Modelling of highly oscillatory phenomenon by neural networks

Maxime BOUCHEREAU - Université de Rennes (IRMAR)

PhD defense - 17^{th} October 2024

Ph. D supervisors: François CASTELLA - Philippe CHARTIER Mohammed LEMOU - Florian MEHATS

Motivation

Goal: Approximate solutions of highly oscillatory ODE's, of the form:

$$\begin{cases} \dot{y}^{\varepsilon}(t) &= f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\ y^{\varepsilon}(0) &= y_{0} \in \mathbb{R}^{d} \end{cases}$$
(1)

where $\tau \mapsto f(\tau, \cdot)$ is 2π -periodic, ε is a small parameter.

• Issue with standard methods: Error bound increasing when $\varepsilon \to 0$, e.g. with Forward Euler method: $y_{n+1} = y_n + hf\left(\frac{nh}{\varepsilon}, y_n\right)$:

$$\max_{0 \le n \le N} |y_n - y^{\varepsilon}(nh)| \le \frac{Ch}{\varepsilon}$$
(2)

・ロト ・部ト ・ミト ・モト

Motivation

Goal: Approximate solutions of highly oscillatory ODE's, of the form:

$$\begin{cases} \dot{y^{\varepsilon}}(t) = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\ y^{\varepsilon}(0) = y_{0} \in \mathbb{R}^{d} \end{cases}$$
(1)

where $\tau \mapsto f(\tau, \cdot)$ is 2π -periodic, ε is a small parameter.

• **Issue with standard methods:** Error bound increasing when $\varepsilon \to 0$, e.g. with Forward Euler method: $y_{n+1} = y_n + hf\left(\frac{nh}{\varepsilon}, y_n\right)$:

$$\max_{0 \le n \le N} |y_n - y^{\varepsilon}(nh)| \le \frac{Ch}{\varepsilon}$$
(2)

Motivation

Goal: Approximate solutions of highly oscillatory ODE's, of the form:

$$\begin{cases} \dot{y^{\varepsilon}}(t) = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\ y^{\varepsilon}(0) = y_{0} \in \mathbb{R}^{d} \end{cases}$$
(1)

where $\tau \mapsto f(\tau, \cdot)$ is 2π -periodic, ε is a small parameter.

• Issue with standard methods: Error bound increasing when $\varepsilon \to 0$, e.g. with Forward Euler method: $y_{n+1} = y_n + hf\left(\frac{nh}{\varepsilon}, y_n\right)$:

$$\max_{0 \le n \le N} |y_n - y^{\varepsilon}(nh)| \le \frac{Ch}{\varepsilon}$$
(2)

イロト イポト イヨト イヨト

Motivation

Goal: Approximate solutions of highly oscillatory ODE's, of the form:

$$\begin{cases} \dot{y^{\varepsilon}}(t) = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\ y^{\varepsilon}(0) = y_{0} \in \mathbb{R}^{d} \end{cases}$$
(1)

where $\tau \mapsto f(\tau, \cdot)$ is 2π -periodic, ε is a small parameter.

• Issue with standard methods: Error bound increasing when $\varepsilon \to 0$, e.g. with Forward Euler method: $y_{n+1} = y_n + hf\left(\frac{nh}{\varepsilon}, y_n\right)$:

$$\max_{0 \le n \le N} |y_n - y^{\varepsilon}(nh)| \le \frac{Ch}{\varepsilon}$$
(2)

Motivation: How to avoid these computations?

Main tools used:

- Function approximations by neural networks
- Backward error analysis for autonomous ODE's
- Averaging theory & Numerical methods for highly oscillatory ODE's

- 1 Introduction and previous results
- 2 Autonomous ODE's
- 3 Extension to highly oscillatory ODE's
- 4 Conclusion and perspectives

< ロト < 同ト < ヨト < ヨト

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

< ロト < 同ト < ヨト < ヨト

1 Introduction and previous results

- 2 Autonomous ODE's
- B Extension to highly oscillatory ODE's
- Conclusion and perspectives

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

(ロ) (日) (日) (日) (日)

Autonomous case: f is independent from τ : $\dot{y}(t) = f(y(t))$

Definition (Modified field w.r.t. a numerical method)

Let consider a one step numerical method $\Phi_h(\cdot)$. The modified vector field w.r.t. Φ_h , denoted \tilde{f}_h , is defined by the relation:

$$\varphi_{nh}^{f}(y_0) = \left(\Phi_h^{\tilde{f}_h}\right)^n(y_0) \tag{3}$$

Proposition (Properties of the modified field)

• Formal serie w.r.t. h: If
$$\Phi$$
 is of order p , then
 $\tilde{f}_h(y) = f(y) + h^p f_1(y) + h^{p+1} f_2(y) + \cdots$

• **Truncated modified field:** Let consider $\tilde{f}_h^{[q]}$ the truncated modified field $\tilde{f}_h^{[q]}(y) = f(y) + h^p f_1(y) + \dots + h^{p+q-2} f_{q-1}(y)$. Thus we have

$$\lim_{n \leq N} \left\| \left(\Phi_h^{\tilde{f}_h^{[q]}} \right)^n (y_0) - \varphi_{nh}^f(y_0) \right\| \leq C h^{p+q-1}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Autonomous case: f is independent from τ : $\dot{y}(t) = f(y(t))$

Definition (Modified field w.r.t. a numerical method)

Let consider a one step numerical method $\Phi_h(\cdot)$. The modified vector field w.r.t. Φ_h , denoted \tilde{f}_h , is defined by the relation:

$$\varphi_{nh}^{f}(y_0) = \left(\Phi_h^{\tilde{f}_h}\right)^n(y_0) \tag{3}$$

Proposition (Properties of the modified field)

• Formal serie w.r.t. h: If
$$\Phi$$
 is of order p , then
 $\tilde{f}_h(y) = f(y) + h^p f_1(y) + h^{p+1} f_2(y) + \cdots$

• **Truncated modified field:** Let consider $\tilde{f}_h^{[q]}$ the truncated modified field $\tilde{f}_h^{[q]}(y) = f(y) + h^p f_1(y) + \dots + h^{p+q-2} f_{q-1}(y)$. Thus we have

$$\int_{n \leq N} \left| \left(\Phi_h^{\tilde{f}_h} \right)^n (y_0) - \varphi_{nh}^f(y_0) \right| \leq C h^{p+q-1}$$

★ E > < E >

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

イロト イヨト イヨト イヨト

Autonomous case: f is independent from τ : $\dot{y}(t) = f(y(t))$

Definition (Modified field w.r.t. a numerical method)

Let consider a one step numerical method $\Phi_h(\cdot)$. The modified vector field w.r.t. Φ_h , denoted \tilde{f}_h , is defined by the relation:

$$\varphi_{nh}^{f}(y_0) = \left(\Phi_h^{\tilde{f}_h}\right)^n(y_0) \tag{3}$$

Proposition (Properties of the modified field)

• Formal serie w.r.t. h: If Φ is of order p, then $\tilde{f}_h(y) = f(y) + h^p f_1(y) + h^{p+1} f_2(y) + \cdots$

• **Truncated modified field:** Let consider $\tilde{f}_h^{[q]}$ the truncated modified field $\tilde{f}_h^{[q]}(y) = f(y) + h^p f_1(y) + \dots + h^{p+q-2} f_{q-1}(y)$. Thus we have

$$\max_{0 \leqslant n \leqslant N} \left| \left(\Phi_h^{\tilde{f}_h^{[q]}} \right)^n (y_0) - \varphi_{nh}^f(y_0) \right| \leqslant Ch^{p+q-1} \tag{4}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Autonomous case: example of modified field

$$\dot{y}(t) = ay(t) \tag{5}$$

メロト メポト メヨト メヨト

Modified field - Forward Euler:

$$\tilde{f}_h^{[0]}(y) = ay \tag{6}$$

$$\tilde{f}_{h}^{[q]}(y) = \left(a + \frac{h}{2}a^{2} + \dots + \frac{h^{q-1}}{q!}a^{q}\right)y$$
(7)

Error estimate:

$$\underset{0 \leqslant n \leqslant N}{Max} \left| e^{nha} y(0) - \left(\Phi_h^{\tilde{f}_h^{[q]}} \right)^n (y(0)) \right| \leqslant Ch^q \tag{8}$$

æ

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Autonomous case: example of modified field

Linear equation:

$$\dot{y}(t) = ay(t) \tag{5}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Modified field - Forward Euler:

$$\tilde{f}_h^{[0]}(y) = ay \tag{6}$$

$$\tilde{f}_{h}^{[q]}(y) = \left(a + \frac{h}{2}a^{2} + \dots + \frac{h^{q-1}}{q!}a^{q}\right)y$$
(7)

Error estimate:

$$\max_{0 \leqslant n \leqslant N} \left| e^{nha} y(0) - \left(\Phi_h^{\tilde{f}_h^{[q]}} \right)^n (y(0)) \right| \leqslant Ch^q \tag{8}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Autonomous case: example of modified field

Linear equation:

$$\dot{y}(t) = ay(t) \tag{5}$$

メロト メポト メヨト メヨト

Modified field - Forward Euler:

$$\tilde{f}_h^{[0]}(y) = ay \tag{6}$$

$$\tilde{f}_{h}^{[q]}(y) = \left(a + \frac{h}{2}a^{2} + \dots + \frac{h^{q-1}}{q!}a^{q}\right)y$$
(7)

$$\max_{0 \leqslant n \leqslant N} \left| e^{nha} y(0) - \left(\Phi_h^{\tilde{f}_h^{[q]}} \right)^n (y(0)) \right| \leqslant Ch^q \tag{8}$$

크

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Autonomous case: example of modified field

Linear equation:

$$\dot{y}(t) = ay(t) \tag{5}$$

イロト イポト イヨト イヨト

Modified field - Forward Euler:

$$\tilde{f}_h^{[0]}(y) = ay \tag{6}$$

$$\tilde{f}_{h}^{[q]}(y) = \left(a + \frac{h}{2}a^{2} + \dots + \frac{h^{q-1}}{q!}a^{q}\right)y$$
(7)

Error estimate:

$$\underset{0 \leq n \leq N}{\operatorname{Max}} \left| e^{nha} y(0) - \left(\Phi_h^{\tilde{f}_h^{[q]}} \right)^n (y(0)) \right| \leq Ch^q \tag{8}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

イロト イヨト イヨト イヨト

Learning hidden dynamics & structure preservation

- Learning dynamics: M. Raissi, P. Perdikaris, G. Em Karniadakis, 2018.
- Learning dynamics with Backward error analysis: Y. Zhu, P. Jin, B. Zhu, and Y. Tang, 2020
- Hamiltonian structure (HNN): M. David and F. Méhats, 2023.
- **Poisson structure (PNN):** P. Jin, Z. Zhang, I. G Kevrekidis, and G. Em Karniadakis, 2022.
- Free-divergence structure (VP-Nets): A. Zhu, B. Zhu, J. Zhang, Y. Tang, and J. Liu, 2022

Learning hidden dynamics & structure preservation

- Learning dynamics: M. Raissi, P. Perdikaris, G. Em Karniadakis, 2018.
- Learning dynamics with Backward error analysis: Y. Zhu, P. Jin, B. Zhu, and Y. Tang, 2020
- Hamiltonian structure (HNN): M. David and F. Méhats, 2023.
- **Poisson structure (PNN):** P. Jin, Z. Zhang, I. G Kevrekidis, and G. Em Karniadakis, 2022.
- Free-divergence structure (VP-Nets): A. Zhu, B. Zhu, J. Zhang, Y. Tang, and J. Liu, 2022

- A 同 ト A ヨ ト A ヨ ト

Learning hidden dynamics & structure preservation

- Learning dynamics: M. Raissi, P. Perdikaris, G. Em Karniadakis, 2018.
- Learning dynamics with Backward error analysis: Y. Zhu, P. Jin, B. Zhu, and Y. Tang, 2020
- Hamiltonian structure (HNN): M. David and F. Méhats, 2023.
- Poisson structure (PNN): P. Jin, Z. Zhang, I. G Kevrekidis, and G. Em Karniadakis, 2022.
- Free-divergence structure (VP-Nets): A. Zhu, B. Zhu, J. Zhang, Y. Tang, and J. Liu, 2022

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Highly oscillatory ODE's: Structure of solutions of $\dot{y}^{\varepsilon}(t) = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right)$

Theorem (P. Chartier, A. Murua, and J.M. Sanz-Serna - 2015)

There exists ε_0 s.t. for all $\varepsilon \in (0, \varepsilon_0]$, there exists $n_{\varepsilon} \in \mathbb{N}$ s.t. For all $t \in [0, T]$:

$$\left| y^{\varepsilon}(t) - \phi^{\varepsilon, [n_{\varepsilon}]}_{t} \left(\varphi^{F^{\varepsilon, [n_{\varepsilon}]}}_{t}(y_{0}) \right) \right| \leq M e^{-\frac{\beta \varepsilon_{0}}{\varepsilon}}$$
(9)

where:

 $F^{\varepsilon,[n_{\varepsilon}]}$ is the truncation at order $\mathcal{O}(\varepsilon^{n_{\varepsilon}})$ of averaged field F^{ε} . Structure: $F^{\varepsilon}(y) = \langle f \rangle(y) + \varepsilon F_1(y) + \varepsilon^2 F_2(y) + \cdots$, where $\langle f \rangle$ is the average field w.r.t. time variable:

$$\langle f \rangle(y) := \frac{1}{2\pi} \int_0^{2\pi} f(\tau, y) \mathrm{d}\tau$$
 (10)

• $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]}$ is the truncation at order $\mathcal{O}(\varepsilon^{n_{\varepsilon}})$ of high oscillation generator $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]}(y) = y + \varepsilon \tilde{\phi}_{1}(\tau,y) + \varepsilon^{2} \tilde{\phi}_{2}(\tau,y) + \cdots$ (Near to identity mapping) and is 2π -periodic w.r.t. τ .

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Highly oscillatory ODE's: Structure of solutions of $y^{\varepsilon}(t) = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right)$

Theorem (P. Chartier, A. Murua, and J.M. Sanz-Serna - 2015)

There exists ε_0 s.t. for all $\varepsilon \in (0, \varepsilon_0]$, there exists $n_{\varepsilon} \in \mathbb{N}$ s.t. For all $t \in [0,T]$:

$$\left| y^{\varepsilon}(t) - \phi^{\varepsilon, [n_{\varepsilon}]}_{\frac{t}{\varepsilon}} \left(\varphi^{F^{\varepsilon, [n_{\varepsilon}]}}_t(y_0) \right) \right| \leq M e^{-\frac{\beta \varepsilon_0}{\varepsilon}}$$
(9)

where:

• $F^{\varepsilon,[n_{\varepsilon}]}$ is the truncation at order $\mathcal{O}(\varepsilon^{n_{\varepsilon}})$ of averaged field F^{ε} . Structure: $F^{\varepsilon}(y) = \langle f \rangle(y) + \varepsilon F_1(y) + \varepsilon^2 F_2(y) + \cdots$, where $\langle f \rangle$ is the average field w.r.t. time variable:

$$\langle f \rangle(y) := \frac{1}{2\pi} \int_0^{2\pi} f(\tau, y) \mathrm{d}\tau$$
 (10)

• $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]}$ is the truncation at order $\mathcal{O}(\varepsilon^{n_{\varepsilon}})$ of high oscillation generator $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]}(y) = y + \varepsilon \tilde{\phi}_{1}(\tau, y) + \varepsilon^{2} \tilde{\phi}_{2}(\tau, y) + \cdots$ (Near to identity mapping) and is 2π -periodic w.r.t. τ .

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Highly oscillatory ODE's: UA method

Micro-Macro decomposition:

$$y^{\varepsilon}(t) = \phi_{\frac{t}{\varepsilon}}^{[p]}(v(t)) + w(t) \tag{11}$$

• Micro-Macro decomposition system:

$$\begin{pmatrix}
\dot{v}(t) = F^{[p]}(v(t)) \\
\dot{w}(t) = f\left(\frac{t}{\varepsilon}, \phi^{[p]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)\right) \\
- \left(\frac{1}{\varepsilon}\partial_{\tau}\phi^{[p]}_{\frac{t}{\varepsilon}} + \partial_{y}\phi^{[p]}_{\frac{t}{\varepsilon}}F^{[p]}\right)(v(t)) \\
(v,w)(0) = (y^{\varepsilon}(0), 0)
\end{cases}$$
(12)

• Numerical integration: Integrate this system with a standard numerical method of order p giving approximations $(v_n, w_n)_{0 \le n \le N}$ of $(v(nh), w(nh))_{0 \le n \le N}$. Approximation of $y^{\varepsilon}(nh)$ given by

$$y_n^{\varepsilon} := \phi_{\frac{nh}{\varepsilon}}^{[p]}(v_n) + w_n \tag{13}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Highly oscillatory ODE's: UA method

Micro-Macro decomposition:

$$y^{\varepsilon}(t) = \phi^{[p]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)$$
(11)

• Micro-Macro decomposition system:

$$\begin{pmatrix}
\dot{v}(t) = F^{[p]}(v(t)) \\
\dot{w}(t) = f\left(\frac{t}{\varepsilon}, \phi^{[p]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)\right) \\
- \left(\frac{1}{\varepsilon}\partial_{\tau}\phi^{[p]}_{\frac{t}{\varepsilon}} + \partial_{y}\phi^{[p]}_{\frac{t}{\varepsilon}}F^{[p]}\right)(v(t)) \\
(v,w)(0) = (y^{\varepsilon}(0), 0)
\end{cases}$$
(12)

• Numerical integration: Integrate this system with a standard numerical method of order p giving approximations $(v_n, w_n)_{0 \le n \le N}$ of $(v(nh), w(nh))_{0 \le n \le N}$. Approximation of $y^{\varepsilon}(nh)$ given by

$$y_n^{\varepsilon} := \phi_{\frac{nh}{\varepsilon}}^{[p]}(v_n) + w_n \tag{13}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Highly oscillatory ODE's: UA method

Micro-Macro decomposition:

$$y^{\varepsilon}(t) = \phi^{[p]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)$$
(11)

Micro-Macro decomposition system:

$$\begin{pmatrix}
\dot{v}(t) = F^{[p]}(v(t)) \\
\dot{w}(t) = f\left(\frac{t}{\varepsilon}, \phi^{[p]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)\right) \\
- \left(\frac{1}{\varepsilon}\partial_{\tau}\phi^{[p]}_{\frac{t}{\varepsilon}} + \partial_{y}\phi^{[p]}_{\frac{t}{\varepsilon}}F^{[p]}\right)(v(t)) \\
(v,w)(0) = (y^{\varepsilon}(0), 0)
\end{cases}$$
(12)

• Numerical integration: Integrate this system with a standard numerical method of order p giving approximations $(v_n, w_n)_{0 \le n \le N}$ of $(v(nh), w(nh))_{0 \le n \le N}$. Approximation of $y^{\varepsilon}(nh)$ given by

$$y_n^{\varepsilon} := \phi_{\frac{nh}{\varepsilon}}^{[p]}(v_n) + w_n \tag{13}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Highly oscillatory ODE's: UA method

Micro-Macro decomposition:

$$y^{\varepsilon}(t) = \phi^{[p]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)$$
(11)

• Micro-Macro decomposition system:

$$\begin{pmatrix}
\dot{v}(t) = F^{[p]}(v(t)) \\
\dot{w}(t) = f\left(\frac{t}{\varepsilon}, \phi^{[p]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)\right) \\
- \left(\frac{1}{\varepsilon}\partial_{\tau}\phi^{[p]}_{\frac{t}{\varepsilon}} + \partial_{y}\phi^{[p]}_{\frac{t}{\varepsilon}}F^{[p]}\right)(v(t)) \\
(v,w)(0) = (y^{\varepsilon}(0), 0)
\end{cases}$$
(12)

• Numerical integration: Integrate this system with a standard numerical method of order p giving approximations $(v_n, w_n)_{0 \le n \le N}$ of $(v(nh), w(nh))_{0 \le n \le N}$. Approximation of $y^{\varepsilon}(nh)$ given by

$$y_n^{\varepsilon} := \phi_{\frac{nh}{\varepsilon}}^{[p]}(v_n) + w_n \tag{13}$$

Backward error analysis for autonomous ODE's Highly oscillatory ODE's: theory & UA methods

Highly oscillatory ODE's: UA method

Theorem (P. Chartier, M. Lemou, F. Méhats, G. Vilmart - 2020)

$$\underset{0 \leq n \leq N}{Max} |y_n^{\varepsilon} - y^{\varepsilon}(nh)| \leq Ch^p$$
(14)

where $h = \frac{T}{N}$ and the constant C is independent from ε .

Introduction and previous results	
Autonomous ODE's	
Extension to highly oscillatory ODE's	
Conclusion and perspectives	

- Introduction and previous results
- 2 Autonomous ODE's
- **8** Extension to highly oscillatory ODE's
- **Output** Conclusion and perspectives

< ロト < 同ト < ヨト < ヨト

Introduction and previous results	General framework
Autonomous ODE's	
Extension to highly oscillatory ODE's	

Autonomous ODE:

$$\begin{pmatrix} \dot{y}(t) &= f(y(t)) \\ y(0) &= y_0 \end{cases}$$
(15)

• Numerical method: $\Phi_h(\cdot)$, assumed to be of order p.

• **Goal:** Approximate a truncated modified field \tilde{f}_h by a neural network $f_{\theta}(\cdot, h)$ in order to get an approximated solution $y_{\theta,n} = \left(\Phi_h^{f_{\theta}(\cdot,h)}\right)^n (y_0)$ very close to the exact solution y(nh).

General framework **Machine Learning method** Convergence result Numerical tests

Neural network structure

• Structure of f_{θ} (approximation of $\tilde{f}_{h}^{[q]}$):

$$f_{\theta}(y,h) = f(y) + h^{p} f_{\theta,1}(y) + h^{p+1} f_{\theta,2}(y) + \cdots + h^{q+p-2} f_{\theta,q-1}(y) + h^{q+p-1} R_{\theta}(y,h)$$
(16)

・ロト ・部ト ・ミト ・モト

General framework **Machine Learning method** Convergence result Numerical tests

Data creation

- Repeat for $0 \leq k \leq K 1$.
- Select time step $h^{(k)} \in [h_-, h_+]$ randomly.
- Select initial condition $y_0^{(k)} \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate but expensive integrator.

<ロト <部ト < 注入 < 注入

General framework **Machine Learning method** Convergence result Numerical tests

Data creation

• Repeat for $0 \leq k \leq K - 1$.

- Select time step $h^{(k)} \in [h_-, h_+]$ randomly.
- Select initial condition $y_0^{(k)} \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate but expensive integrator.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General framework **Machine Learning method** Convergence result Numerical tests

Data creation

- Repeat for $0 \leq k \leq K 1$.
- Select time step $h^{(k)} \in [h_-, h_+]$ randomly.
- Select initial condition $y_0^{(k)} \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate but expensive integrator.

< ロト < 同ト < ヨト < ヨト

Data creation

- Repeat for $0 \leq k \leq K 1$.
- Select time step $h^{(k)} \in [h_-, h_+]$ randomly.
- Select initial condition $y_0^{(k)} \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate but expensive integrator.

< ロト < 同ト < ヨト < ヨト

Data creation

- Repeat for $0 \leq k \leq K 1$.
- Select time step $h^{(k)} \in [h_-, h_+]$ randomly.
- Select initial condition $y_0^{(k)} \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate but expensive integrator.

Training

Training of the neural network: Optimization of:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0-1} \frac{1}{h^{(k)^{2p+2}}} \left| \underbrace{\Phi_{h^{(k)}}^{f_{\theta}(\cdot,h^{(k)})}(y_0^{(k)})}_{=\hat{y}_1^{(k)}} - y_1^{(k)} \right|^2$$

Good training: *Loss*_{*Train*} has the same decay pattern as:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \frac{1}{h^{(k)^{2p+2}}} \left| \Phi_{h^{(k)}}^{f_{\theta}(\cdot,h^{(k)})}(y_0^{(k)}) - y_1^{(k)} \right|^2$$

• At the end of the training: Good approximation f_{θ} of $\tilde{f}_{h}^{[q]}$ (only one training required).

Introduction and previous results Autonomous ODE's Extension to highly oscillatory ODE's Conclusion and perspectives Autonomous ODE's Convegence result Numerical tests

Training

Training of the neural network: Optimization of:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0-1} \frac{1}{h^{(k)^{2p+2}}} \left| \underbrace{\Phi_{h^{(k)}}^{f_\theta(\cdot,h^{(k)})}(y_0^{(k)})}_{=\hat{y_1}^{(k)}} - y_1^{(k)} \right|^2$$

6 Good training: $Loss_{Train}$ has the same decay pattern as:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \frac{1}{h^{(k)^{2p+2}}} \left| \Phi_{h^{(k)}}^{f_{\theta}(\cdot,h^{(k)})}(y_0^{(k)}) - y_1^{(k)} \right|^2$$

• At the end of the training: Good approximation f_{θ} of $\tilde{f}_{h}^{[q]}$ (only one training required).

Introduction and previous results Autonomous ODE's Extension to highly oscillatory ODE's Conclusion and perspectives Machine Learning method Convergence result Numerical tests

Training

Training of the neural network: Optimization of:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0-1} \frac{1}{h^{(k)^{2p+2}}} \left| \underbrace{\Phi_{h^{(k)}}^{f_{\theta}(\cdot,h^{(k)})}(y_0^{(k)})}_{=\hat{y_1}^{(k)}} - y_1^{(k)} \right|^2$$

6 Good training: $Loss_{Train}$ has the same decay pattern as:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \frac{1}{h^{(k)^{2p+2}}} \left| \Phi_{h^{(k)}}^{f_{\theta}(\cdot,h^{(k)})}(y_0^{(k)}) - y_1^{(k)} \right|^2$$

• At the end of the training: Good approximation f_{θ} of $\tilde{f}_{h}^{[q]}$ (only one training required).
Autonomous ODE's

Numerical integration

Numerical integration: We get a small numerical error:

$$e_{\theta,n} = \left(\Phi_h^{f_\theta(\cdot,h)}\right)^n (y_0) - \varphi_{nh}^f(y_0) \tag{17}$$

Denoting the **learning error** by

$$\delta := \max_{(y,h)\in\Omega\times[0,h_+]} \frac{\left|\tilde{f}_h^{[q]}(y) - f_\theta(y,h)\right|}{h^p}$$
(18)

.∋...>

Introduction and previous results	General framework
Autonomous ODE's	Machine Learning method
Extension to highly oscillatory ODE's	Convergence result
	Numerical tests

Theorem (M.B, P.Chartier, M.Lemou, F.Méhats - 2023¹)

Assuming that

• For any pair smooth vector fields f_1 and f_2 , we have

$$\forall 0 \le h \le h_+, \quad \left\| \Phi_h^{f_1} - \Phi_h^{f_2} \right\|_{L^{\infty}(\Omega)} \leqslant Ch \| |f_1 - f_2||_{L^{\infty}(\Omega)}$$
(19)

for some positive constant C, independent of f_1 and f_2 ;

• For any smooth vector field f, there exists a constant L > 0 such that $\forall 0 \le h \le h_+, \forall (y_1, y_2) \in \Omega^2$:

$$\Phi_{h}^{f}(y_{1}) - \Phi_{h}^{f}(y_{2}) \bigg| \leq (1 + Lh) |y_{1} - y_{2}|.$$
(20)

Then there exists positive constant C_{θ} such that:

$$\underset{0 \leq n \leq N}{\operatorname{Max}} |e_{\theta,n}| \leq C_{\theta} \delta h^p \tag{21}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

¹B, M., Chartier, P., Lemou, M., & Méhats, F. (2023). Machine Learning Methods for Autonomous Ordinary Differential Equations

Numerical test: Rigid Body system - Forward Euler

source: Wikipedia.org

with $(I_1, I_2, I_3) = (1, 2, 3).$

Parameters		
# Math Parameters:		
Interval where time steps are selected:	$[h_{-}, h_{+}] = [0.5, 2.5]$	
Time for ODE simulation:	$T = 20^{-1}$	
Time step for ODE simulation:	h = 0.5	
# AI Parameters:		
Domain where data are selected:	$\Omega = \left\{ x \in [-2, 2]^2 : 0.98 \leq x \leq 1.02 \right\}$	
Number of data:	K = 100000000	
Proportion of data for training:	$80\% - K_0 = 80000000$	
Number of terms in the perturbation (MLP's):	q = 1	
Hidden layers per MLP:	2	
Neurons on each hidden layer:	250	
Epochs:	200	

Computational time for training: 1 Day 21 h 59 min 51 s

Numerical test: Rigid Body system - Forward Euler

Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical flow with $f_{\theta}(\cdot, h)$) and local error (blue: exact flow and numerical flow with f, yellow: exact and numerical flow with $f_{\theta}(\cdot, h)$)

General framework Machine Learning method Convergence result **Numerical tests**

Numerical test: Rigid Body system - Forward Euler

Figure: Left: Integration errors (green: integration with f, red: integration with $f_{\theta}(\cdot, h)$). Right: Comparison between computational time and integration error (red: numerical method with f, green: integration with $f_{\theta}(\cdot, h)$, yellow: integration with DOPRI5).

Numerical test: Nonlinear Pendulum - Midpoint

$$\begin{cases} \dot{y_1} = -\sin(y_2) \\ \dot{y_2} = y_1 \end{cases}$$
(23)

《曰》 《聞》 《臣》 《臣》

Hamiltonian function:

$$H: y \mapsto \frac{1}{2}y_1^2 + (1 - \cos(y_2))$$
 (24)

General framework Machine Learning method Convergence result Numerical tests

Numerical test: Nonlinear Pendulum - Midpoint

Parameters	
# Math Parameters:	
Interval where time steps are selected:	$[h_{-}, h_{+}] = [0.05, 0.5]$
Time for ODE simulation:	T = 20
Time step for ODE simulation:	h = 0.25
# AI Parameters:	~
Domain where data are selected:	$\Omega = [-2, 2]^2$
Number of data:	K = 20000000
Proportion of data for training:	$80\% - K_0 = 16000000$
Number of terms in the perturbation (MLP's):	q = 1
Hidden layers per MLP:	2
Neurons on each hidden layer:	200
Epochs:	200

Computational time for data creation: 2 Days 21 h 49 min 50 s Computational time for training: 9 h 47 min 51 s

General framework Machine Learning method Convergence result Numerical tests

Numerical test: Nonlinear Pendulum - Midpoint

Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical flow with $f_{\theta}(\cdot, h)$) and local error (blue: exact flow and numerical flow with f, yellow: exact and numerical flow with $f_{\theta}(\cdot, h)$)

General framework Machine Learning method Convergence result Numerical tests

Numerical test: Nonlinear Pendulum - Midpoint

Figure: Left: Integration errors (green: integration with f, red: integration with $f_{\theta}(\cdot, h)$). Right: Evolution of the error between Hamiltonian $H: y \mapsto (1 - \cos(y_2)) + \frac{1}{2}y_1^2$ over the numerical flow and Hamiltonian at t = 0, $H(y_0)$.

Introduction and previous results	
Autonomous ODE's	
Extension to highly oscillatory ODE's	

- Introduction and previous results
- 2 Autonomous ODE's
- 3 Extension to highly oscillatory ODE's
- 4 Conclusion and perspectives

< ロト < 同ト < ヨト < ヨト

Introduction and previous results	
Autonomous ODE's	
Extension to highly oscillatory ODE's	

Goal: Find an approximation of the solution of

$$\begin{cases} \dot{y}^{\varepsilon}(t) = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\ y^{\varepsilon}(0) = y_{0} \end{cases}$$
(25)

• General strategy: Use the decomposition (9)

$$y^{\varepsilon}(t) \approx \phi^{\varepsilon, [n_{\varepsilon}]}_{\frac{t}{\varepsilon}} \left(\varphi^{F^{\varepsilon, [n_{\varepsilon}]}}_t(y_0) \right)$$
(26)

< ロト < 同ト < ヨト < ヨト

in order to approximate $F^{\varepsilon,[n_{\varepsilon}]}$ and $\phi^{\varepsilon,[n_{\varepsilon}]}(\cdot)$ with neural networks.

Introduction and previous results	
Autonomous ODE's	
Extension to highly oscillatory ODE's	

Goal: Find an approximation of the solution of

$$\begin{cases} \dot{y}^{\varepsilon}(t) = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\ y^{\varepsilon}(0) = y_{0} \end{cases}$$
(25)

• General strategy: Use the decomposition (9)

$$y^{\varepsilon}(t) \approx \phi_{\frac{t}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{t}^{F^{\varepsilon,[n_{\varepsilon}]}}(y_{0}) \right)$$
 (26)

in order to approximate $F^{\varepsilon,[n_{\varepsilon}]}$ and $\phi_{\cdot}^{\varepsilon,[n_{\varepsilon}]}(\cdot)$ with neural networks.

General Framework Machine Learning method Convergence result Numerical tests

Main idea

$$y^{\varepsilon}(t_{0}+h) \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0)) \right) \\ \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0)) \right) \right) \\ \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right)^{-1} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right) \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0)) \right) \right) \\ \approx \left(\phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right)^{-1} \right) \left(y^{\varepsilon}(t_{0}) \right)$$

$$\approx \left(\phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right)^{-1} \right) \left(y^{\varepsilon}(t_{0}) \right)$$

$$(27)$$

æ

Main idea

$$y^{\varepsilon}(t_{0}+h) \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0)) \right) \\ \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0)) \right) \right) \\ \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right)^{-1} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right) \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0)) \right) \right) \\ \approx \left(\phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right)^{-1} \right) \left(y^{\varepsilon}(t_{0}) \right)$$

$$\approx \left(\phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\phi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \right)^{-1} \right) \left(y^{\varepsilon}(t_{0}) \right)$$

$$(27)$$

æ

Main idea

$$y^{\varepsilon}(t_{0}+h) \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{t_{0}+h}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)$$

$$\approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}}\left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)\right)$$

$$\approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right) \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)\right)$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

æ

Introduction and previous results Autonomous ODE's Extension to highly oscillatory ODE's Conclusion and perspectives Autonomous ODE's Convergence result Numerical tests

Main idea

y'

$$\varepsilon(t_{0}+h) \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{t_{0}+h}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)$$

$$\approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}}\left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)\right)\right)$$

$$\approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right) \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)\right)\right)$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

æ

Introduction and previous results General Framework Autonomous ODE's Machine Learning method Extension to highly oscillatory ODE's Convergence result Conclusion and perspectives Numerical tests

Main idea

y'

$$\varepsilon(t_{0}+h) \approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{t_{0}+h}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)$$

$$\approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}}\left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)\right)\right)$$

$$\approx \phi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \left(\varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right) \left(\varphi_{t_{0}}^{F^{\varepsilon,[n_{\varepsilon}]}}(y^{\varepsilon}(0))\right)\right)$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \varphi_{h}^{F^{\varepsilon,[n_{\varepsilon}]}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{\widetilde{F^{\varepsilon,[n_{\varepsilon}]}}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

$$\approx \left(\varphi_{\frac{t_{0}+h}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]} \circ \Phi_{h}^{\widetilde{F^{\varepsilon,[n_{\varepsilon}]}}} \circ \left(\varphi_{\frac{t_{0}}{\varepsilon}}^{\varepsilon,[n_{\varepsilon}]}\right)^{-1}\right) (y^{\varepsilon}(t_{0}))$$

æ

General Framework Machine Learning method Convergence result Numerical tests

General Framework Machine Learning method Convergence result Numerical tests

Neural networks structures

• Structure of
$$F_{\theta}$$
 (approximation of $F_{h}^{\varepsilon, [n_{\varepsilon}]}(y)$):

$$F_{\theta}(y,h,\varepsilon) = \langle f \rangle(y) + R_{\theta,F}(y,h,\varepsilon)$$
(28)

• Structure of ϕ_{θ} (approximation of $\phi_{\tau}^{\varepsilon, [n_{\varepsilon}]}(y)$):

$$\phi_{\theta}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta}(1, 0, y, \varepsilon) \right]$$
(29)

Structure of $\phi_{ heta,-}$ (approximation of $\phi_{ au}^{arepsilon,[n_arepsilon]^{-1}}(y)$):

$$\phi_{\theta,-}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta,-}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta,-}(1, 0, y, \varepsilon) \right] \quad (30)$$

メロト メポト メヨト

General Framework **Machine Learning method** Convergence result Numerical tests

Neural networks structures

Structure of F_{θ} (approximation of $\widetilde{F_h^{\varepsilon,[n_{\varepsilon}]}}(y)$):

$$F_{\theta}(y,h,\varepsilon) = \langle f \rangle(y) + R_{\theta,F}(y,h,\varepsilon)$$
(28)

• Structure of ϕ_{θ} (approximation of $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]}(y)$):

$$\phi_{\theta}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta}(1, 0, y, \varepsilon) \right]$$
(29)

Structure of $\phi_{\theta,-}$ (approximation of $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]^{-1}}(y)$):

$$\phi_{\theta,-}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta,-}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta,-}(1, 0, y, \varepsilon) \right] \quad (30)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Framework Machine Learning method Convergence result Numerical tests

Neural networks structures

• Structure of
$$F_{\theta}$$
 (approximation of $\widetilde{F_{h}^{\varepsilon, [n_{\varepsilon}]}}(y)$):

$$F_{\theta}(y,h,\varepsilon) = \langle f \rangle(y) + R_{\theta,F}(y,h,\varepsilon)$$
(28)

• Structure of ϕ_{θ} (approximation of $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]}(y)$):

$$\phi_{\theta}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta}(1, 0, y, \varepsilon) \right]$$
(29)

Structure of $\phi_{\theta,-}$ (approximation of $\phi_{\tau}^{\varepsilon, [n_{\varepsilon}]^{-1}}(y)$):

$$\phi_{\theta,-}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta,-}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta,-}(1, 0, y, \varepsilon) \right] \quad (30)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Framework **Machine Learning method** Convergence result Numerical tests

Neural networks structures

• Structure of F_{θ} (approximation of $\widetilde{F_{h}^{\varepsilon,[n_{\varepsilon}]}}(y)$):

$$F_{\theta}(y,h,\varepsilon) = \langle f \rangle(y) + R_{\theta,F}(y,h,\varepsilon)$$
(28)

• Structure of ϕ_{θ} (approximation of $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]}(y)$):

$$\phi_{\theta}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta}(1, 0, y, \varepsilon) \right]$$
(29)

• Structure of $\phi_{\theta,-}$ (approximation of $\phi_{\tau}^{\varepsilon,[n_{\varepsilon}]^{-1}}(y)$):

$$\phi_{\theta,-}(\tau, y, \varepsilon) = y + \varepsilon \left[R_{\theta,-}(\cos(\tau), \sin(\tau), y, \varepsilon) - R_{\theta,-}(1, 0, y, \varepsilon) \right] \quad (30)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Framework **Machine Learning method** Convergence result Numerical tests

Data creation

- **Repeat for** $0 \leq k \leq K 1$.
- Select time step $h^k \in [h_-, h_+]$ randomly.
- Select high oscillation parameter $\varepsilon^k \in [\varepsilon_-, \varepsilon_+]$ randomly.
- Select initial conditions $t_0^k \in [0, 2\pi]$ and $y_0^k \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{t_0^k, h^k}^f(y_0^k)$ with accurate but expensive integrator.

<ロト <部ト < 注入 < 注入

General Framework Machine Learning method Convergence result Numerical tests

Data creation

• Repeat for $0 \leq k \leq K - 1$.

- Select time step $h^k \in [h_-, h_+]$ randomly.
- Select high oscillation parameter $\varepsilon^k \in [\varepsilon_-, \varepsilon_+]$ randomly.
- Select initial conditions $t_0^k \in [0, 2\pi]$ and $y_0^k \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{t_0^k, h^k}^f(y_0^k)$ with accurate but expensive integrator.

<ロト <部ト < 注入 < 注入

General Framework **Machine Learning method** Convergence result Numerical tests

Data creation

• Repeat for $0 \leq k \leq K - 1$.

- Select time step $h^k \in [h_-, h_+]$ randomly.
- Select high oscillation parameter $\varepsilon^k \in [\varepsilon_-, \varepsilon_+]$ randomly.
- Select initial conditions $t_0^k \in [0, 2\pi]$ and $y_0^k \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{t_0^k, h^k}^f(y_0^k)$ with accurate but expensive integrator.

< ロト < 同ト < ヨト < ヨト

General Framework **Machine Learning method** Convergence result Numerical tests

Data creation

- Repeat for $0 \leq k \leq K 1$.
- Select time step $h^k \in [h_-, h_+]$ randomly.
- Select high oscillation parameter $\varepsilon^k \in [\varepsilon_-, \varepsilon_+]$ randomly.
- Select initial conditions $t_0^k \in [0, 2\pi]$ and $y_0^k \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{t_0^k, h^k}^f(y_0^k)$ with accurate but expensive integrator.

イロト イヨト イヨト

General Framework **Machine Learning method** Convergence result Numerical tests

Data creation

- Repeat for $0 \leq k \leq K 1$.
- Select time step $h^k \in [h_-, h_+]$ randomly.
- Select high oscillation parameter $\varepsilon^k \in [\varepsilon_-, \varepsilon_+]$ randomly.
- Select initial conditions $t_0^k \in [0, 2\pi]$ and $y_0^k \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{t_0^k, h^k}^f(y_0^k)$ with accurate but expensive integrator.

< ロト < 同ト < ヨト < ヨト

General Framework **Machine Learning method** Convergence result Numerical tests

Data creation

- Repeat for $0 \leq k \leq K 1$.
- Select time step $h^k \in [h_-, h_+]$ randomly.
- Select high oscillation parameter $\varepsilon^k \in [\varepsilon_-, \varepsilon_+]$ randomly.
- Select initial conditions $t_0^k \in [0, 2\pi]$ and $y_0^k \in \Omega \subset \mathbb{R}^d$ randomly.
- Compute exact flow $y_1^{(k)} = \varphi_{t_0^k, h^k}^f(y_0^k)$ with accurate but expensive integrator.

General Framework **Machine Learning method** Convergence result Numerical tests

Training

• $Loss_{Train}$ optimization:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| y_1^k - \hat{y_1}^k \right|^2$$

$$+ \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| \phi_\theta \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) (y_0^k) - y_0^k \right|^2$$

$$+ \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_\theta \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) (y_0^k) - y_0^k \right|^2$$
(31)

æ

General Framework **Machine Learning method** Convergence result Numerical tests

Training

• $Loss_{Train}$ optimization:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0-1} \left| y_1^k - \hat{y_1}^k \right|^2$$

$$+ \frac{1}{K_0} \sum_{k=0}^{K_0-1} \left| \phi_\theta \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \left(y_0^k \right) - y_0^k \right|^2$$

$$+ \frac{1}{K_0} \sum_{k=0}^{K_0-1} \left| \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_\theta \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \left(y_0^k \right) - y_0^k \right|^2$$
(31)

ODE part:

$$\hat{y_1}^k = \phi_\theta \left(\frac{t_0^k + h^k}{\varepsilon^k}, \Phi_{h^k}^{F_\theta(\cdot, h^k, \varepsilon^k)} \left(\phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, y_0^k, \varepsilon^k \right) \right), \varepsilon^k \right).$$
(32)

+ Auto-encoder part

General Framework **Machine Learning method** Convergence result Numerical tests

Training

• $Loss_{Train}$ optimization:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| y_1^k - \hat{y_1}^k \right|^2$$
(31)
+ $\frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| \phi_{\theta} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) (y_0^k) - y_0^k \right|^2$
+ $\frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) (y_0^k) - y_0^k \right|^2$

$$\hat{y_1}^k = \phi_\theta \left(\frac{t_0^k + h^k}{\varepsilon^k}, \Phi_{h^k}^{F_\theta(\cdot, h^k, \varepsilon^k)} \left(\phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, y_0^k, \varepsilon^k \right) \right), \varepsilon^k \right).$$
(32)

+ Auto-encoder part

General Framework **Machine Learning method** Convergence result Numerical tests

Training

• $Loss_{Train}$ optimization:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| y_1^k - \hat{y_1}^k \right|^2$$
(31)
+
$$\frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| \phi_\theta \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) (y_0^k) - y_0^k \right|^2$$

$$+ \quad \frac{1}{K_0} \sum_{k=0}^{K_0-1} \left| \phi_{\theta,-} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) (y_0^k) - y_0^k \right|^2$$

ODE part:

$$\hat{y_1}^k = \phi_\theta \left(\frac{t_0^k + h^k}{\varepsilon^k}, \Phi_{h^k}^{F_\theta(\cdot, h^k, \varepsilon^k)} \left(\phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, y_0^k, \varepsilon^k \right) \right), \varepsilon^k \right).$$
(32)

+ Auto-encoder part

Training

Good training: $Loss_{Train}$ has the same decay pattern as:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| y_1^k - \hat{y_1}^k \right|^2$$

$$+ \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| \phi_\theta \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \left(y_0^k \right) - y_0^k \right|^2$$

$$+ \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_\theta \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \left(y_0^k \right) - y_0^k \right|^2.$$
(33)

At the end: Good approximation of F^{ε,[nε]}_h and φ^{ε,[nε]} after training (only one training required).

Training

Good training: $Loss_{Train}$ has the same decay pattern as:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| y_1^k - \hat{y_1}^k \right|^2$$
(33)
+ $\frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| \phi_{\theta} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \left(y_0^k \right) - y_0^k \right|^2$
+ $\frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| \phi_{\theta, -} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \circ \phi_{\theta} \left(\frac{t_0^k}{\varepsilon^k}, \cdot, \varepsilon^k \right) \left(y_0^k \right) - y_0^k \right|^2.$

• At the end: Good approximation of $F_h^{\varepsilon,[n_{\varepsilon}]}$ and $\phi^{\varepsilon,[n_{\varepsilon}]}$ after training (only one training required).

General Framework Machine Learning method Convergence result Numerical tests

Numerical integration inspired from Micro-Macro method

• Numerical integration for Macro part:

$$\begin{cases} v_{\theta,0} = y^{\varepsilon}(0) \\ \forall n \in \mathbb{N}, v_{\theta,n+1} = \Phi_h^{F_{\theta}(\cdot,h,\varepsilon)}(v_{\theta,n}) \end{cases}$$
(34)

• **Numerical integration for Micro part:** We introduce Micro part vector field:

$$g_{\theta}(\tau, w, v, \varepsilon) := f(\tau, \phi_{\theta}(\tau, v, \varepsilon) + w) - \frac{1}{\varepsilon} \partial_{\tau} \phi_{\theta}(\tau, v, \varepsilon) \quad (35)$$
$$- \partial_{y} \phi_{\theta}(\tau, v, \varepsilon) F_{\theta}(v, 0, \varepsilon)$$

$$\begin{cases}
w_{\theta,0} = 0 \\
\forall n \in \mathbb{N}, \quad w_{\theta,n+1} = \Phi_{nh,h}^{g_{\theta}\left(\frac{nh}{\varepsilon}, \cdot, v_{\theta,n}, \varepsilon\right)}(w_{\theta,n})
\end{cases}$$
(36)

Approximation of the solution:

$$\forall n \in \mathbb{N}, \quad y_{\theta,n}^{\varepsilon} = \phi_{\theta} \left(\frac{nh}{\varepsilon}, v_{\theta,n}, \varepsilon \right) + w_{\theta,n}. \tag{37}$$

Maxime BOUCHEREAU - Université de Rennes (IRMAR)

General Framework Machine Learning method Convergence result Numerical tests

Numerical integration inspired from Micro-Macro method

• Numerical integration for Macro part:

$$\begin{cases} v_{\theta,0} &= y^{\varepsilon}(0) \\ \forall n \in \mathbb{N}, v_{\theta,n+1} &= \Phi_h^{F_{\theta}(\cdot,h,\varepsilon)}(v_{\theta,n}) \end{cases}$$
(34)

• **Numerical integration for Micro part:** We introduce Micro part vector field:

$$g_{\theta}(\tau, w, v, \varepsilon) := f(\tau, \phi_{\theta}(\tau, v, \varepsilon) + w) - \frac{1}{\varepsilon} \partial_{\tau} \phi_{\theta}(\tau, v, \varepsilon) \quad (35)$$
$$- \partial_{y} \phi_{\theta}(\tau, v, \varepsilon) F_{\theta}(v, 0, \varepsilon)$$

$$\begin{cases} w_{\theta,0} = 0 \\ \forall n \in \mathbb{N}, \quad w_{\theta,n+1} = \Phi_{nh,h}^{g_{\theta}\left(\frac{nh}{\varepsilon}, \cdot, v_{\theta,n}, \varepsilon\right)}(w_{\theta,n}) \end{cases}$$
(36)

Approximation of the solution:

$$\forall n \in \mathbb{N}, \quad y_{\theta,n}^{\varepsilon} = \phi_{\theta} \left(\frac{nh}{\varepsilon}, v_{\theta,n}, \varepsilon \right) + w_{\theta,n}. \tag{37}$$

Maxime BOUCHEREAU - Université de Rennes (IRMAR)
General Framework Machine Learning method Convergence result Numerical tests

Numerical integration inspired from Micro-Macro method

• Numerical integration for Macro part:

$$\begin{cases} v_{\theta,0} &= y^{\varepsilon}(0) \\ \forall n \in \mathbb{N}, v_{\theta,n+1} &= \Phi_h^{F_{\theta}(\cdot,h,\varepsilon)}(v_{\theta,n}) \end{cases}$$
(34)

• **Numerical integration for Micro part:** We introduce Micro part vector field:

$$g_{\theta}(\tau, w, v, \varepsilon) := f(\tau, \phi_{\theta}(\tau, v, \varepsilon) + w) - \frac{1}{\varepsilon} \partial_{\tau} \phi_{\theta}(\tau, v, \varepsilon) \quad (35)$$
$$- \partial_{y} \phi_{\theta}(\tau, v, \varepsilon) F_{\theta}(v, 0, \varepsilon)$$

$$\begin{cases} w_{\theta,0} = 0 \\ \forall n \in \mathbb{N}, \quad w_{\theta,n+1} = \Phi_{nh,h}^{g_{\theta}\left(\frac{nh}{\varepsilon}, \cdot, v_{\theta,n}, \varepsilon\right)}(w_{\theta,n}) \end{cases}$$
(36)

Approximation of the solution:

$$\forall n \in \mathbb{N}, \quad y_{\theta,n}^{\varepsilon} = \phi_{\theta} \left(\frac{nh}{\varepsilon}, v_{\theta,n}, \varepsilon \right) + w_{\theta,n}. \tag{37}$$

3 × 4 3 ×

General Framework Machine Learning method Convergence result Numerical tests

Numerical integration inspired from Micro-Macro method

• Let introduce both learning errors:

$$\delta_{\phi} := \left\| \frac{\phi^{[p]} - \phi_{\theta}}{\varepsilon} \right\|_{W^{1,\infty}(\Omega \times [0,2\pi]), L^{\infty}([0,\varepsilon_{+}])}$$
(38)
$$\delta_{F} := \left\| \widetilde{F_{h}^{\varepsilon,[p],[q]}} - F_{\theta} \right\|_{L^{\infty}(\Omega \times [0,h_{+}] \times [0,\varepsilon_{+}])}$$
(39)

Introduction and previous results	General Framework
Autonomous ODE's	Machine Learning method
Extension to highly oscillatory ODE's	Convergence result
	Numerical tests

Theorem (M.B., P.Chartier, M.Lemou, F.Méhats - 2024)

Assuming that

• For $f_1, f_2: [0,T] \times \Omega \to \mathbb{R}^d$ smooth enough and $t \in [0,T]$, we have, for all h > 0,

$$\left| \left| \Phi_{t,h}^{f_1} - \Phi_{t,h}^{f_2} \right| \right|_{L^{\infty}(\Omega)} \leqslant Ch \left| \left| f_1 - f_2 \right| \right|_{L^{\infty}(\Omega)}$$
(40)

for some positive constant C > 0 independent from f_1 and f_2 .

• For $f: [0,T] \times \Omega \to \mathbb{R}^d$ smooth enough and $t \in [0,T]$, there exists $L_f > 0$ s.t. for all $y_1, y_2 \in \Omega$, for all h > 0, we have

$$\left| \Phi_{t,h}^{f}(y_{1}) - \Phi_{t,h}^{f}(y_{2}) \right| \leq (1 + L_{f}h)|y_{1} - y_{2}|$$
(41)

Then there exists positive constants C', M' such that:

$$\underset{0 \leq n \leq N}{Max} |e_{\theta,n}| \leq M' h^p + C' [\delta_F + \delta_{\phi}]$$
(42)

Numerical test: Van der Pol oscillator - Forward Euler

 $\begin{cases} \dot{q} = \frac{1}{\varepsilon}p\\ \dot{p} = -\frac{1}{\varepsilon}q + \left(\frac{1}{4} - q^2\right)p. \end{cases}$ (43)

by making the variable change $(y_1, y_2) \mapsto S\left(\frac{t}{\varepsilon}\right)(q, p)$, where $\tau \mapsto S(\tau)$ is given by

$$\tau \longmapsto S(\tau) = \begin{bmatrix} \cos(\tau) & -\sin(\tau) \\ \sin(\tau) & \cos(\tau) \end{bmatrix}$$
(44)

we get the system:

$$\begin{cases} y_1(t) &= -\sin\left(\frac{t}{\varepsilon}\right) \left[\frac{1}{4} - \left(y_1(t)\cos\left(\frac{t}{\varepsilon}\right) + y_2(t)\sin\left(\frac{t}{\varepsilon}\right)\right)^2\right] \left[-y_1(t)\sin\left(\frac{t}{\varepsilon}\right) + y_2(t)\cos\left(\frac{t}{\varepsilon}\right)\right] \\ y_2(t) &= \cos\left(\frac{t}{\varepsilon}\right) \left[\frac{1}{4} - \left(y_1(t)\cos\left(\frac{t}{\varepsilon}\right) + y_2(t)\sin\left(\frac{t}{\varepsilon}\right)\right)^2\right] \left[-y_1(t)\sin\left(\frac{t}{\varepsilon}\right) + y_2(t)\cos\left(\frac{t}{\varepsilon}\right)\right] \end{cases}$$

General Framework Machine Learning method Convergence result Numerical tests

Numerical test: Van der Pol oscillator - Forward Euler

Parameters		
# Math Parameters:		
Interval where time steps are selected:	$[h_{-}, h_{+}] = [10^{-3}, 10^{-1}]$	
Interval where small parameters are selected:	$[\varepsilon_{-}, \varepsilon_{+}] = [10^{-3}, 1]$	
Time for ODE simulation:	T = 1	
Time step for ODE simulation:	h = 0.01	
High oscillation parameter for ODE simulation:	$\varepsilon = 0.1$	
# Machine Learning Parameters:		
Domain where initial data are selected:	$\Omega = [-2, 2]^2$	
Number of data:	K = 20000000	
Proportion of data for training:	$80\% - K_0 = 16000000$	
Hidden layers per MLP:	2	
Neurons on each hidden layer:	200	
Epochs:	200	

Computational time for data creation: 2 Days 8 h 2 min 30 s Computational time for training: 3 Days 13 h 50 min 30 s

4 B K 4 B K

General Framework Machine Learning method Convergence result **Numerical tests**

Numerical test: Van der Pol oscillator - Forward Euler

Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, green: numerical flow with learned vector fields and local error (yellow) in the case $\varepsilon = 0.1$.

General Framework Machine Learning method Convergence result **Jumerical tests**

Numerical test: Van der Pol oscillator - Forward Euler

Figure: Left: Comparison between trajectories (dashed dark: exact flow, green: numerical flow with learned vector field) in the case $\varepsilon = 0.1$ after the inverse variable change. Right: Integration errors (each color corresponds to a parameter ε).

Numerical test: Inverted Pendulum - Midpoint

$$\begin{cases} \dot{y}_{1}^{\varepsilon}(t) = y_{2}^{\varepsilon}(t) + \sin\left(\frac{t}{\varepsilon}\right)\sin\left(y_{1}^{\varepsilon}(t)\right) \\ \dot{y}_{2}^{\varepsilon}(t) = \sin\left(y_{1}^{\varepsilon}(t)\right) - \frac{1}{2}\sin\left(\frac{t}{\varepsilon}\right)^{2}\sin\left(2y_{1}^{\varepsilon}(t)\right) - \sin\left(\frac{t}{\varepsilon}\right)\cos\left(y_{1}^{\varepsilon}(t)\right)y_{2}^{\varepsilon}(t) \end{cases}$$

$$\tag{45}$$

・ロト ・部ト ・ミト ・モト

General Framework Machine Learning method Convergence result Numerical tests

Numerical test: Inverted Pendulum - Midpoint

Parameters		
# Math Parameters:		
Interval where time steps are selected:	$[h_{-}, h_{+}] = [10^{-3}, 10^{-1}]$	
Interval where small parameters are selected:	$[\varepsilon_{-}, \varepsilon_{+}] = [10^{-3}, 1]$	
Time for ODE simulation:	T = 1	
Time step for ODE simulation:	h = 0.01	
High oscillation parameter for ODE simulation:	$\epsilon = 0.05$	
# Machine Learning Parameters:		
Domain where initial data are selected:	$\Omega = [-2, 2]^2$	
Number of data:	K = 1000000	
Proportion of data for training:	$80\% - K_0 = 800000$	
Hidden layers per MLP:	2	
Neurons on each hidden layer:	200	
Epochs:	200	

Computational time for data creation: 1 h 44 min 19 s Computational time for training: 9 h 11 min 8 s

4 3 4 3 4 3 4

Numerical test: Inverted Pendulum - Midpoint

Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, green: numerical flow with learned vector fields and local error (yellow) in the case $\varepsilon = 0.05$.

< ロト < 同ト < ヨト < ヨト

General Framework Machine Learning method Convergence result Numerical tests

Numerical test: Inverted Pendulum - Midpoint

Figure: Integration errors (each color corresponds to a parameter ε).

- Introduction and previous results
- 2 Autonomous ODE's
- **3** Extension to highly oscillatory ODE's
- 4 Conclusion and perspectives

メロト メタト メヨト

Conclusion - Main results:

- Performing of existing numerical methods to solve autonomous ODE's by usine Machine Learning to approximate truncated modified field¹.
- Approximation of averaged field and high oscillation generator (truncations) for highly oscillatory ODE's by adding auto-encoders².

Research perspectives:

• Include geometric properties for approximation of truncated averaged field and high oscillation generator (e.g. Hamiltonian equation of divergence free).

¹M. B., Philippe Chartier, Mohammed Lemou & Florian Méhats, Machine Learning Methods for Autonomous Ordinary Differential Equations, 2023, accepted in *Communications in Mathematical Sciences* in December 2023.

²M. B., Philippe Chartier, Mohammed Lemou & Florian Méhats, Machine Learning Methods for Highly Oscillatory Differential Equations, 2024, tod∰ submitted. ⇒ E ∽

Conclusion - Main results:

- Performing of existing numerical methods to solve autonomous ODE's by usine Machine Learning to approximate truncated modified field¹.
- Approximation of averaged field and high oscillation generator (truncations) for highly oscillatory ODE's by adding auto-encoders².

Research perspectives:

• Include geometric properties for approximation of truncated averaged field and high oscillation generator (e.g. Hamiltonian equation of divergence free).

¹M. B., Philippe Chartier, Mohammed Lemou & Florian Méhats, Machine Learning Methods for Autonomous Ordinary Differential Equations, 2023, accepted in *Communications in Mathematical Sciences* in December 2023.

²M. B., Philippe Chartier, Mohammed Lemou & Florian Méhats, Machine Learning Methods for Highly Oscillatory Differential Equations, 2024, to be submitted.

Conclusion - Main results:

- Performing of existing numerical methods to solve autonomous ODE's by usine Machine Learning to approximate truncated modified field¹.
- Approximation of averaged field and high oscillation generator (truncations) for highly oscillatory ODE's by adding auto-encoders².

Research perspectives:

• Include geometric properties for approximation of truncated averaged field and high oscillation generator (e.g. Hamiltonian equation of divergence free).

¹M. B., Philippe Chartier, Mohammed Lemou & Florian Méhats, Machine Learning Methods for Autonomous Ordinary Differential Equations, 2023, accepted in *Communications in Mathematical Sciences* in December 2023.

²M. B., Philippe Chartier, Mohammed Lemou & Florian Méhats, Machine Learning Methods for Highly Oscillatory Differential Equations, 2024, to be submitted.