x) dx =

� 2π

0

u−
(
t, z(t, x)

)
· z⊥x (t, x) dx =

� 2π

0

zt(t, x) · z⊥x (t, x) dx = − d

dt

� 2π

0

η(t, x) dx.

Therefore, the space average of η is preserved and we impose

�
T
η(x)dx = 0.

The second equation in (1.6) implies the conservation of the mean vorticity and in the sequel, we denote

γ ≜
�
T
ω(x)dx.

Let us introduce the velocity potential ψ through the relation

ω = γ + ψx, i.e. ψ ≜ ∂−1
x (ω − γ). (1.11)
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In the new variables (η, ψ), the system (1.6) becomes
ηt = −1

2
H (η)[ψx]−

γ

2
H (η)[1],

ψt = −ψx + γ

2
D0(η)[ψx + γ]− σK (η).

(1.12)

Let us emphazise that to obtain the second equation in (1.12), we have integrated in space the second equation
in (1.6). Therefore, the second equation is well-defined up to a time-dependent additive constant.

The system (1.12) can be reformulated in a Hamiltonian form, akin to the approach taken by [6] for per-
turbations of the flat interface. The Hamiltonian structure is an important ingredient in the study of small
divisors problems for PDEs to construct for instance quasi-periodic solutions [4, 9–11, 14, 30, 31, 34, 37, 39, 46]
and a fundamental tool to study long time stability in presence of resonances [7, 8, 12, 13, 53]. Since it falls
outside the scope of this manuscript and does not play an important role in our bifurcation analysis, we omit
the derivation of the Hamiltonian formulation and we leave it to our future investigations.

1.1 Main results

We look for uniformly rotating vortex sheets, that is traveling wave solutions of the system (1.12), namely

(η, ψ)(t, x) = (η̌, ψ̌)(x− ct), c ∈ R, η̌, ψ̌ ∈ L2(T).

When c = 0, the corresponding solutions are stationary. The equations (1.12) rewrite in this context (for
simplicity of notations, we still denote (η, ψ) instead of (η̌, ψ̌)){

c ηx +
1
2H (η)[ψx] +

γ
2H (η)[1] = 0,

c ψx +
ψx+γ

2 D0(η)[ψx + γ] + σK (η) = 0.
(1.13)

Given m ∈ N∗, we say that a uniformly rotating vortex sheet is m-fold if the functions η̌ and ψ̌ are 2π
m periodic.

The couple (η, ψ) = (0, 0) is a trivial solution of (1.12) for any values of the parameters c, σ, γ. This solution
corresponds to the family of circular stationary vortex sheets given by

z(x) = eix, ω ≡ γ, u−(x) ≡ 0, u+(x) = γ
x⊥

|x|2
·

We refer the reader to Lemma 2.1 for more details. Our main result, stated below, gives the existence of
non-trivial solutions which are small amplitude perturbations of this stationary state.

Theorem 1.1. (Local bifurcation of vortex sheets from the circular distribution)

(i) Let σ > 0, γ ∈ R and m ∈ N∗. Assume that

γ2 − σ

σm2
̸∈ N∗ (1.14)

supplemented by one of the following conditions

(a) 4σ(2−
√
3) < γ2 < 4σ(2 +

√
3).

(b) γ2 ∈ [0,∞) \
[
4σ(2−

√
3), 4σ(2 +

√
3)
]
and m ∈ R \ [m−(σ, γ),m+(σ, γ)], with

m±(σ, γ) =
γ2

4σ
± 1

4σ

√
(γ2 − 8σ)2 − 48σ2·

Then, there exist two branches of m-fold uniformly rotating vortex-sheets bifurcating from the circular
distribution at angular speed

c±m(σ, γ) = −γ
2
± 1

2

√
2σm− γ2 +

2(γ2 − σ)

m
·

(ii) Let (c, γ) ∈ R2 \ {(0, 0)}. Fix m ∈ N \ {0, 1} such that

m >
2γ2

(2c+ γ)
2
+ γ2

·
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Assume in addition that
(2m− 1)γ2 − (2c+ γ)2

m(2c+ γ)2 + (m− 2)γ2
̸∈ N∗. (1.15)

Then, there exists one branch of m-fold uniformly rotating vortex-sheets with speed c bifurcating from the
circular distribution for

σm(c, γ) =
m (2c+ γ)

2
+ (m− 2)γ2

2(m2 − 1)
·

(iii) Let σ > 0 and m ∈ N\{0, 1}. Then, there exist two branches of m-fold stationary vortex-sheets bifurcating
from the circular distribution for

γ±m(σ) = ±
√
σ(m+ 1)·

Remark 1.1. Let us make some remarks.

1. The condition (1.14) is satisfied in particular for

γ2

σ
∈ R \Q.

2. Notice that formally σm(0, γ) = γ2

m+1 , which is in accordance with the point (iii). Nevertheless, the
condition (1.15) is not compatible with c = 0 but is satisfied in particular for(

2c

γ
+ 1

)2

∈ R \Q.

The Theorem 1.1 is obtained by means of local bifurcation theory, more precisely by applying Crandall-
Rabinowitz Theorem A.1. For this aim, we see solutions to (1.13) as zeros of a nonlinear functional F (defined
by (2.1)-(2.2)):

F(c, σ, γ, η, ψ) = 0.

We prove in Lemma 2.1 that (η, ψ) = (0, 0) is indeed a solution. Then, in Proposition 2.1, we study the regularity
of F and we give in Proposition 2.2 the expression of its differential Lc,σ,γ at the trivial solution (η, ψ) = (0, 0).
We dispose of three parameters to bifurcate: the speed of rotation c, the surface tension coefficient σ and
the mean vorticity γ. The corresponding analysis are led in Subsections 2.2, 2.3 and 2.4, respectively. Let
us emphasize that the restrictions (1.14) and (1.15) are made for avoiding spectral collisions and get a one
dimensional kernel for Lc,σ,γ . The transversality conditions are obtained via a duality argument as developed
in [32,41,55,56].

1.2 Known results

The study of the motion of two immiscible fluids separated by a sharp interface has been a subject of study
since the mid-19th century, when von Helmholtz derived the evolution equations for such phenomenon in 1858
in [40]. When there is no surface tension and no gravity the problem is generally ill-posed in Sobolev spaces,
even at linear level (cf. [52, Section 9.3]), this phenomenon, known as Kelvin-Helmholtz instability, lead to the
formation of vortices or waves at the interface or within the shear layer. It is named after Lord Kelvin (William
Thomson) and Hermann von Helmholtz, who independently investigated the instability in the late 19th century.

When the fluid interface is a perturbation of the flat rest state and there are no surface tension effects
(σ = 0) stability in the analytic framework was proved in [48, 58, 59]. Adding the effects of the surface tension
to (1.1) (σ > 0) induces stabilizing effects and the resulting equations are well-posed, linearly [49], and non-
linearly [1–3, 19, 22, 57], even in presence of two fluids with different densities. A more comprehensive stability
criterion has been investigated by D. Lannes in [50] in the context of two fluids with nonzero density, when
gravitational effects are taken in consideration. We highlight that when we have a shear flow the presence of
the surface tension is crucial in order to avoid the growth of high-modes, that is characteristically induced by
the Kelvin-Helmholtz instability, otherwise the equations are ill-posed [16, 51, 60], in sharp contrast with what
happens in the context of the Water-Waves equations. We mention as well the foundational work of Delort [28]
which proved the existence of global weak solutions for measured-valued vorticities that include the vortex sheet
problem.

The stability results discussed are constrained by an existence time proportional to the capillarity coefficient
σ, leaving the long-term stability of (1.12) largely unexplored. When σ = 0, circles and lines are non-trivial
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steady solutions, as are segments of length 2a with strength ω(x) = Ω
√
a2 − x2, rotating uniformly at angu-

lar velocity Ω. This category also includes the family of solutions identified by B. Protas and T. Sakajo [54]
and the solutions [17, 18] of Cao-Qin-Zou. When Γ(t) is a closed curve and σ = 0, recent findings [36] have
demonstrated that steady solutions bifurcate from degenerate eigenvalues. In [35], the same authors proved
rigidity results, namely the non-existence of non-trivial solutions for a certain range of angular speed. Over
the past decades, bifurcation techniques have been succesfully implemented to obtain traveling periodic solu-
tions for instance, for the 3D liquid drop model with capillarity [5] or in the vortex patch class where a broad
spectrum of steady solutions for CDEs were discovered, starting with Burbea’s seminal work [15] and extended
in [20, 21, 26, 27, 33, 38, 42–45]. The previous list is non-exhaustive since restricted to the Eulerian model. Let
us mention the recent generalization to a large class of models [47]. This manuscript adds to this literature by
presenting an existence result for the Kelvin-Helmholtz equations near a circular vortex with surface tension
effects. The combined contributions of our study and [36] establish, for the first time, the presence of closed
curves as global solutions to Kelvin-Helmholtz equations.

Ackowledgments: Federico Murgante is supported by the ERC STARTING GRANT 2021 ”Hamiltonian Dy-
namics, Normal Forms and Water Waves” (HamDyWWa), Project Number: 101039762. Emeric Roulley is sup-
ported by PRIN 2020 ”Hamiltonian and Dispersive PDEs” project number: 2020XB3EFL. Stefano Scrobogna
is supported by PRIN 2022 ”Turbulent effects vs Stability in Equations from Oceanography” (TESEO), project
number: 2022HSSYPN.

2 Proof of the results

This section is devoted to the proof of Theorem 1.1. We first introduce the functional of interest and give the
expression of its differential at the circular distribution. Then, we study the bifurcations with respect to the
various parameters of the problem.

2.1 Functional of interest and its linear operator

Let us introduce the functional
F = (F1,F2),

where

F1(c, σ, γ, η, ψ) ≜ c ηx +
1

2
H (η)[ψx] +

γ

2
H (η)[1], (2.1)

F2(c, σ, γ, η, ψ) ≜ c ψx +
ψx + γ

2
D0(η)[ψx + γ] + σK (η). (2.2)

Then, clearly solutions of (1.13) are zeros of the functional F and we have the following result stating that the
circular distribution is indeed a trivial solution for any values of the parameters.

Lemma 2.1. The state (η, ψ) = (0, 0) is a trivial solution. More precisely,

∀(c, σ, γ) ∈ R× (0,∞)× R, F(c, σ, γ, 0, 0) = 0.

This corresponds to

ω ≡ γ, Ω−(t) = D(0, 1) and

{
u−(x) = 0, if x ∈ D(0, 1),

u+(x) = γ x⊥

|x|2 , if x ∈ R2 \D(0, 1).
(2.3)

Proof. From (1.8) and (1.10), one readily gets

D0(0)[f ](x) =

�
T
f(y)dy, K (0) = 1. (2.4)

Then, using the classical relations

sin(u) = 2 sin
(
u
2

)
cos
(
u
2

)
, 1− cos(u) = 2 sin2

(
u
2

)
, (2.5)

we obtain from (1.7) and (1.9)

H (0)[f ](x) = H0(0)[f ](x) = p.v.

�
T

sin(x− y)

1− cos(x− y)
f(y)dy = p.v.

�
T
cot

(
x− y

2

)
f(y)dy = H[f ](x), (2.6)
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where H denotes the 2π-periodic Hilbert transform. Inserting the foregoing calculations into (2.1)-(2.2) gives

F1(c, σ, γ, 0, 0) =
γ

2
H (0)[1] =

γ

2
H[1] = 0

and

F2(c, σ, γ, 0, 0) =
γ2

2
D0(0)[1] + σK (0) =

γ2

2
+ σ ∼ 0.

Recall that the second equation is well-defined modulo constants. Now let us turn to the fluid description. We
employ the usual identification R2 ≃ C. For (η, ψ) = 0, (1.5) and (1.3) imply that

ω ≡ γ and z(x) = eix.

Note that
zx(x)

iz(x)
≡ 1. (2.7)

We compute the complex conjugate of the velocity field for x ∈ C \ ∂D(0, 1) which, in view of (1.11), is given
by the following holomorphic function

u±(x) =
γ

2πi

� 2π

0

1

x− z(x)
dx

(2.7)
=

γ

i

1

2πi

� 2π

0

zx(x)

(x− z(x))z(x)
dx =

γ

i

1

2πi

�
∂D(0,1)

dz

(x− z)z
=

{
0, x ∈ D(0, 1),
γ
ix , x ̸∈ D(0, 1),

where, to obtain the last equality, we used the residue Theorem. Taking the complex conjugate, we get

u−(x) = 0, u+(x) = γ
i

x
= γ

ix

|x|2
= γ

x⊥

|x|2
·

This ends the proof of Lemma 2.1.

We consider the following m-fold (m ∈ N∗) Sobolev spaces with regularity index s ⩾ 0,

Hs
even,m ≜

{
f(x) =

∞∑
n=1

an cos(nmx),

∞∑
n=1

⟨n⟩2s|an|2 <∞, an ∈ R

}
,

Hs
odd,m ≜

{
f(x) =

∞∑
n=1

bn sin(nmx),

∞∑
n=1

⟨n⟩2s|bn|2 <∞, bn ∈ R

}
,

where we have used the classical notation ⟨n⟩ ≜ max(1, n). Then we set

Xs
m ≜ H

s+ 1
4

even,m ×H
s− 1

4
odd,m, Y sm ≜ H

s− 5
4

odd,m ×H
s− 7

4
even,m

and for r > 0,

Bsm(r) ≜
{
(η, ψ) ∈ Xs

m s.t. ∥η∥
Hs+1

4
+ ∥ψ∥

Hs− 1
4
< r
}
.

In the next proposition, we state the regularity of the functional F with respect to these function spaces.

Proposition 2.1. Let m ∈ N∗ there exists s0 > 0 such that for any s ⩾ s0 there exists r = r (s) > 0 such that
the functional

F : R× (0,∞)× R× Bsm(r) −→ Y sm

defined in (2.1)-(2.2) is well defined and of class C1.

Proof. Assume η and ψ respectively even and odd (in space). Then ηx and ψx are respectively odd and even.
Now by performing a change of variables y 7→ −y we can easily see from (1.8) and (1.9) that

f even ⇒
(
D0(η)[f ] even and H0(η)[f ] odd

)
.

Coming back to the expression (1.7), we see that

f even ⇒ H (η)[f ] odd.

With this in hand, we deduce from (2.1)-(2.2) that

F1(c, σ, γ, η, ψ) is odd and F2(c, σ, γ, η, ψ) is even.
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The m-fold preserving property follows similarly by using the change of variables y 7→ y + 2π
m .

Since the parity and m-fold symmetry is preserved as explained above, using (1.7), (2.1) and (2.2) the result

follows if we can prove that given (η, ψ) ∈ Bsm(r) then H0(η)[ψx],D0(η)[ψx] are in H
s− 5

4 , the C1 differentiability
shall stem since the integrand functions that define the operators H0 and D0 are analytic in η and ψ. We prove
the statement for H0(η)[ψx] being the one for D0(η)[ψx] similar. Notice that

H0 (η) [ψx] = |D|ψ + 2p.v.

�
T

(
Kz

(
∆zη

1 + 2η

)
− 1

)
ψx (x− z)

2 tan (z/2)
dz,

where

∆zη ≜
η(x)− η(x− z)

2 sin (z/2)

and

Kz (X) ≜

√
1− 4X sin (z/2)

2
(
1− 2X sin (z/2)−

√
1− 4X sin (z/2) cos z

) (2 sin (z/2))
2
. (2.8)

Notice that (z,X) 7→ Kz (X) is analytic in (−π, π) ×
(
− 1

4 ,
1
4

)
. In particular we can Taylor-expand in z the

application z 7→ Kz
(

∆zη
1+2η

)
− 1 and we obtain that

Kz

(
∆zη

1 + 2η

)
− 1 = K0

(
ηx

1 + 2η

)
+R1 (η;x, z) ,

where

K0 (X) ≜ − X2

1 + X2
, (2.9)

R1 (η;x, z) ≜

(
Kz

(
∆zη

1 + 2η

)
− 1

)
− K0

(
ηx

1 + 2η

)
.

We thus have that

H0 (η) [ψx] =

(
1 + K0

(
ηx

1 + 2η

))
|D|ψ + 2p.v.

�
T
R1 (η;x, z)

ψx (x− z)

2 tan (z/2)
dz︸ ︷︷ ︸

≜RH0
(η)[ψx]

. (2.10)

Applying standard Moser tame estimates and composition theorems to (2.9) it is immediate that there exists
s0 > 0 so that for any s ⩾ s0 there exists a r = r (s) > 0 so that

(η, ψ) 7→
(
1 + K0

(
ηx

1 + 2η

))
|D|ψ ∈ C1

(
Bsm(r);Hs− 5

4

)
, (2.11)

thus we can focus our attention on the remainder term RH0
(η) [ψx] in (2.10). We have that, if s > 7/4

∥RH0
(η) [ψx]∥

Hs− 5
4
≲

∥∥∥∥R1 (η;x, z)

2 tan (z/2)

∥∥∥∥
L∞

z H
s− 5

4
x

∥ψ∥
Hs− 1

4
(2.12)

Since R1 (η;x, z) is a Taylor-1 remainder its explicit expression is given by

R1 (η;x, z) = z

� 1

0

(
∂zKϑz

(
∆ϑzη

1 + 2η

)
+ K′

ϑz

(
∆ϑzη

1 + 2η

)
η′ (x− ϑz)

)
dϑ, (2.13)

so that from (2.13) and the fact that ∂zKz (0) = 0 it is clear that if ∥η∥
Hs− 1

4
≪ 1 then

sup
z∈T

∥∥∥∥R1 (η; •, z)
2 tan (z/2)

∥∥∥∥
Hs− 5

4

≲ ∥η∥
Hs− 1

4
, (2.14)

so that (2.14) and (2.12) prove that (after a relabeling of s0, s and r, if needed)

(η, ψ) 7→ RH0
(η) [ψx] ∈ C0

(
Bsm(r);Hs− 5

4

)
. (2.15)

The fact that the application (after a relabeling of s0, s and r, if needed)

(η, ψ) 7→ RH0 (η) [ψx] ∈ C1
(
Bsm(r);Hs− 5

4

)
. (2.16)
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can be proved by computations similar to the ones performed to prove (2.15), and are omitted for the sake of
brevity. Combining (2.11), (2.16) and (2.10), we obtain that (after a relabeling of s0, s and r, if needed)

(η, ψ) 7→ H0 (η) [ψx] ∈ C1
(
Bsm(r);Hs− 5

4

)
. (2.17)

Computations similar to the ones used to prove (2.17) show us that

(η, ψ) 7→ D0 (η) [ψx] ∈ C1
(
Bsm(r);Hs− 5

4

)
. (2.18)

Putting together (2.18) and (2.17) proves, combined with standard product estimates, that, fixed c, γ and σ

(η, ψ) 7→
(
F1(c, σ, γ, η, ψ),F2(c, σ, γ, η, ψ)− σK (η)

)
∈ C1

(
Bsm (r) ;H

s− 5
4

odd,m ×H
s− 5

4
even,m

)
. (2.19)

In addition, it is clear from (1.10) and composition estimates that for ∥η∥
Hs+1

4
≪ 1,

∥K (η)∥
Hs− 7

4
<∞. (2.20)

From (2.19) and (2.20), we deduce that

(η, ψ) 7→
(
F1(c, σ, γ, η, ψ),F2(c, σ, γ, η, ψ)

)
∈ C1

(
Bsm (r) ;H

s− 5
4

odd,m ×H
s− 7

4
even,m

)
.

Thus, since the differentiability in c, γ and σ is immediate from (2.1)-(2.2), we conclude the desired result.

Our next goal is to linearize the system (1.13) at the trivial solution (η, ψ) = (0, 0). The corresponding
operator has a good Fourier multiplier structure and enjoys Fredholmness property with respect to the function
spaces introduced above. More precisely, we have the following proposition.

Proposition 2.2. Let (c, σ, γ) ∈ R× (0,∞)× R. We denote

Lc,σ,γ ≜ dη,ψF(c, σ, γ, 0, 0).

(i) The operator Lc,σ,γ writes

Lc,σ,γ =

( (
c+ γ

2

)
∂x

1
2 |D|

σ − γ2 + γ2

2 |D| − σ|D|2
(
c+ γ

2

)
∂x

)
. (2.21)

In particular, it is a Fourier multiplier. Its action on (η̂, ψ̂), admitting the Fourier expansions

η̂(x) =

∞∑
n=1

an cos(nmx), ψ̂(x) =

∞∑
n=1

bn sin(nmx), an, bn ∈ R,

is given by

Lc,σ,γ
(
η̂

ψ̂

)
(x) =

∞∑
n=1

(
sin(nmx) 0

0 cos(nmx)

)
Mnm(c, σ, γ)

(
an
bn

)
,

with

Mn(c, σ, γ) ≜

(
−
(
c+ γ

2

)
n n

2

σ − γ2 + γ2

2 n− σn2
(
c+ γ

2

)
n

)
. (2.22)

(ii) The operator Lc,σ,γ : Xs
m −→ Y sm is Fredholm with zero index.

Proof. (i) First observe that from the expression (1.10), one readily gets

dηK (0)[η̂] = η̂ + η̂xx = (Id− |D|2)η. (2.23)

Then, differentiating in (1.9), we infer
dηH0(0)[η̂][f ](x) = 0. (2.24)

Now, differentiating in (1.8) and using one more time (2.5) yields

dηD0(0)[η̂][f ](x) = −p.v.

�
T

(
η̂(y)− η̂(x)

)
cos(x− y)

1− cos(x− y)
f(y)dy −

�
T

(
η̂(x) + η̂(y)

)
f(y)dy

=
1

2
p.v.

�
T

η̂(x)− η̂(y)

sin2
(
x−y
2

) f(y)dy − 2η̂(x)

�
T
f(y)dy.

(2.25)
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For later purposes, we shall study the case f = 1. Using Fourier symbols representation, we see that

|D| = ∂xH = H∂x. (2.26)

In addition, since cot′(x) = − 1
sin2(x)

and H[1] = 0, we get

∂xH[f ](x) = ∂xH[f ](x)− f(x)∂xH[1](x)

= p.v.

�
T
∂x

[
cot

(
x− y

2

)] (
f(y)− f(x)

)
dy

=
1

2
p.v.

�
T

f(x)− f(y)

sin2
(
x−y
2

) dy.

(2.27)

Putting together (2.25), (2.26) and (2.27) yields

dηD0(0)[η̂][1] = |D|η̂ − 2η̂. (2.28)

Combining (1.7) and (2.4) and (2.24), we get

dηH (0)[η̂][f ] = η̂xD0(0)[f ] + dηH0(0)[f ] = η̂x

�
T
f(y)dy. (2.29)

As a consequence, differentiating (2.1) and using (2.6), (2.26) and (2.29) implies

dη,ψF1(c, σ, γ, 0, 0)[η̂, ψ̂] = c η̂x +
1

2
H (0)[ψ̂x] +

γ

2
dηH (0)[η̂][1]

= c η̂x +
1

2
H∂xψ̂ +

γ

2
η̂x

=
(
c+

γ

2

)
∂xη̂ +

|D|
2
ψ̂.

(2.30)

Besides, differentiating (2.2) and making appeal to (2.4), (2.23) and (2.28), we find

dη,ψF2(c, σ, γ, 0, 0)[η̂, ψ̂] = c ψ̂x +
γ

2
ψ̂xD0(0)[1] +

γ2

2
dηD0(0)[η̂][1] +

γ

2
D0(0)[ψ̂x] + σdηK (0)[η̂]

=
(
c+

γ

2

)
∂xψ̂ + (σ − γ2)η̂ +

γ2

2
|D|η̂ − σ|D|2η̂.

(2.31)

Putting together (2.30) and (2.31), we obtain the matrix representation (2.21) for the linearized operator.

(ii) Coming back to the expression (2.21), we decompose the operator as follows

Lc,σ,γ = Iσ +Kc,σ,γ ,

where

Iσ ≜

(
0 1

2 |D|
−σ|D|2 0

)
, Kc,σ,γ ≜

( (
c+ γ

2

)
∂x 0

σ − γ2 + γ2

2 |D|
(
c+ γ

2

)
∂x

)
.

Clearly, Iσ : Xs
m → Y sm is an isomorphism. In addition, Kc,σ,γ : Xs

m → Y
s+ 1

2
m is continuous. By Rellich-

Kondrachov Theorem, we deduce that Kc,σ,γ : Xs
m → Y sm is a compact operator. This proves the claim by

applying [23, Cor. 5.9].

2.2 Bifurcation from c

In this subsection, we fix σ > 0 and γ ∈ R (some restrictions will be imposed later on) and study the bifurcation
from the parameter c. Let us look for the values of the parameter c such that the matrix Mn(c, σ, γ), introduced
in (2.22), is singular. For this aim, we compute its determinant

det
(
Mn(c, σ, γ)

)
= −

(
c+

γ

2

)2
n2 +

n

4

(
2σn2 − γ2n+ 2(γ2 − σ)

)
. (2.32)

We study the sign on [1,∞) of the polynomial function

n 7→ 2σn2 − γ2n+ 2(γ2 − σ).
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The associated discriminant is

∆ = γ4 − 16σγ2 + 16σ2 = (γ2 − 8σ)2 − 48σ2.

Hence,
2σn2 − γ2n+ 2γ2 > 0 ⇔ (n, σ, γ) ∈ S ≜ S1 ∪ S2,

where

S1 ≜
{
(n, σ, γ) ∈ N∗ × (0,∞)× R s.t. 4σ(2−

√
3) < γ2 < 4σ(2 +

√
3)
}
,

S2 ≜

(n, σ, γ) ∈ N∗ × (0,∞)× R

s.t. γ2 ∈ [0,∞) \
[
4σ(2−

√
3), 4σ(2 +

√
3)
]

and n ∈ R \ [m−(σ, γ),m+(σ, γ)],

with m±(σ, γ) ≜
γ2

4σ
± 1

4σ

√
(γ2 − 8σ)2 − 48σ2

 .

Then, for (n, σ, γ) ∈ S, we have

det
(
Mn(c, σ, γ)

)
= 0 ⇔ c = c±n (σ, γ) ≜ −γ

2
± 1

2

√
2σn− γ2 +

2(γ2 − σ)

n
· (2.33)

Proposition 2.3. Let (m, σ, γ) ∈ S satisfying the additional condition

γ2 − σ

σm2
̸∈ N∗. (2.34)

Then, the following properties hold true.

(i) The kernel of the operator Lc±m(σ,γ),σ,γ is one dimensional. More precisely

ker
(
Lc±m(σ,γ),σ,γ

)
= span(x±0,σ,γ,m), x±0,σ,γ,m(x) ≜

(
cos(mx)

±
√
2σm− γ2 + 2(γ2−σ)

m sin(mx)

)
.

(ii) The operator Lc±m(σ,γ),σ,γ : Xs
m −→ Y sm is Fredholm with zero index.

(iii) The transversality condition holds, namely

∂cLc,σ,γ |c=c±m(σ,γ)

[
x±0,σ,γ,m

]
̸∈ R

(
Lc±m(σ,γ),σ,γ

)
. (2.35)

Proof. (i) Let us study the spectral collisions of the m-fold spectrum. More precisely, we shall solve

cκ1
m (σ, γ) = cκ2

km(σ, γ), (κ1, κ2) ∈ {−,+}2, k ∈ N∗. (2.36)

First observe that there can exist values of k ∈ N \ {0, 1} such that (km, σ, γ) ̸∈ S. In this case, cκ2

km(σ, γ)
is either equal to −γ

2 or an element of C \ R. In both cases the equation (2.36) is not satisfied. So we can
restrict the discussion to the case where (km, σ, γ) ∈ S. Coming back to the expression of c±n (σ, γ) in (2.33),
the equation (2.36) implies

σm+
γ2 − σ

m
= σkm+

γ2 − σ

km

or equivalently

σm2(k − 1)

(
k − γ2 − σ

σm2

)
= σm2k2 −

(
σm2 + γ2 − σ

)
k + γ2 − σ = 0.

Therefore, there are two solutions

k1 = 1, k2 =
γ2 − σ

σm2
·

Since c−m(σ, γ) ̸= c+m(σ, γ), the case k = k1 = 1 corresponds to the trivial solution. Thanks to the condition
(2.34), we deduce that the equation (2.36) has no non-trivial solution. As a consequence

det
(
Mm

(
c±m(σ, γ), σ, γ

))
= 0

and
∀n ∈ N \ {0, 1}, det

(
Mnm

(
c±m(σ, γ), σ, γ

))
̸= 0.
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This implies the one dimensional kernel property for the linearized operator and the generator is obtain by
remarking that (

1

±
√
2σm− γ2 + 2(γ2−σ)

m

)
∈ ker

(
Mm

(
c±m(σ, γ), σ, γ

))
.

(ii) Follows from Proposition 2.2-(ii).

(iii) We introduce on Y sm the scalar product ⟨·, ·⟩ defined as follows: for (f, g) and (f̃ , g̃) in Y sm admitting the
Fourier representations

f(x) =

∞∑
n=1

an sin(nmx), f̃(x) =

∞∑
n=1

ãn sin(nmx)

and

g(x) =

∞∑
n=1

bn cos(nmx), g̃(x) =

∞∑
n=1

b̃n cos(nmx),

with an, ãn, bn, b̃n ∈ R, their scalar product is given by

⟨(f, g), (f̃ , g̃)⟩ ≜
∞∑
n=1

anãn + bnb̃n.

Define

y±0,σ,γ,m(x) ≜

(
∓
√

2σm− γ2 + 2(γ2−σ)
m sin(mx)

cos(mx)

)
.

Let us prove that

R
(
Lc±m(σ,γ),σ,γ

)
= span

(
y±0,σ,γ,m

)⊥⟨·,·⟩ . (2.37)

Take an element y ∈ R
(
Lc±m(σ,γ),σ,γ

)
. By construction,

y(x) =

∞∑
n=1

(
sin(nmx) 0

0 cos(nmx)

)
Mnm(c, σ, γ)

(
an
bn

)
.

Then,

〈
y, y±0

〉
=

〈
Mm

(
c±m(σ, γ), σ, γ

)(an
bn

)
,

(
∓
√
2σm− γ2 + 2(γ2−σ)

m

1

)〉
R2

=

〈(
an
bn

)
,M⊤

m

(
c±m(σ, γ), σ, γ

)(∓√2σm− γ2 + 2(γ2−σ)
m

1

)〉
R2

= 0.

The last identity is obtained because by construction(
∓
√

2σm− γ2 + 2(γ2−σ)
m

1

)
∈ ker

(
M⊤

m

(
c±m(σ, γ), σ, γ

))
.

Recall that the notation M⊤ denotes the transposed of the matrix M. This proves that

R
(
Lc±m(σ,γ),σ,γ

)
⊂ span

(
y±0,σ,γ,m

)⊥⟨·,·⟩ . (2.38)

Now, since the space span
(
y±0,σ,γ,m

)
is of finite dimension, then we can apply the orthogonal supplementary

Theorem in the pre-Hilbertian space (Y sm, ⟨·, ·⟩) to get

Y sm = span
(
y±0,σ,γ,m

) ⊥
⊕ span

(
y±0,σ,γ,m

)⊥⟨·,·⟩ .

This proves that span
(
y±0,σ,γ,m

)⊥⟨·,·⟩ is of codimension one in Y sm. Besides, the points (i) and (ii) give that

R
(
Lc±m(σ,γ),σ,γ

)
is also of codimension one in Y sm. Together with the inclusion (2.38), we conclude (2.37). With

this in hand, we can now check the transversality condition. Notice that, from (2.21), we get

∂cLc,σ,γ |c=c±m(σ,γ) =

(
∂x 0
0 ∂x

)
.
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Thus, a straitforward computation together with the fact that (m, σ, γ) ∈ S give

〈
∂cLc,σ,γ |c=c±m(σ,γ)

[
x±0,σ,γ,m

]
, y±0,σ,γ,m

〉
= ±2m

√
2σm− γ2 +

2(γ2 − σ)

m
̸= 0.

According to (2.37), this proves the transversality condition (2.35) and achieves the proof of Proposition 2.3.

Proof of Theorem 1.1-(i). We apply Theorem A.1 together with Lemma 2.1 and Propositions 2.1 and 2.3.

2.3 Bifurcation from σ

In this subsection, we fix (c, γ) ∈ R2 (some restrictions will be imposed later on) and study the bifurcation from
the parameter σ. According to (2.32), we have

det
(
M1(c, σ, γ)

)
= −c(c+ γ) (2.39)

is independent of σ and, for any n ⩾ 2,

det
(
Mn(c, σ, γ)

)
= 0 ⇔ σ = σn(c, γ) ≜

[
(2c+ γ)

2
+ γ2

]
n− 2γ2

2(n2 − 1)
· (2.40)

In the sequel, we denote
α(c, γ) ≜ (2c+ γ)

2
+ γ2, β(γ) ≜ 2γ2.

The condition σ > 0 requires

nα(c, γ)− β(γ) > 0, i.e. n > N(c, γ) ≜
2γ2

(2c+ γ)
2
+ γ2

·

Proposition 2.4. Let (c, γ) ∈ R2 and m ∈ N \ {0, 1} with m > N(c, γ). Assume in addition that

(2m− 1)γ2 − (2c+ γ)2

m(2c+ γ)2 + (m− 2)γ2
̸∈ N∗. (2.41)

Then, the following properties hold true.

(i) The kernel of the operator Lc,σm(c,γ),γ is one dimensional. More precisely,

ker
(
Lc,σm(c,γ),γ

)
= span(x0,c,γ,m), x0,c,γ,m(x) ≜

(
cos(mx)

(2c+ γ) sin(mx)

)
.

(ii) The operator Lc,σm(c,γ),γ : Xs
m −→ Y sm is Fredholm with zero index.

(iii) The transversality condition holds, namely

∂σLc,σ,γ |σ=σm(c,γ) [x0,c,γ,m] ̸∈ R
(
Lc,σm(c,γ),γ

)
. (2.42)

Proof. (i) Let us study the spectral collisions. We need to solve

σm(c, γ) = σkm(c, γ), k ∈ N∗. (2.43)

In what follows, we simply denote α ≜ α(c, γ) and β ≜ β(γ). Coming back to the expression (2.40), the previous
equation is equivalent to

(αm− β)(k2m2 − 1) = (αkm− β)(m2 − 1),

or again

(αm− β)m2(k − 1)

(
k − βm− α

m(αm− β)

)
= (αm− β)m2k2 − αm(m2 − 1)k +m(βm− α) = 0.

Therefore, the equation (2.43) admits two solutions

k1 = 1 (trivial solution), k2 =
βm− α

αm− β
=

(2m− 1)γ2 − (2c+ γ)2

m(2c+ γ)2 + (m− 2)γ2
·
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The condition (2.41) implies that the equation (2.43) has no non-trivial solution. Then, we can conclude as in
the proof of Proposition 2.3-(i).

(ii) Follows from Proposition 2.2-(ii).

(iii) Proceeding as in the proof of Proposition 2.3-(iii), we get

R
(
Lc,σm(c,γ),γ

)
= span(y0,c,γ,m)⊥⟨·,·⟩ , y0,c,γ,m(x) ≜

(
−(2c+ γ) sin(mx)

cos(mx)

)
.

From the expression (2.21), we see that

∂σLc,σ,γ |σ=σm(c,γ) =

(
0 0

Id− |D|2 0

)
.

Therefore, since m ̸= 1, 〈
∂σLc,σ,γ |σ=σm(c,γ)[x0,c,γ,m], y0,c,γ,m

〉
= 1−m2 ̸= 0.

This concludes (2.42) and the proof of Proposition 2.4.

Proof of Theorem 1.1-(ii). We apply Theorem A.1 together with Lemma 2.1 and Propositions 2.1 and 2.4.

2.4 Bifurcation from γ for stationary vortex sheets

In this subsection, we fix c = 0 and σ > 0. Then, we study the bifurcation from the parameter γ. According to
(2.39), we get

det
(
M1(0, σ, γ)

)
= 0,

and in view of (2.32), for any n ⩾ 2, we have

det
(
Mn(0, σ, γ)

)
= 0 ⇔ γ = γ±n (σ) ≜ ±

√
σ(n+ 1).

Proposition 2.5. Let σ > 0 and m ∈ N \ {0, 1}. Then, the following properties hold true.

(i) The kernel of the operator L0,σ,γ±
m(σ) is one dimensional. More precisely,

ker
(
L0,σ,γ±

m(σ)

)
= span(x±0,σ,m), x±0,σ,m(x) ≜

(
cos(mx)

γ±m(σ) sin(mx)

)
.

(ii) The operator L0,σ,γ±
m(σ) : X

s
m −→ Y sm is Fredholm with zero index.

(iii) The transversality condition holds, namely

∂γL0,σ,γ |γ=γ±
m(σ)

[
x±0,σ,m

]
̸∈ R

(
L0,σ,γ±

m(σ)

)
. (2.44)

Proof. (i) Observe that γ−m(σ) = −γ+m(σ) ̸= 0 and that the sequence
(
γ+n (σ)

)
n⩾2

is strictly increasing. This

immediatly prevents spectral collisions and allows to conclude similarly to Proposition 2.3-(i).

(ii) Follows from Proposition 2.2-(ii).

(iii) Proceeding as in the proof of Proposition 2.3-(iii), we get

R
(
Lc,σ,γm±(σ)

)
= span(y±0,σ,m)⊥⟨·,·⟩ , y±0,σ,m(x) ≜

(
−γ±m(σ) sin(mx)

cos(mx)

)
.

From (2.21), we have

∂γL0,σ,γ |γ=γ±
m(σ) =

(
1
2∂x 0

γ±m(σ)(|D| − 2) 1
2∂x

)
.

Therefore, since m ̸= 1 and γ±m(σ) ̸= 0,〈
∂γLc,σ,γ |γ=γ±

m(σ)[x
±
0,σ,m], y±0,σ,m

〉
= 2γ±m(σ) (m− 1) ̸= 0.

This implies (2.44) and achieves the proof of Proposition 2.5.

Proof of Theorem 1.1-(iii). We apply Theorem A.1 together with Lemma 2.1 and Propositions 2.1 and 2.5.
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A Appendix

A.1 Derivation of (1.4) from (1.1)

From (1.3) it is immediate that we can recast (1.1) as an evolutionary equation on the interface only, since the
bulk quantities u± and p± can be recovered from the interface evolution of ω and z. Such derivation is quite
well-known in the literature (cf. [24, 29]) but we perform here detailed computations for the sake of clarity.

Given two functions f± : Ω±(t) → R we define

q
f±

y
≜ f− − f+.

Let us now define the trace of the velocity u± (cf. (1.3)) as

v±(t, x) ≜ u±
∣∣
Γ(t)

(t, x) = u±
(
t, z(t, x)

)
, (t, x) ∈ (0, T )× T. (A.1)

From (1.3) we can compute v± defined in (A.1) as

v± (t, x) = lim
ϵ↘0

u±
(
t, z (t, x)± ϵz⊥x (t, x)

)
since z (t, x) ± ϵz⊥x (t, x) ∈ Ω± (t) for any x ∈ T, so that the trace of the velocity flow v± can be recasted in
terms of z and ω via the Birkhoff-Rott integral operator

v± = BR(z)ω ∓ ω

2

zx

|zx|2
, BR(z)ω (t, x) ≜

1

2π

�
R

(z (t, x)− z (t, y))
⊥

|z (t, x)− z (t, y)|2
ω (t, y) dy. (A.2)

From (A.2) we can deduce hence a relation between the vorticity strength and the trace of the velocity valid in
(0, T )× T (cf. (A.1))

ω =
q
v±

y
· zx. (A.3)

Remark A.1. Notice that from (A.2) it is immediate that the normal (to Γ (t)) component of the velocity flow
is continuous through the interface.

The relation (A.3) allows us to express ω in terms of the trace of the velocity flow, hence, to derive the
evolution equation for ω by taking the tangential (to Γ (t)) trace of the first equation of (1.1) onto Γ (t). This
procedure produces the evolutionary equations for v± which are computed in [29, Eq. (2.2)] and are given by(

v± · zx
)
t
−
(
v± · zt

)
x
+

1

2

(∣∣v±∣∣2)
x
+
(
p±
∣∣
Γ(t)

)
x
+ (z2)x = 0, (A.4)

where z2 is the second component of the parametrization vector z. Using (A.4) we can hence compute the
evolution equation for ω defined as in (A.3) which is, using the continuity of the stress tensor among the surface
Γ(t), i.e. the third equation of (1.1)

ωt −
(q
v±

y
· zt
)
x
+

1

2

(r∣∣v±∣∣2z)
x
+ σ

(
K(z)

)
x
= 0, (A.5)

while we use (A.2) in order to obtain the identity

v+ = v− − ω
zx

|zx|2
,

from which we derive

v+ · zx = v− · zx − ω, v+ · zt = v− · zt − ω
zt · zx
|zx|2

,
∣∣v+∣∣2 =

∣∣v−∣∣2 + ω2

|zx|2
− 2ω

v− · zx
|zx|2

· (A.6)

The relations in (A.6) and (A.2) give us that

−
(q
v±

y
· zt
)
x
+

1

2

(r∣∣v±∣∣2z)
x
= −1

2

(
ω2

|zx|2

)
x

−

(
ω

(zt − v−) · zx
|zx|2

)
x

= −

(
ω

(zt − BR(z)ω) · zx
|zx|2

)
x

. (A.7)

The system (1.1) can thus be recasted as an evolutionary equation on the interface only via the unknowns (ω, z),
plugging (A.7) in (A.5), thus obtaining (1.4).
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A.2 Derivation of (1.6) from (1.4)

Here we explain how to get the system (1.6) from (1.4). Let us consider a parametrization of Γ(t) in the form

z(t, x) = R(t, x)eix, R(t, x) ≜
√

1 + 2η(t, x).

Straightforward calculations show that

zt(t, x) =
ηt(t, x)

R(t, x)
eix,

zx(t, x) =

(
ηx(t, x)

R(t, x)
+ iR(t, x)

)
eix,

z⊥x (t, x) =

(
i
ηx(t, x)

R(t, x)
−R(t, x)

)
eix,

zxx(t, x) =

(
ηxx(t, x)

R(t, x)
− η2x(t, x)

R3(t, x)
+ 2i

ηx(t, x)

R(t, x)
−R(t, x)

)
eix.

(A.8)

As a consequence,
zt · z⊥x = −ηt,

zt · zx =
ηtηx
R2

,

z⊥x · zxx = 3
(ηx
R

)2
− ηxx +R2,

|zx|2 = R2 +
(ηx
R

)2
.

(A.9)

The last two identities combined with (1.10) give immediately

K(z) =
ηxx − 2

(
ηx
R

)2(
R2 +

(
ηx
R

)2) 3
2

−
(
R2 +

(ηx
R

)2)− 1
2

= K (η). (A.10)

In addition, (
z(x)− z(y)

)
· zx(x) = ηx(x)

(
1− R(y)

R(x)
cos(x− y)

)
+R(x)R(y) sin(x− y),

|z(x)− z(y)|2 = 2
(
1 + η(x) + η(y)−R(x)R(y) cos(x− y)

)
.

(A.11)

Using (A.11) and the notation (1.7), we deduce that

BR(z)ω · z⊥x (x) = p.v.

�
T

(
z(x)− z(y)

)⊥ · z⊥x (x)
|z(x)− z(y)|2

ω(y)dy

= p.v.

�
T

(
z(x)− z(y)

)
· zx(x)

|z(x)− z(y)|2
ω(y)dy

= 1
2H (η)[ω](x).

Together with (A.9), the first equation in (1.4) becomes

ηt = − 1
2H (η)[ω]. (A.12)

Combining (1.4), (A.8) and (A.9), we find

zt · zx = − ηx
R2

BR(z)ω · z⊥x .

Thus, (
zt − BR(z)ω

)
· zx = −BR(z)ω ·

( ηx
R2

z⊥x + zx

)
= −|zx|2BR(z)ω ·

(
ieix

R

)
.

But (
z(x)− z(y)

)⊥ ·
(
ieix

R

)
= 1− R(y)

R(x)
cos(x− y).
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The last computations with (A.11) and (1.8) give

ω

(
zt − BR(z)ω

)
· zx

|zx|2
(x) = −ω(x)p.v.

�
T

(
z(x)− z(y)

)⊥ ·
(

ieix

R

)
|z(x)− z(y)|2

ω(y)dy

= − 1
2ω(x)D0(η)[ω](x).

This together with (1.4) and (A.10) imply

ωt =
(
− 1

2ωD0(η)[ω]− σK (η)
)
x
.

A.3 Crandall-Rabinowitz Theorem

We state here the local bifurcation result obtained in [25] and used in this study to construct our solutions.

Theorem A.1. (Crandall-Rabinowitz)
Let X and Y be two Banach spaces. Let (p0, u0) ∈ R×X and U be a neighborhood of (p0, u0) in R×X. Consider
a C1 function F : U → Y such that

(1) ∀(p, u0) ∈ U, F (p, u0) = 0.

(2) The operator duF (p0, u0) is a Fredholm operator with zero index and such that

ker
(
duF (p0, u0)

)
= span(x0).

(3) Transversality:
∂pduF (p0, u0)[x0] ̸∈ R

(
duF (p0, u0)

)
.

If we decompose
X = span(x0)⊕ Z,

then there exist two C1 functions

p : (−ϵ, ϵ) → R and z : (−ϵ, ϵ) → Z, with ϵ > 0,

such that
p(0) = p0, z(0) = 0

and the set of zeros of F in U is the union of two curves{
(p, u) ∈ U s.t. F (p, u) = 0

}
=
{
(p, u0) ∈ U

}
∪ Clocal, Clocal ≜

{(
p(s), u0 + sx0 + sz(s)

)
, |s| < ϵ

}
.
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