TD Ensembles et applications

Roulley Emeric

Soient E, F et G trois ensembles non-vides.

I) Ensembles

- **1.a.** Montrer que $E \subset F \Leftrightarrow \mathcal{P}(E) \subset \mathcal{P}(F)$. En déduire $E = F \Leftrightarrow \mathcal{P}(E) = \mathcal{P}(F)$.
- **b.** Montrer que $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F)$.
- **c.** A-t-on $\mathcal{P}(E \cup F) = \mathcal{P}(E) \cup \mathcal{P}(F)$?
- **d.** Plus généralement, si I désigne un ensemble et si $(A_i)_{i\in I}\in\mathcal{P}(E)^I$, a-t-on $\mathcal{P}\left(\bigcap_{i\in I}A_i\right)=\bigcap_{i\in I}\mathcal{P}(A_i)$ et

$$\mathcal{P}\left(\bigcup_{i\in I} A_i\right) = \bigcup_{i\in I} \mathcal{P}(A_i)?$$

- **2.** Soit $(A, B, C) \in \mathcal{P}(E)^3$.
- **a.** Montrer que $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \Leftrightarrow B = C$.
- **b.** Montrer que $A \subset B \Leftrightarrow A \cup B = B$.
- **c.** Montrer que $A = B \Leftrightarrow A \cap B = A \cup B$.
- **d.** Montrer que $A \cup B = A \cap C \Leftrightarrow B \subset A \subset C$.
- 3. Soit $(A, B) \in \mathcal{P}(E)^2$. On appelle différence symétrique des ensembles A et B l'ensemble

$$A\Delta B = (A \cup B) \backslash (A \cap B).$$

- a. Faire un dessin généraliste représentant $A\Delta B$.
- **b.** Montrer que $A\Delta B = B\Delta A$.
- **c.** Montrer que $(A\Delta B = A \cap B) \Leftrightarrow (A = \emptyset = B)$.
- **d.** Soit $C \in \mathcal{P}(E)$. Montrer que $(A\Delta B)\Delta C = A\Delta(B\Delta C)$.
- **e.** Montrer que $(\forall C \in \mathcal{P}(E), A\Delta C = B\Delta C) \Leftrightarrow A = B \Leftrightarrow A\Delta B = \emptyset.$
- **4.** Comparer $\mathcal{P}(E^2)$ et $\mathcal{P}(E)^2$.
- **5.** Soit $(A_1, A_2) \in \mathcal{P}(E)^2$. Soit $(B_1, B_2) \in \mathcal{P}(F)^2$.
- **a.** Montrer que $(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$.
- **b.** Montrer que $(A_1 \times B_1) \cup (A_2 \times B_1) = (A_1 \cup A_2) \times B_1$.
- **c.** A-ton $(A_1 \times B_1) \cup (A_2 \times B_2) = (A_1 \cup A_2) \times (B_1 \cup B_2)$?

II) Applications injectives, surjectives et bijectives

1. Parmi les applications suivantes, quelles sont celles qui sont injectives? surjectives? bijectives?

- **2.a.** Donner un exemple de bijection de $\mathbb N$ dans $\mathbb N$ n'ayant aucun point fixe.
- **b.** Donner un exemple de bijection de \mathbb{R} dans \mathbb{R} non monotone.
- **c.** Donner un exemple de bijection de \mathbb{R} dans \mathbb{R}^* .
- **3.** Soit $f \in \mathcal{F}(E, F)$. Soit $g \in \mathcal{F}(F, G)$.
- a. On suppose que $g \circ f$ est injective. Montrer que f est injective.

- **b.** On suppose que $g \circ f$ est surjective. Montrer que g est surjective.
- **c.** On suppose que $g \circ f$ est injective et que f est surjective. Montrer que f est bijective (on donnera deux méthodes dont l'une utilisera la question **2.a.**).
- **d.** On suppose que $g \circ f$ est surjective et que g est injective. Montrer que g est bijective (on donnera deux méthodes dont l'une utilisera la question **2.b.**).
- **4.** Soit $f \in \mathcal{F}(E, E)$ telle que $f \circ f \circ f = f$. Montrer que $(f \text{ est injective}) \Leftrightarrow (f \text{ est surjective})$.
- **5.** Soit $(f, g, h) \in \mathcal{F}(E, F) \times \mathcal{F}(F, G) \times \mathcal{F}(G, E)$ tel que $h \circ g \circ f$ est injective et $g \circ f \circ h$ et $f \circ h \circ g$ sont surjectives. Montrer que f, g et h sont bijectives.
- **6.** On dit qu'un ensemble D est dénombrable s'il est équipotent à \mathbb{N} .
- a. Montrer que l'ensemble des entiers pairs (resp. impairs) est dénombrable.
- **b.** Montrer que \mathbb{N}^2 , \mathbb{Z} , \mathbb{Z}^2 et \mathbb{Q} sont dénombrables.
- 7. Soit $A \in \mathcal{P}(E)$.

On considère les applications φ_A et ψ_A définies sur $\mathcal{P}(E)$ par $\forall X \in \mathcal{P}(E), \varphi_A(X) = A \cap X$ et $\psi_A(X) = A \cup X$.

- **a.** Montrer que $(\varphi_A \text{ est injective}) \Leftrightarrow (\varphi_A \text{ est surjective}) \Leftrightarrow A = E.$
- **b.** Montrer que $(\psi_A \text{ est injective}) \Leftrightarrow (\psi_A \text{ est surjective}) \Leftrightarrow A = \emptyset$.
- 8. Soit $(A,B) \in \mathcal{P}(E)^2$. On considère l'application $f: \mathcal{P}(E) \to \mathcal{P}(A) \times \mathcal{P}(B)$. $X \mapsto (X \cap A, X \cap B)$.
- **a.** Montrer que $(f \text{ est injective}) \Leftrightarrow A \cup B = E$.
- **b.** Montrer que $(f \text{ est surjective}) \Leftrightarrow A \cap B = \emptyset$.
- **c.** Montrer que $(f \text{ est bijective}) \Leftrightarrow A \sqcup B = E$.
- 9. Pour tout $A \in \mathcal{P}(E)$, on considère la fonction indicatrice de la partie A, notée $\mathbf{1}_A$, définie par :

$$\begin{array}{ccc} \mathbf{1}_A: & E & \to & \{0,1\} \\ & x & \mapsto & \left\{ \begin{array}{ll} 1 & \mathrm{si} \ x \in A \\ 0 & \mathrm{si} \ x \not\in A \end{array} \right. \end{array}$$

- **a.** Dessiner la fonction indicatrice de la partie $A = [-4, -1] \cup [1, 5]$ de \mathbb{R} .
- **b.** Expliciter les $\mathbb{1}_{\mathbb{E}}$ et $\mathbf{1}_{\emptyset}$.
- c. Soit $(A, B) \in \mathcal{P}(E)^2$.
- i. Montrer que $\mathbf{1}_A^2 = \mathbf{1}_A$.
- ii. Montrer que $A \subset B \Leftrightarrow \mathbf{1}_A \leqslant \mathbf{1}_B$.
- iii. Montrer que $A = B \Leftrightarrow \mathbf{1}_A = \mathbf{1}_B$.
- iv. Montrer que $\mathbf{1}_{E\setminus A}=1-\mathbf{1}_A$.
- **v.** Montrer que $\mathbf{1}_{A \cap B} = \mathbf{1}_A \mathbf{1}_B$.
- **vi.** Montrer que $1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$.
- vii. Montrer que $\mathbf{1}_{A\setminus B} = \mathbf{1}_A(1-\mathbf{1}_B)$.
- **d.** Montrer que l'application $\mathcal{P}(E) \to \mathcal{F}(E, \{0, 1\})$ est une bijection. $A \mapsto \mathbf{1}_A$

III) Images directes et images réciproques

- 1. Soit $f \in \mathcal{F}(E, F)$. Soit $B \in \mathcal{P}(F)$. Montrer que $\mathbf{1}_{f^{-1}(B)} = \mathbf{1}_{B} \circ f$.
- **2.** Soit $f \in \mathcal{F}(E, F)$.
- **a.** Montrer que $\forall A \in \mathcal{P}(E), A \subset f^{-1}(f(A)).$
- **b.** Montrer que $\forall B \in \mathcal{P}(F), f(f^{-1}(B)) \subset B$.
- **c.** Montrer que $(f \text{ est injective}) \Leftrightarrow \forall A \in \mathcal{P}(E), A = f^{-1}(f(A)).$
- **d.** Montrer que $(f \text{ est surjective}) \Leftrightarrow \forall B \in \mathcal{P}(F), B = f(f^{-1}(B)).$
- **3.** Soit $f \in \mathcal{F}(E, F)$.
- **a.** Montrer que $(f \text{ est injective}) \Leftrightarrow \forall (A,B) \in \mathcal{P}(E)^2, f(A \cap B) = f(A) \cap f(B).$
- **b.** Montrer que $(f \text{ est bijective}) \Leftrightarrow \forall A \in \mathcal{P}(E), f(\overline{A}) = \overline{f(A)}.$

IV) Relations d'équivalence

1.a. On considère la relation binaire \mathcal{R} sur \mathbb{R} définie par :

$$\forall (x, y) \in \mathbb{R}^2, x\mathcal{R}y \Leftrightarrow |x| = |y|.$$

- i. Montrer que \mathbb{R} est une relation d'équivalence sur \mathbb{R} .
- ii. Donner les classes d'équivalence de la relation $\mathcal R$ (faire un dessin).
- iii. Montrer que cette relation d'équivalence sur $\mathbb R$ est la même que la relation binaire $\mathcal R'$ sur $\mathbb R$ définie par :

$$\forall (x,y) \in \mathbb{R}^2, x\mathcal{R}'y \Leftrightarrow x^2 - y^2 = x - y.$$

b. On considère la relation binaire \mathcal{R} sur \mathbb{C} définie par :

$$\forall (z, z') \in \mathbb{C}^2, z\mathcal{R}z' \Leftrightarrow |z| = |z'|.$$

- i. Montrer que \mathbb{R} est une relation d'équivalence sur \mathbb{C} .
- ii. Donner les classes d'équivalence de la relation \mathcal{R} (faire un dessin).
- **2.** Soit $n \in \mathbb{N}^*$. On considère la relation binaire $\equiv \sup \mathbb{Z}$ définie par :

$$\forall (k,l) \in \mathbb{Z}^2, k \equiv l \Leftrightarrow k-l \in n\mathbb{Z}.$$

- i. Montrer que \equiv est une relation d'équivalence sur \mathbb{Z} .
- ii. Donner les classes d'équivalence de la relation \equiv (faire un dessin).

La relation \equiv est appelée relation de congruence modulo n.

3. On considère la relation binaire \mathcal{R} définie sur \mathbb{R} par :

$$\forall (x,y) \in \mathbb{R}^2, x\mathcal{R}y \Leftrightarrow xe^y = ye^x.$$

- i. Montrer que \mathbb{R} est une relation d'équivalence sur \mathbb{R} .
- ii. Donner les classes d'équivalence de la relation \mathbb{R} .

V) Relations d'ordre

1. Soit $f \in \mathcal{F}(\mathbb{R}, \mathbb{R})$ injective.

On considère la relation binaire \propto sur $\mathbb R$ définie par :

$$\forall (x, y) \in \mathbb{R}^2, x \propto y \Leftarrow f(x) \leqslant f(y).$$

Montrer que \propto est une relation d'ordre sur \mathbb{R} .

2. On considère la relation binaire \leq sur $\mathcal{F}(\mathbb{R},\mathbb{R})$ définie par :

$$\forall (f,q) \in \mathcal{F}(\mathbb{R},\mathbb{R})^2, f \prec q \Leftrightarrow \forall x \in \mathbb{R}, f(x) \leqslant q(x).$$

- **a.** Montrer que \leq est une relation d'ordre sur $\mathcal{F}(\mathbb{R}, \mathbb{R})$.
- **b.** Cet ordre est-il total?
- **3.** On considère la relation binaire \mathcal{R} sur $\mathcal{F}(\mathbb{R},\mathbb{R})$ définie par :

$$\forall (x,y) \in (\mathbb{R}_+^*)^2, x\mathcal{R}y \Leftrightarrow \exists n \in \mathbb{N}, y = x^n.$$

- **a.** Montrer que \mathcal{R} est une relation d'ordre sur \mathbb{R}_+^* .
- **b.** Cet ordre est-il total?
- 4. On considère le demi-plan complexe $H=\{z\in\mathbb{C}/\mathrm{Im}(z)\geqslant 0\}.$

On considère la relation binaire \preceq sur H définie par :

$$\forall (z, z') \in H^2, z \prec z' \Leftrightarrow (|z| < |z'| \text{ ou } (|z| = |z'| \text{ et } \operatorname{Re}(z) < \operatorname{Re}(z')))$$
.

- **a.** Montrer que \leq est une relation d'ordre sur H.
- **b.** Cet ordre est-il total?
- **5.** On munit E d'une relation d'ordre \preceq . Soient A et B deux parties de E admettant chacune un plus grand élément.

- a. On suppose la relation d'ordre \leq totale. Montrer que $A \cup B$ admet un plus grand élément.
- b. Donner un contre-exemple dans le cas où la relation d'ordre ≤ n'est pas supposée totale.
- **c.** Reprendre les questions précédentes avec $A \cap B$ à la place de $A \cup B$.
- **6.** On considère l'ensemble $E = \{ f \in \mathcal{F}(\mathbb{R}_+, \mathbb{R}) / f(0) = 1 \text{ et } f \text{ est dérivable sur } \mathbb{R}_+^* \}$. On considère la relation binaire \mathcal{R} sur E définie par :

$$\forall (f,g) \in E^2, f\mathcal{R}g \Leftrightarrow \forall x \in \mathbb{R}, f'(x) \leqslant g'(x).$$

- **a.** Montrer que \mathcal{R} est une relation \mathcal{R} sur E.
- **b.** Cet ordre est-il total?
- **c.** Montrer que $\forall (f,g) \in E^2, f\mathcal{R}g \Rightarrow f \leq g$ où \leq est la relation d'ordre définie au **V)2.**
- **d.** A-t-on $\forall (f,g) \in E^2, f \leq g \Rightarrow f\mathcal{R}g$ où \leq est la relation d'ordre définie au **V)2.**?