DUAL DE $\mathcal{M}_n(\mathbb{K})$

Référence: FGNAL1: p.329 exo 7.8

On cherche ici à déterminer les formes linéaires de $\mathcal{M}_n(\mathbb{K})$.

- Théorème

L'application

$$f: \mid \mathcal{M}_n(\mathbb{K}) \longrightarrow \mathcal{M}_n(\mathbb{K})^*$$

$$A \longmapsto f_A : X \mapsto \operatorname{tr}(AX)$$

réalise un isomorphisme entre $\mathcal{M}_n(\mathbb{K})$ et son dual.

Preuve:

On note $(E_{i,j})_{i,j}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$.

f est clairement linéaire, et les espaces sont de même dimension finie. Montrons donc l'injectivité de f. Soit A telle que $f_A = 0$. On a alors, pour tous i_0, j_0 :

$$0 = \operatorname{tr}(AE_{i_0, j_0}) = \sum_{i=1}^{n} (AE_{i_0, j_0})_{i, i}$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i, j} (E_{i_0, j_0})_{j, i}$$
$$= a_{j_0, i_0}$$

Finalement, A = 0. Donc f est injective donc bijective d'où l'isomorphisme.

Essayons maintenant, parmi toutes ces formes linéaires, de caractériser la plus connue, la trace.

- Corollaire 1 -

Soit $g \in \mathcal{M}_n(\mathbb{K})^*$ vérifiant g(XY) = g(YX) pour toutes matrices X et Y. Alors

$$\exists \lambda \in \mathbb{K}, \ \forall X \in \mathcal{M}_n(\mathbb{K}), \ g(X) = \lambda \operatorname{tr}(X).$$

Preuve:

D'après le théorème précédent, il existe donc une matrice A telle que g(X) = tr(AX). L'hypothèse nous donne donc

$$tr(AXY) = tr(AYX).$$

Or les propriétés de la trace nous permettent d'écrire :

$$tr(AYX) = tr(XAY).$$

Finalement, on a

$$tr((AX - XA)Y) = 0,$$

et ce pour tout matrice Y.

En réutilisant l'isomorphisme précédent, on a donc AX = XA, et comme il est connu que le centre de $\mathcal{L}(E)$ est l'ensemble des homothéties, A en est donc une.

Il est maintenant temps d'utiliser la correspondance forme linéaire \leftrightarrow hyperplan.

- Corollaire 2 —

Si $n \geq 2$, alors tout hyperplan de $\mathcal{M}_n(\mathbb{K})$ rencontre $GL_n(\mathbb{K})$.

Preuve:

Soit donc H un hyperplan de $\mathcal{M}_n(\mathbb{K})$, et soit φ une 1 forme linéaire associée. Il existe donc une matrice A telle que pour toute matrice X, on ait $\varphi(X) = \operatorname{tr}(AX)$.

On cherche donc une matrice inversible, telle que tr(AX) soit nulle.

Pour simplifier le problème, notons r le rang de A. A est donc équivalente à $J_r: PAQ = J_r = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ où P et Q sont inversibles.

On a donc, pour toute matrice X,

$$\operatorname{tr}(AX) = \operatorname{tr}(PJ_rQX) = \operatorname{tr}(J_rQXP).$$

Si on trouve Y inversible telle que $\operatorname{tr}(J_rY)$ soit de trace nulle, on a gagné (on pose $X=Q^{-1}YP^{-1}$ qui reste à la fois dans $GL_n(\mathbb{K})$ et dans l'hyperplan H car on aura alors $\operatorname{tr}(AX)=0$). Pour cela, on peut par exemple poser

$$Y = \begin{pmatrix} 0 & 0 & \cdots & \cdots & 0 & 1 \\ 1 & 0 & \ddots & & & 0 \\ 0 & 1 & 0 & & & \vdots \\ \vdots & & \ddots & \ddots & & \vdots \\ \vdots & & & \ddots & \ddots & \vdots \\ 0 & \cdots & \cdots & \cdots & 1 & 0 \end{pmatrix}$$

Y est inversible $(\det Y = (-1)^{n+1})$, $J_r Y$ a sa diagonale nulle, donc sa trace aussi.

- Corollaire 3 —

Soit $(A, B) \in \mathcal{M}_n(\mathbb{K})$. Il y a équivalence entre

- 1. $\exists X \in \mathcal{M}_n(\mathbb{K}) / AX + XA = B$.
- 2. $\forall C \in \mathcal{M}_n(\mathbb{K}) / AC + CA = 0 \Rightarrow \operatorname{tr}(BC) = 0$

Preuve:

 $1. \Rightarrow 2.$ Simple calcul.

Soit $C \in \mathcal{M}_n(\mathbb{K}) / AC + CA = 0$. Alors

$$tr(BC) = tr(AXC + XAC) = tr(AXC) + tr(XAC)$$
$$= tr(CAX) + tr(ACX) = tr((CA + AC)X)$$

 $\mathbf{2.} \Rightarrow \mathbf{1.}$ Interprétons les deux assertions.

L'application $h: M_n(\mathbb{K}) \longrightarrow M_n(\mathbb{K})$ est un endomorphisme.

1. équivaut à $B \in \operatorname{Im} h$.

En reprenant les notations du théorème, $F = f(\operatorname{Ker} h) \subset \mathcal{M}_n(\mathbb{K})^*$. La condition 2. s'écrit

$$\forall C \in \text{Ker}h, \ f_C(B) = 0$$

En d'autres termes, 2. est équivalent à $B \in F^{\circ}$ orthogonal dual de F.

On a montré dans $1. \Rightarrow 2$. que $\text{Im}h \subset F^{\circ}$. On a en fait égalité entre ces deux espaces car (utilisons que f est un isomorphisme)

$$\dim F^{\circ} = n^2 - \dim F = n^2 - \dim f(\operatorname{Ker} h) = n^2 - \dim \operatorname{Ker} h = \dim \operatorname{Im} h$$

Donc finalement $F^{\circ} \subset \operatorname{Im} h$ ie $2. \Rightarrow 1$.

^{1.} On peut multiplier φ par n'importe quel scalaire non nul.

$\underline{\text{Notes}}$:

- ✓ A l'oral, 9'35 en hyper lent.. rajouter centre + ~ J_r (H2G2).
- \checkmark Les formes linéaires permettent de caractériser analytiquement l'appartenance à un hyperplan.
- \checkmark Pour montrer que le centre de $\mathcal{L}(E)$ est constitué des homothéties il faut y aller à la brute en utilisant que les $E_{i,j}$ forment une base.