

PROCESSUS DE GALTON-WATSON

Référence : A peu près : BENAÏM EL-KAROUI : Promenade aléatoire [BEN] p. 153 et COTTREL ETC. Exercices de probabilités [COT] p. 72

Lecons: 206, 223, 226, 229, 241, 243, 253, 260, 261, 264

Problème

Cadre: De nombreux phénomènes d'évolution de population peuvent être modélisés en première approximation par un processus de branchement (réactions nucléaires en chaine, étude des gènes, survivance des noms de famille...).

Modélisation mathématique:

Soit X une variable aléatoire intégrable à valeurs dans \mathbb{N} .

On note, pour
$$k \in \mathbb{N}$$
, $p_k = \mathbb{P}(X = k)$ et $m = \mathbb{E}[X] = \sum_{k=0}^{\infty} k p_k < \infty$.

Soit $(X_{i,j})_{i,j\in\mathbb{N}}$ une famille de va iid, suivant la loi \mathbb{P}_X .

On définit la suite $(Z_n)_{n\in\mathbb{N}}$ de la façon suivante :

$$\begin{cases} Z_0 = 1 \\ \forall n \in \mathbb{N}, Z_{n+1} = \sum_{i=1}^{Z_n} X_{i,n} \end{cases}$$

On définit

$$\pi_n := \mathbb{P}(Z_n = 0) \; ; \; \mathbb{P}_{\text{ext}} := \mathbb{P}(\exists n \in \mathbb{N}, Z_n = 0)$$

Lien avec les individus

Des particules sont capables de générer des particules de la même famille.

Chaque particule a la probabilité p_k d'engendrer k particules indépendantes (cette probabilité est constante au cours des générations).

Une particule originale représente la génération 0. Les descendants de la n-ième génération forment la (n+1)-ième génération.

 Z_n est le nombre d'individus à la génération n.

Chaque individu i de la n-ième génération a un nombre $X_{i,n}$ de descendants $(1 \le i \le Z_n)$ (logique donc que les $X_{i,n}$ soient iid).

 π_n est la probabilité d'extinction à la génération n.

 \mathbb{P}_{ext} est la probabilité d'extinction de la population.

Ce développement étudie la suite (Z_n) , en particulier s'il existe un n tel que $Z_n = 0$, la population s'éteint.

Hypothèses

Si $p_0 = 0$, alors on a $\forall n \in \mathbb{N}^*, Z_n \ge 1$ ps et $\mathbb{P}_{\text{ext}} = 0$ (par exemple si X = 1 p.s. alors $p_1 = 1$ et $p_0 = 0$).

Si $p_0 = 1$, alors on a $\forall n \in \mathbb{N}^*, Z_n = 0$ ps et $\mathbb{P}_{\text{ext}} = 1$.

On suppose donc désormais $p_0 \in]0,1[$.

1 Fonction génératrice de X

Pour $0 \le s \le 1$, on définit la fonction génératrice de X par

$$G(s) = \mathbb{E}[s^X] = \sum_{k=0}^{\infty} p_k s^k \leqslant 1$$

Comme somme de probabilités, G(1) = 1

Proposition 1 -

- 1. G est bien définie sur [0,1] et y est de classe \mathcal{C}^1 .
- 2. (a) G est strictement croissante sur]0,1[.
 - (b) G est convexe sur]0,1[.
 - (c) G est strictement convexe sur $]0,1[\Leftrightarrow p_0+p_1<1.$

Preuve:

- 1. $\forall k \in \mathbb{N}, s \mapsto p_k s^k$ est de classe \mathcal{C}^1 sur [0,1], la série $\sum_{k\geqslant 0} p_k 1^k$ converge (vers 1), et la série de fonctions $\sum_{k\geqslant 1} k p_k s^{k-1}$ converge normalement (car X est intégrable) donc uniformément sur [0,1].

 Par conséquent, la série $\sum_{k\geqslant 0} p_k s^k$ converge uniformément vers G, de classe \mathcal{C}^1 sur [0,1].
- 2. [COT question 2.] La série entière $\sum_{k\geqslant 0}p_ks^k$ ayant un rayon de convergence $\geqslant 1$, on a, par théorème de dérivation terme à terme d'une série entière, :

$$\forall s \in [0, 1], G'(s) = \sum_{k=1}^{\infty} k p_k s^{k-1} \text{ et } G''(s) = \sum_{k=2}^{\infty} k(k-1) p_k s^{k-2}$$

Comme $p_0 < 1$, on a : $\exists k_0 > 0, p_{k_0} > 0$.

- (a) Ainsi : $\forall s \in]0, 1[, G'(s) \ge k_0 p_{k_0} s^{k_0 1} > 0 \text{ et } G \text{ est strictement croissante sur }]0, 1[.$
- (b) Aussi: $\forall s \in]0, 1[, G''(s) \ge k_0 (k_0 1) p_{k_0} s^{k_0 2} \ge 0 \text{ et } G \text{ est convexe sur }]0, 1[.$
- (c) Si $p_0 + p_1 = 1$, alors on a $k_0 = 1$ et G est affine donc n'est pas strictement convexe sur]0,1[. Si $p_0 + p_1 < 1$, alors on peut avoir $k_1 > 1$ tq $p_{k_1} > 0$ et G'' > 0 sur]0,1[d'où la stricte convexité.

On a $m = \mathbb{E}[X] = G'(1)$.

2 Fonction génératrice de Z_n , relation de récurrence

Pour $n \in \mathbb{N}$, notons $G_n = G_{Z_n}$ la fonction génératrice de Z_n ie $G_n(s) = \mathbb{E}[s^{Z_n}] = \sum_{k=0}^{\infty} \mathbb{P}(Z_n = k) s^k$.

Comme précédemment, on peut montrer que G_n est bien définie sur [0,1].

Déjà,
$$G_n(0) = \mathbb{P}(Z_n = 0)$$
 donc $\pi_n = G_n(0)$

On obtient également $G'_n(1) = \mathbb{E}[Z_n]$.

· LEMME 1

Pour $n \in \mathbb{N}^*$, pour $i \in \mathbb{N}$, la variable Z_n est indépendante de $X_{i,n}$.

Preuve:

Soit $n \in \mathbb{N}^*$; Z_n ne dépend que de Z_{n-1} et de la famille $(X_{i,n-1})_{i \in \mathbb{N}}$. Ainsi, par une récurrence immédiate, il vient : Z_n ne dépend que de la famille $(X_{i,j})_{i \geqslant 0, j < n}$. Et, par indépendance des variables $X_{i,j}$, on obtient que $\forall i \in \mathbb{N}, Z_n \perp \!\!\!\perp X_{i,n}$.

- Proposition 2

Pour $n \in \mathbb{N}^*$, on a $G_n = \underbrace{G \circ \cdots \circ G}_{n \text{ fois}}$ (sur [0,1]).

Preuve:

(inspiré de [COT] question 1^{1}) On a :

$$G_{n+1}(s) = \sum_{k=0}^{\infty} \mathbb{P}(Z_{n+1} = k) s^k$$

On procède par récurrence.

Initialisation: $G_1(s) = \mathbb{E}[s^{Z_1}] = \mathbb{E}[s^{X_{1,0}}] = \mathbb{E}[s^X] = G(s)$

Récurrence : supposons $G_n = G \circ \cdots \circ G$.

$$\begin{split} G_{n+1}(s) &= \mathbb{E}\left[s^{Z_{n+1}}\right] = \mathbb{E}\left[s^{\sum_{i=1}^{Z_n} X_{i,n}}\right] \\ &= \mathbb{E}\left[\prod_{i=1}^{Z_n} s^{X_{i,n}}\right] \\ &= \mathbb{E}\left[\sum_{k=0}^{+\infty} \left(\prod_{i=1}^k s^{X_{i,n}} \mathbbm{1}_{Z_n=k}\right)\right] \\ &= \sum_{k=0}^{+\infty} \mathbb{E}\left[\prod_{i=1}^k s^{X_{i,n}} \mathbbm{1}_{Z_n=k}\right] \text{ (tout s'inverse comme on veut -Fubini Tonelli- car c'est } > 0) \\ &= \sum_{k=0}^{+\infty} \mathbb{E}\left[\prod_{i=1}^k s^{X_{i,n}}\right] \mathbb{E}\left[\mathbbm{1}_{Z_n=k}\right] \text{ (car } Z_n \perp \!\!\! \perp X_{i,n}) \\ &= \sum_{k=0}^{+\infty} \prod_{i=1}^k \mathbb{E}\left[s^{X_{i,n}}\right] \mathbb{P}(Z_n=k) \text{ (car les } X_{i,n} \perp \!\!\! \perp) \\ &= \sum_{k=0}^{+\infty} \mathbb{E}\left[s^X\right]^k \mathbb{P}(Z_n=k) \text{ (car les } X_{i,n} \text{ ont même loi)} \\ &= \sum_{k=0}^{+\infty} \mathbb{P}(Z_n=k) G(s)^k = G_n(G(s)) \end{split}$$

On conclut par hypothèse de récurrence.

Ceci nous donne, par récurrence immédiate, $\pi_{n+1} = G(\pi_n)$

3 Étude de la probabilité d'extinction

3.1 Réécriture et convergence

On remarque que si $Z_n = 0$ alors $Z_{n+1} = 0$, autrement dit la suite d'évènements $(\{Z_n = 0\})_{n \in \mathbb{N}}$ est croissante donc π_n aussi. Cette suite étant majorée par 1, elle converge en croissant vers une limite $\mathbb{P}_{\text{ext}} \in]0,1]$ (la stricte positivité de \mathbb{P}_{ext} résulte de $\mathbb{P}_{\text{ext}} \geqslant \pi_1 = p_0 > 0$, cela signifie que l'extinction est un évènement possible). L'extinction ne se produit pas avec probabilité 1 à la première génération $(p_0 < 1)$.

En obtenant des renseignements sur (π_n) , on obtiendra donc des renseignements sur la probabilité d'extinction \mathbb{P}_{ext} , le but étant de savoir si elle est égale à 1 ou non.

Proposition 3

La probabilité d'extinction \mathbb{P}_{ext} est le plus petit point fixe de G.

Preuve:

— Comme, $\pi_{n+1} = G(\pi_n)$, par continuité de G sur [0,1], $\mathbb{P}_{\text{ext}} = G(\mathbb{P}_{\text{ext}})$.

On peut également l'écrire avec les probas au lieu des espérances mais c'est trop moche.

^{1.} Salim se complique ici.

— Soit u > 0 un autre point fixe de G.

Montrons par récurrence que $\pi_n < u$.

- Par croissance de G, $\pi_1 = p_0 = G(0) \leqslant G(u) = u$.
- si $\pi_n < u, \, \pi_{n+1} = G(\pi_n) \leqslant G(u) = u.$

La récurrence est vérifiée.

Par passage à la limite on a nécessairement que \mathbb{P}_{ext} est le plus petit point fixe de G sur]0,1].

3.2 La population va-t-elle presque sûrement s'éteindre?

- Théorème 1 -

Si $m \leq 1$, alors $\mathbb{P}_{\text{ext}} = 1$.

Si m > 1, alors \mathbb{P}_{ext} est l'unique point fixe de G sur]0,1[.

Preuve:

Puisque G(1) = 1, le graphe de G coupe la droite y = x sur l'intervalle [0,1] au moins au point (1,1). On rappelle qu'on a deux cas :

- Si $p_0 + p_1 = 1$, le graphe de G est une droite et ce point d'intersection est le seul puisque $G(0) = p_0 \neq 0$.
- Sinon, G est strictement convexe (Proposition ??) et il existe au plus 2 un autre point d'intersection sur]0,1[.

Rappelons: $G'(1) = \sum_{n=1}^{\infty} np_n = m, G'(0) = p_1.$

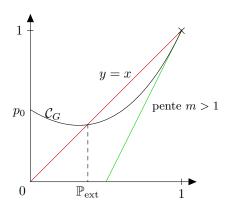


Figure 1 : Cas m > 1

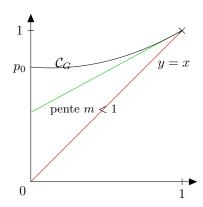


Figure 2 : Cas m < 1

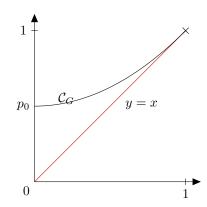


FIGURE 3 : Cas m = 1 avec $p_0 + p_1 < 1$

Supposons m > 1.

Alors G'-1 est une fonction croissante de $p_1-1<0$ (car $p_1=1\Rightarrow m=1$ ou bien plus simplement car $p_0>0$) à m-1>0, donc elle s'annule en un point $\alpha\in]0,1[$.

La fonction $G-\mathrm{Id}$ est alors décroissante sur $[0,\alpha]$ puis croissante sur $[\alpha,1]$. Comme $G(0)-0=p_0>0$ et G(1)-1=0, il existe un point dans l'intervalle $]0,\alpha]$ où $G-\mathrm{Id}$ s'annule.

 \mathbb{P}_{ext} est donc l'unique point fixe de G sur l'intervalle]0,1[(car G en a au plus 2).

x	0	$\mathbb{P}_{\mathrm{ext}}$	α		1
G'(x)-1	$p_1 - 1$	_	0	+	m-1
G(x) - x	<i>p</i> ₀	0	\ /		0

^{2.} Par l'absurde, soit y_1 et y_2 ($y_1 < y_2$) deux autres points fixes de G (différents de 1). Posons $f: x \mapsto G(x) - x$. Alors $f(y_1) = f(y_2) = f(1) = 0$ Donc (Rolle) $\exists c_1 \in]y_1, y_2[$, $c_2 \in]y_2, 1[$, tels que $f'(c_1) = f'(c_2) = 0$. Donc (Rolle) $\exists c_3 \in]c_1, c_2[$ tel que $f''(c_3) = 0$ (donc $c_3 < 1$. Donc $G''(c_3) = 0$. Absurde car G strictement convexe.

Supposons $m \leq 1$.

Alors G'-1 est une fonction croissante sur [0,1], négative ou nulle en 1; donc négative sur [0,1].

Donc G-Id est décroissante sur [0,1], et s'annule en 1. Comme cette fonction admet au plus 2 annulations, elle ne s'annule qu'en 1 (car sinon elle s'annulerait sur un intervalle non-réduit à un singleton).

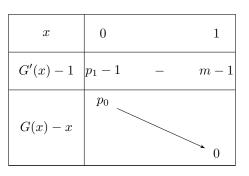
Par conséquent, $\mathbb{P}_{\text{ext}} = 1$.

Ou bien: [COT]

Pour s < 1 on a G'(s) < 1 et

$$\int_{s}^{1} G'(x) dx = 1 - G(s) < 1 - s.$$

c'est à dire G(s) > s: le graphe de G est entièrement situé au-dessus de la diagonale sur [0,1] et l'équation x=G(x) n'a que 1 comme racine de sorte que $\mathbb{P}_{\text{ext}} = 1$.



Petit truc en plus:

Supposons que l'équation G(x) = x admette une solution $0 . On a alors <math>p = \mathbb{P}_{\text{ext}}$ par la proposition précédente. De plus, puisque G(p)-p=0 et G(1)-1=0, le théorème de Rolle appliqué à $x\mapsto G(x)-x$ montre qu'il existe $z\in]p,1[$ tel que G'(z)=1. Comme G est strictement convexe on a nécessairement m = G'(1) > 1.

Bonus : Espérance de Z_n 4

On donne ici une première idée de l'évolution de la taille de la population, i.e. de la suite Z_n .

Proposition 4 —

On a $\mathbb{E}[Z_n] = m^n$.

Logique avec le théorème ?? lorsque $m \leq 1$ et $\mathbb{P}_{\text{ext}} = 1$.

Preuve:

On va raisonner par récurrence.

- $Z_0 = 1 \text{ donc } \mathbb{E}[Z_0] = 1 = m^0$.
- Pour $n \in \mathbb{N}$, supposons que $\mathbb{E}[Z_n] = m^n$.

<u>Méthode 1 :</u>

On peut dériver G_n (comme pour G), et on a, pour $s \in [0, 1]$,

$$G'_{n+1}(s) = G'(s)(G'_n \circ G(s))$$

Donc en 1:

$$G'_{n+1}(1) = \mathbb{E}[X](G'_n(G(1)) = mG'_n(1) = m^{n+1}$$

$$\underbrace{\mathbb{E}\left[Z_{n+1}\right]}_{} = \mathbb{E}\left[\sum_{i=1}^{Z_n} X_{i,n}\right] = \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{Z_n} X_{i,n} \middle| Z_n\right]\right] = \mathbb{E}\left[\mathbb{E}\left[\sum_{i=1}^{\infty} \mathbb{1}_{i \leqslant Z_n} X_{i,n} \middle| Z_n\right]\right] \\
= \mathbb{E}\left[\sum_{i=1}^{\infty} \mathbb{1}_{i \leqslant Z_n} \mathbb{E}\left[X_{i,n} \middle| Z_n\right]\right] \text{ (FT car } \geqslant 0 \text{ ps } \oplus \mathbb{1}_{i \leqslant Z_n} Z_n\text{-mesurable)} \\
= \mathbb{E}\left[\sum_{i=1}^{Z_n} \mathbb{E}\left[X_{i,n}\right]\right] \left(X_{i,n} \perp \!\!\!\perp Z_n\right) \\
= \mathbb{E}\left[\sum_{i=1}^{Z_n} m\right] = m\mathbb{E}\left[Z_n\right] = m^{n+1}$$

Ce qui conclut la récurrence.

Notes:

- ✓ A l'oral, on n'explique pas du tout l'histoire : juste brut de maths (ce sera forcément une question du jury). On va vite sur le 1 (6'), on ne fait pas le lemme du 2 (9'27), on fait le 3.2 géométriquement (13'51). Temps donné en allant hyper vite.
- \checkmark On parle également de processus de branchement.
- ✓ En fait, la suite (Z_n) est une chaîne de Markov issue de 1, dont l'espace d'états est dénombrable. L'état 0 est absorbant. La chaîne est transciente. La question est ici de savoir si elle "sort" de \mathbb{N} par 0 ou par l'infini.
- \checkmark À l'origine, ce modèle a été introduit par Galton en 1873 en vue d'étudier la statistique des patronymes dans l'Angleterre victorienne.
- A Francis Galton (1822 1911) est un homme de science britannique. Il fut anthropologue, explorateur, géographe, inventeur, météorologue, proto-généticien, psychométricien et statisticien. Il est entre autres fondateur de la psychologie différentielle ou comparée. Il a également mis en place de façon systématique la méthode d'identification des individus par empreintes digitales. Il fut anobli en 1909 et reçut la médaille Copley, décernée par la Royal Society.
- ♣ Henry Watson (1827 1903) est un mathématicien britanique. Il a écrit de nombreux livres sur les mathématiques appliquées à l'électricité et le magnétisme. A ne pas confondre avec George, célèbre pour ses travaux sur les fonctions spéciales.