DÉCOMPOSITION DE DUNFORD

<u>Référence</u>: GOURDON Algèbre: p.194-195 Leçons: 126, 128, 153, 154, 155, 157.

Soit K un corps commutatif, E un K-espace vectoriel de dimension finie. \bigwedge Ici, toutes les puissances d'endomorphismes sont des composées!!!

LEMME

Soit $f \in \mathcal{L}(E)$ et F un polynôme annulateur de f, de décomposition en facteurs irréductibles $F = \beta M_1^{\alpha_1} \cdots M_s^{\alpha_s}$. Pour tout i, on note $N_i = \ker M_i^{\alpha_i}(f)$. Alors, $E = N_1 \oplus \cdots \oplus N_s$ et, pour tout i, la projection sur N_i parallèlement à $\bigoplus_{i \neq i} N_j$ est un polynôme en f.

Preuve du Lemme:

La décomposition $E = N_1 \oplus \cdots \oplus N_s$ découle immédiatement du lemme des noyaux.

Etape 1 : Construire des projecteurs comme des polynômes en f

On pose $Q_i = \prod_{j \neq i} M_j^{\alpha_j}$. Les Q_i sont premiers entre eux dans leur ensemble (aucun facteur commun à tous

les Q_i). Bézout donne alors l'existence de $U_1, \cdots, U_s \in K[X]$ tels que $\sum_{i=1}^s U_i Q_i = 1$ ie

$$Id = U_1(f) \circ Q_1(f) + U_2(f) \circ Q_2(f) + \dots + U_s(f) \circ Q_s(f).$$

En notant $P_i = U_i Q_i$ et $p_i = P_i(f)$, on obtient

$$Id = \sum_{j=1}^{s} p_j. {(0.1)}$$

Par ailleurs, si $i \neq j$, par construction, F divise Q_iQ_j donc (on peut tout permuter comme on veut car ce sont des polynômes en f)

$$p_i \circ p_j = P_i(f) \circ P_j(f) = (U_i(f) \circ Q_i(f)) \circ (U_j(f) \circ Q_j(f)) = \underbrace{Q_i(f) \circ Q_j(f)}_{=0} \circ U_i(f) \circ U_j(f) = 0$$

En composant (??) par p_i , on obtient $p_i = \sum_{j=1}^s p_i \circ p_j$, donc avec l'égalité du dessus $p_i = p_i^2$. Ceci montre que les p_i sont des projecteurs.

Etape 2 : Vérifions qu'ils projettent bien sur N_i parallèlement à $\bigoplus_{i\neq i} N_j$ ie Im $p_i = N_i$ et ker $p_i = \bigoplus_{i\neq j} N_j$

 \hookrightarrow On a bien Im $p_i \subset \ker M_i^{\alpha_i}(f)$. En effet, par calcul simple:

$$M_{i}^{\alpha_{i}}(f)(p_{i}(x)) = M_{i}^{\alpha_{i}}(f) \circ P_{i}(f)(x) = (M_{i}^{\alpha_{i}}U_{i}Q_{i})(f)(x) = (U_{i}\underbrace{M_{i}^{\alpha_{i}}Q_{i}}_{-F})(f)(x) = U_{i}(f) \circ F(f)(x) = 0$$

Pour l'inclusion réciproque, choisissons $x \in N_i$ donc $M_i^{\alpha_i}(f)(x) = 0$.

D'après la décomposition (??), $x = p_1(x) + \cdots + p_s(x)$. Or, pour tout $j \neq i$, $p_j(x) = U_jQ_j(f)(x) = 0$ car $M_i^{\alpha_i}$ divise Q_j . De fait, $x = p_i(x)$, et $\operatorname{Im} p_i = N_i$.

$$\hookrightarrow$$
 Si $x \in N_j$, on a vu que $x = p_j(x)$ donc $p_i(x) = p_i \circ p_j(x) = 0$ et $\bigoplus_{i \in I} N_j \subset \ker p_i$.

Réciproquement, si
$$x \in \ker p_i$$
, (??) donne $x = \sum_{i \neq j} p_j(x) \in \bigoplus_{j \neq i} N_j$ (car Im $p_i = N_i$)

· Théorème ·

 $f \in \mathcal{L}(E)$ de polynôme caractéristique scindé sur K.

Alors il existe un unique couple $(d, n) \in \mathcal{L}(E)^2$ tel que :

- --f = d + n
- d est diagonalisable et n est nilpotent
- n et d commutent et f = d + n

De plus, d et n sont des polynômes en f.

Preuve du Théorème:

Existence

On note le polynôme caractéristique $\chi_f := \prod_{i=1}^s (X - \lambda_i)^{\alpha_i}$.

On va appliquer le **Lemme** avec $F = \chi_f$. On a alors en gardant les notations $N_i = \text{Ker}(f - \lambda_i)^{\alpha_i}$, $M_i = X - \lambda_i$ et $p_i = P_i(f)$ le projecteur sur N_i parallèlement à $\bigoplus_{i \in I} N_j$.

On pose $d = \sum_{i=1}^{s} \lambda_i p_i$. Ainsi construit, d est diagonalisable ¹.

On pose aussi $n = f - d = \sum_{i=1}^{s} (f - \lambda_i \operatorname{Id}) p_i^2$.

Puisque les p_i sont des projecteurs, qu'ils commutent (comme polynômes en f) avec f et que $\forall i \neq j$; $p_i \circ p_j = 0^3$, on peut montrer par récurrence sur q que

$$\forall q \in \mathbb{N}, \ n^q = \sum (f - \lambda_i \mathrm{Id})^q p_i.$$

Or, si $q = \sup_{i} \alpha_{i}$, on a $(f - \lambda_{i} \operatorname{Id})^{q} p_{i} = [(X - \lambda_{i})^{q} P_{i}](f) = 0$ car χ_{f} divise $(X - \lambda_{i})^{q} P_{i}$ (voir preuve du lemme : $P_{i} = U_{i} \prod_{i \neq i} (X - \lambda_{j})^{\alpha_{j}}$). Donc n est nilpotent d'indice $\leqslant q$.

d et n sont de plus par construction des polynômes en f (on a donc la commutation), c'est ce qu'il fallait montrer.

Unicité

Soit (d', n') un autre couple convenant. Alors, on a d - d' = n' - n.

d' commute avec n', donc avec f = d' + n' donc avec tout polynôme en f. En particulier, d' commute avec d, donc d et d' sont codiagonalisables, ce qui montre que d - d' est diagonalisable.

De même, n et n' commutent donc n-n' est nilpotent ⁴. Or une matrice nilpotente et diagonalisable est nulle, donc d=d' et n=n'.

Questions possibles - Marine vrai jour

pour commencer pas mal de questions sur Dunford : genre pour commencer vous utilisez le lemme des noyaux mais finalement est-ce que vous ne le redémontrez pas "une certaine façon dans la suite? – monter que les pi sont des projecteurs sans utiliser la relation Id=somme des pi... – Puis une matrice donner sa décomposition de Dunford, facile elle était diagonalisable! – Puis l'application qui à une matrice associe sa partie diago de Dunford est-elle continue? (Non! cf Objectif agreg)

- 1. Car somme de projecteurs qui chacun sont diagonalisables sous la forme $\begin{pmatrix} I_r & 0 \\ 0 & 0_{n-r} \end{pmatrix}$ dans une certaine base, comme des projecteurs commutent ils sont codiagonalisables donc d diagonalisable
 - $2. \operatorname{car} \sum_{i=1}^{m} p_i = \operatorname{Id}$
 - 3. les termes croisés disparaissent donc
 - 4. en notant p et q leur indice de nilpotence respectifs, on a par la formule de binôme de Newton $(n-n')^{p+q}=0$

Notes:

- \checkmark A l'oral, 9' pour le Lemme et 13'33 le tout vite. Une seconde fois 12'45.
- \checkmark Autres références : pour les polynômes en u OA p 209 exo 4.15 ça utilise le théorème des restes chinois, pour une autre demo de dunford FGNAl2 p134 exo 2.40 (unicité = pareil)
- ✓ Si on a du mal avec les polynômes d'endomorphismes (comme moi) relire Cognet... Je fais quand même des petits rappels si $u \in \mathcal{L}(E)$ (c'est très important la linéarité!), P,Q des polynômes. Alors $PQ(u) := P(u) \circ Q(u) = Q(u) \circ P(u)$ car ce sont des polynômes en u qui commutent donc. Tel quel ça ne sert à rien mais si on applique en $x \in E$ ça prend son sens. Par exemple si P = 1 + X et $Q = X^2$ on a bien

$$P(u) \circ Q(u)(x) = P(u) (Q(u)(x)) = P(u)(u^{2}(x)) = P(u)(u(u(x))) = (Id + u)(u(u(x)))$$
$$= u(u(x)) + u(u(u(x))) = (X^{2} + X^{3})(u)(X) = (PQ)(u)(x)$$

 \clubsuit Nelson Dunford (1906 -1986) était un mathématicien américain, connu pour ses travaux en analyse fonctionnelle.