Modelling of Highly oscillatory phenomenon by neural networks

Maxime BOUCHEREAU - Université de Rennes (IRMAR)

May 24, 2023 GTT - Paris

Ph. D supervisors:

Francois CASTELLA - Philippe CHARTIER Mohammed LEMOU - Florian MEHATS

Goal: solve highly oscillatory ODE's, of the form:

$$\begin{cases}
\dot{y}^{\varepsilon}(t) & = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\
y^{\varepsilon}(0) & = y_{0}
\end{cases} \tag{1}$$

where $\tau \mapsto f(\tau, \cdot)$ is 2π -periodic, by using numerical methods performed by machine learning. ε is a small parameter.

Main tools used:

- Function approximations by neural networks and structure preservation
- Modified field theory for autonomous ODE's
- Averaging theory & Numerical methods for highly oscillatory ODE's

- 1 Introduction
 - Function approximations by neural networks and structure preservation
 - Modified field theory for autonomous ODE's
 - Highly oscillatory ODE's: theory & UA methods
- Autonomous ODE's
 - General framework
 - Machine Learning method
 - Convergence result
 - Numerical tests Rigid Body system Forward Euler
 - Numerical tests Nonlinear Pendulum Midpoint method
- 3 Highly oscillatory ODE's
 - General Framework
 - Machine Learning method
 - Approximation of the solution
 - Numerical test Van der Pol oscillator Midpoint method
- Outlook

Introduction

Definition (Neural network - MLP)

A Multi-Layer Perceptron (MLP), is a mapping $\mathcal{N}: \mathbb{R}^{d_0} \longrightarrow \mathbb{R}^{d_L}$ given, for all $x \in \mathbb{R}^{d_0}$, by:

$$\mathcal{N}(x) = W_L \cdot \Sigma \left(\cdots W_1 \cdot \Sigma \left(W_0 \cdot x + b_0 \right) + b_1 \cdots \right) + b_L \tag{2}$$

where:

- L+1 is the number of layers. Shallow network: L=1, Deep network: $L \ge 2$. Layers 1 to L-1 are named hidden layers.
- \bullet $b_0 \in \mathbb{R}^{d_0}, b_1 \in \mathbb{R}^{d_1}, \dots, b_L \in \mathbb{R}^{d_L}$ are the **bias**.
- $W_0 \in \mathcal{M}_{d_1,d_0}(\mathbb{R}), W_1 \in \mathcal{M}_{d_2,d_1}(\mathbb{R}), \dots, W_L \in \mathcal{M}_{d_L,d_{L-1}}(\mathbb{R})$ are the weights. Lines of W_i 's are neurons.
- $\Sigma(y_1, \ldots, y_d) = (\sigma(y_1), \ldots, \sigma(y_d))$ is a component-wise nonlinear mapping σ , e.g. tanh, named activation function.

Theorem (Universal approximation)

Let $f \in C^0(\Omega, \mathbb{R}^k)$ where $\Omega \subset \mathbb{R}^d$ is compact. Then, for all $\varepsilon > 0$, there exists $\mathcal{N} : \mathbb{R}^d \longrightarrow \mathbb{R}^k$ a MLP s.t.

$$||f - \mathcal{N}||_{L^{\infty}(\Omega)} \leqslant \varepsilon$$
 (3)

Rate of convergence w.r.t. number of weights:

- Polynomial decay (L=1): Anastassiou, G. Quantitative approximations. Chapman and Hall/CRC, 2000.
- Polynomial-Exponential decay (L=3): De Ryck, T., Lanthaler, S., & Mishra, S. (2021). On the approximation of functions by tanh neural networks. Neural Networks, 143, 732-750.

Structure preservation. Example: hamiltonian structure of the neural network. For all $x \in \mathbb{R}^{2d}$

$$\mathcal{N}(x) = J\nabla \mathcal{H}(x) \tag{4}$$

where $\mathcal{H}: \mathbb{R}^{2d} \longrightarrow \mathbb{R}$ is a MLP.

- Hamiltonian structure (HNN): David, M., Méhats, F. Symplectic learning for Hamiltonian neural networks. arXiv preprint arXiv:2106.11753, 2021.
- Free-divergence structure (VP-Nets): Zhu, A., Zhu, B., Zhang, J., Tang, Y., Liu, J. VPNets: Volume-preserving neural networks for learning source-free dynamics. arXiv preprint arXiv:2204.13843, 2022.

Autonomous case: f is independent from τ .

Definition (Modified field w.r.t. a numerical method)

Let consider a one step numerical method $\Phi_h(\cdot)$. The modified vector field w.r.t. Φ_h , denoted \tilde{f}_h , is defined by the relation:

$$\varphi_{nh}^f(y_0) = \left(\Phi_h^{\tilde{f}_h}\right)^n(y_0) \tag{5}$$

Example: Forward Euler scheme, linear ODE: $\dot{y}(t) = ay(t)$, f(y) = ay.

$$y(nh) = e^{anh}y_0 = \left(1 + h \cdot \frac{e^{ha} - 1}{h}\right)^n y_0 \tag{6}$$

thus
$$\tilde{f}_h(y) = \left(\frac{e^{ha}-1}{h}\right) y$$

Proposition (Properties of the modified field)

- Formal serie w.r.t. h: If Φ is of order p, then $\tilde{f}_h(y) = f(y) + h^p f^{[1]}(y) + h^{p+1} f^{[2]}(y) + \cdots$
- Hamiltonian structure: If f is hamiltonian, then f_i 's and \tilde{f}_h are hamiltonian.

Backward error analysis: Hairer, E., Lubich, C., Wanner, G. Geometric Numerical integration: structure-preserving algorithms for ordinary differential equations. Springer, 2006.

Theorem (Solution of highly oscillatory ODE)

For all $t \in \mathbb{R}$:

$$y^{\varepsilon}(t) = \phi_{\frac{t}{\varepsilon}}^{\varepsilon} \left(\varphi_t^{F^{\varepsilon}}(y_0) \right) \tag{7}$$

where:

• F^{ε} is called **averaged field**. Structure: $F^{\varepsilon}(y) = \langle f \rangle(y) + \varepsilon F^{[1]}(y) + \varepsilon^2 F^{[2]}(y) + \cdots$, where $\langle f \rangle$ is the average field w.r.t. time variable:

$$\langle f \rangle(y) := \frac{1}{2\pi} \int_0^{2\pi} f(\tau, y) d\tau$$
 (8)

- $\phi_{\tau}^{\varepsilon}(y) = y + \varepsilon \cdot G^{\varepsilon}(\tau, y)$ (Near to identity mapping) and is 2π -periodic w.r.t. τ .
- Hamiltonian structure: If f is hamiltonian w.r.t. y, then F^{ε} , $\langle f \rangle$ and F_i 's are hamiltonian, ϕ is symplectic w.r.t. y.

Theorem (P. Chartier, M. Lemou, F. Méhats, G. Vilmart - 2020)

There exists a numerical method of order r, named uniformly accurate method, $\Phi_h(\cdot)$, s.t.

$$\underset{0 \leq n \leq N}{Max} \left| \left(\Phi_h \right)^n (y_0) - y^{\varepsilon}(nh) \right| \quad \leqslant \quad Ch^r \tag{9}$$

where $h = \frac{T}{N}$ and the constant C is independent from ε .

Uniformy accurate methods: Chartier, P., Lemou, M., Méhats, F., & Vilmart, G. (2020). A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations. Foundations of Computational Mathematics, 20, 1-33.

General framework
Machine Learning method
Convergence result
Numerical tests - Rigid Body system - Forward Euler
Numerical tests - Nonlinear Pendulum - Midpoint method

Autonomous ODE's

Autonomous ODE:

$$\begin{cases}
\dot{y}(t) &= f(y(t)) \\
y(0) &= y_0
\end{cases}$$
(10)

- **Numerical method:** $\Phi_h(\cdot)$, assumed to be of order p.
- Goal: Approximate the modified field \tilde{f}_h by a neural network $f_{app}(\cdot,h)$ in order to get approximated solution $y_n^* = \left(\Phi_h^{f_{app}(\cdot,h)}\right)^n(y_0)$ very close to the exact solution y(nh).

• Structure of f_{app} : Sum of N_t terms

$$f_{app}(y,h) = f(y) + h^{p} f_{1}(y) + h^{p+1} f_{2}(y) + \cdots + h^{N_{t}+p-2} f_{N_{t}-2}(y) + h^{N_{t}+p-1} R_{a}(y,h)$$

• Data creation: Computation of exact solutions $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate and expensive integrator, where $y_0^{(k)}$ is randomly selected in the compact set $\Omega \subset \mathbb{R}^d$, $h^{(k)}$ is randomly selected in $[h_-, h_+]$, for all $0 \le k \le K - 1$

• Training of the neural network: Optimization of:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \frac{1}{h^{(k)^{2p+2}}} \left| \underbrace{\Phi_{h^{(k)}}^{f_{app}(\cdot, h^{(k)})}(y_0^{(k)})}_{=\hat{y_1}^{(k)}} - y_1^{(k)} \right|^2$$

O Good training: $Loss_{Train}$ has the same decay pattern than:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \frac{1}{h^{(k)^{2p+2}}} \left| \Phi_{h^{(k)}}^{f_{app}(\cdot, h^{(k)})} (y_0^{(k)}) - y_1^{(k)} \right|^2$$

Numerical integration: $f_{app}(\cdot, h)$ is an accurate approximation of \tilde{f}_h , thus we get a small numerical error:

$$e_n^* = \left(\Phi_h^{f_{app}(\cdot,h)}\right)^n (y_0) - \varphi_{nh}^f(y_0) \tag{11}$$

Denoting the **learning error** by

$$\delta := \underset{(y,h)\in\Omega\times[h_-,h_+]}{\operatorname{Max}} \frac{\left|\tilde{f}_h(y,h) - f_{app}(y,h)\right|}{h^p} \tag{12}$$

Theorem (M.Bouchereau, P.Chartier, M.Lemou, F.Méhats - 2023¹)

Assuming that

• For any pair smooth vector fields f_1 and f_2 , we have

$$\forall 0 \le h \le h_+, \quad \left\| \left| \Phi_h^{f_1} - \Phi_h^{f_2} \right| \right|_{L^{\infty}(\Omega)} \leqslant Ch \left\| f_1 - f_2 \right\|_{L^{\infty}(\Omega)}$$
 (13)

for some positive constant C, independent of f_1 and f_2 ;

• For any smooth vector field f, there exists a constant L > 0 such that $\forall 0 \le h \le h_+, \forall (y_1, y_2) \in \Omega^2$:

$$\left| \Phi_h^f(y_1) - \Phi_h^f(y_2) \right| \leq (1 + Lh) |y_1 - y_2|.$$
 (14)

Then there exist two constants $\tilde{C}, \tilde{L} > 0$ such that:

$$\underset{0 \leq n \leq N}{Max} |e_n^*| \leq \frac{C\delta h^p}{\tilde{L}} \left(e^{\tilde{L}T} - 1 \right) \tag{15}$$

¹Bouchereau, M., Chartier, P., Lemou, M., & Méhats, F. (2023). Machine Learning Methods for Autonomous Ordinary Differential Equations. arXiv preprint arXiv:2304.09036.

$$\begin{cases} \dot{y_1} &= \left(\frac{1}{I_3} - \frac{1}{I_2}\right) y_2 y_3 \\ \dot{y_2} &= \left(\frac{1}{I_1} - \frac{1}{I_3}\right) y_1 y_3 \\ \dot{y_3} &= \left(\frac{1}{I_2} - \frac{1}{I_1}\right) y_1 y_2 \end{cases}$$

with $(I_1, I_2, I_3) = (1, 2, 3)$.

Parameters		
# Math Parameters:		
Interval where time steps are selected:	$[h_{-}, h_{+}] = [0.5, 2.5]$	
Time for ODE simulation:	T = 20	
Time step for ODE simulation:	h = 0.5	
# AI Parameters:	•	
Domain where data are selected:	$\Omega = \left\{ x \in [-2, 2]^2 : 0.98 \leqslant x \leqslant 1.02 \right\}$	
Number of data:	K = 100000000	
Proportion of data for training:	$80\% - K_0 = 80000000$	
Number of terms in the perturbation (MLP's):	$N_t = 1$	
Hidden layers per MLP:	2	
Neurons on each hidden layer:	250	
Epochs:	200	

Computational time for training: 1 Day 21 h 59 min 51 s

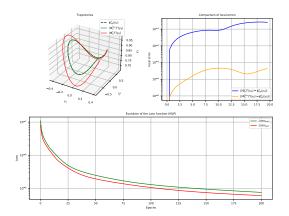
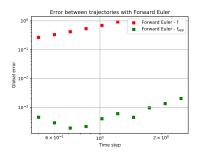


Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical flow with $f_{app}(\cdot,h)$) and local error (blue: exact flow and numerical flow with f, yellow: exact and numerical flow with $f_{app}(\cdot,h)$)



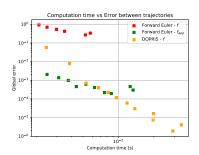


Figure: Left: Integration errors (green: integration with f, red: integration with $f_{app}(\cdot,h)$). Right: Comparison between computational time and integration error (red: numerical method with f, green: integration with $f_{app}(\cdot,h)$, yellow: integration with DOPRI5).

$$\begin{cases} \dot{y_1} = -\sin(y_2) \\ \dot{y_2} = y_1 \end{cases},$$

Hamiltonian function:

$$H: y \mapsto \frac{1}{2}y_1^2 + (1 - \cos(y_2))$$
 (16)

Parameters	
# Math Parameters:	
Interval where time steps are selected:	$[h, h_+] = [0.05, 0.5]$
Time for ODE simulation:	T = 20
Time step for ODE simulation:	h = 0.25
# AI Parameters:	
Domain where data are selected:	$\Omega = [-2, 2]^2$
Number of data:	K = 20000000
Proportion of data for training:	$80\% - K_0 = 16000000$
Number of terms in the perturbation (MLP's):	$N_t = 1$
Hidden layers per MLP:	2
Neurons on each hidden layer:	200
Epochs:	200

Computational time for training: $9\ h\ 47\ min\ 51\ s$

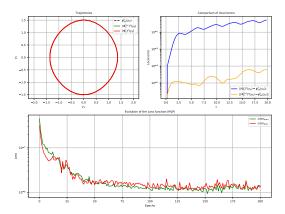
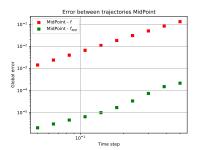


Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical flow with $f_{app}(\cdot,h)$) and local error (blue: exact flow and numerical flow with f, yellow: exact and numerical flow with $f_{app}(\cdot,h)$)



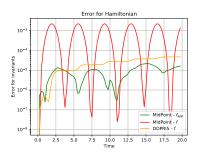


Figure: Left: Integration errors (green: integration with f, red: integration with $f_{app}(\cdot,h)$). Right: Evolution of the error between Hamiltonian $H: y \mapsto (1-\cos(y_2)) + \frac{1}{2}y_1^2$ over the numerical flow and Hamiltonian at t=0, $H(y_0)$.

General Framework Machine Learning method Approximation of the solution Numerical test - Van der Pol oscillator - Midpoint method

Highly oscillatory ODE's

• Goal: Find an approximation of the solution of

$$\begin{cases}
\dot{y}^{\varepsilon}(t) & = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\
y^{\varepsilon}(0) & = y_{0}
\end{cases}$$
(17)

• General strategy: Use the decomposition

$$y^{\varepsilon}(t) = \phi_{\frac{\varepsilon}{t}}^{\varepsilon} \left(\varphi_t^{F^{\varepsilon}}(y_0) \right)$$
 (18)

in order to approximate F^{ε} and $\phi^{\varepsilon}_{\cdot}(\cdot)$ with neural networks, denoted F^{ε}_{app} and $G^{\varepsilon}_{app}(\cdot,\cdot)$.

• Structure of F_{app}^{ε} : Sum of $N_t + 2$ terms.

$$F_{app}^{\varepsilon}(y) = F_0(y) + \varepsilon F_1(y) + \varepsilon^2 F_2(y) + \cdots + \varepsilon^{N_t} F_{N_t}(y) + \varepsilon^{N_t + 1} R(y, \varepsilon)$$

• Structure of G_{app}^{ε} : Identity & truncated Fourier serie.

$$G_{app}^{\varepsilon}(y,\tau) = y + \varepsilon \left[H_{app}^{1,s}(y,\varepsilon) \sin(\tau) + \dots + H_{app}^{N,s}(y,\varepsilon) \sin(N\tau) + H_{app}^{1,c}(y,\varepsilon) \left(\cos(\tau) - 1 \right) + \dots + H_{app}^{N,c}(y,\varepsilon) \left(\cos(N\tau) - 1 \right) \right],$$

• Data creation: Computation of exact solutions $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate and expensive integrator, where $y_0^{(k)}$ is randomly selected in the compact set $\Omega \subset \mathbb{R}^d$, $h^{(k)}$ is randomly selected in $[h_-, h_+]$, for all $0 \le k \le K - 1$

- First learning: Approximation of F^{ε} by F_{app}^{ε}
 - Data creation: Computation of exact solutions at time $t = 2\pi\varepsilon^{(k)}$ (stroboscopic time)

$$y_1^{(k)} \quad = \quad \varphi_{2\pi\varepsilon^{(k)}}^f(y_0^{(k)}) \quad = \quad \phi_{2\pi}^\varepsilon \left(\varphi_{2\pi\varepsilon^{(k)}}^{F^{\varepsilon^{(k)}}} \left(y_0^{(k)} \right) \right) \quad = \quad \varphi_{2\pi\varepsilon^{(k)}}^{F^{\varepsilon^{(k)}}} \left(y_0^{(k)} \right)$$

with accurate integrator where $y_0^{(k)}$ is randomly selected in the compact set $\Omega \subset \mathbb{R}^d$, $\varepsilon^{(k)}$ is randomly selected in $[\varepsilon_-, \varepsilon_+]$, for all $0 \le k \le K - 1$

Loss optimization: If we consider a numerical method of order p denoted Φ .(·), then we optimize the $Loss_{Train}$ function

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left(\frac{1}{2\pi\varepsilon^{(k)}}\right)^2 \left| \Phi_{2\pi\varepsilon^{(k)}}^{F_{app}^{\varepsilon(k)}} \left(y_0^{(k)}\right) - y_1^{(k)} \right|^2$$

• We get F_{app}^{ε} as an approximation of the modified field $F_{2\pi\varepsilon}^{\tilde{\varepsilon}} = F^{\varepsilon} + \mathcal{O}(\varepsilon^p)$ with a learning error δ

- Second learning: Approximation of F^{ε} by F_{app}^{ε}
 - **Oata creation:** Computation of exact solutions at time $t = \tau^{(k)} \varepsilon^{(k)}$

$$y_2^{(k)} \quad = \quad \varphi_{\tau^{(k)}\varepsilon^{(k)}}^f(y_0^{(k)}) \quad = \quad \phi_{\tau^{(k)}}^{\varepsilon^{(k)}} \left(\varphi_{\tau^{(k)}\varepsilon^{(k)}}^{F^{\varepsilon^{(k)}}} \left(y_0^{(k)} \right) \right)$$

and exact flow associated to $F_{app}^{\varepsilon^{(k)}}$ at time $t=\tau^{(k)}\varepsilon^{(k)}$

$$z_0^{(k)} = \varphi_{app}^{F_{app}^{\varepsilon(k)}} \left(y_0^{(k)} \right)$$
 (19)

with accurate integrator where $y_0^{(k)}$ is randomly selected in the compact set $\Omega \subset \mathbb{R}^d$, $\varepsilon^{(k)}$ is randomly selected in $[\varepsilon_-, \varepsilon_+]$, $\tau^{(k)}$ is randomly selected in $[0, 2\pi]$, for all $0 \le k \le K' - 1$

• Loss optimization: If we consider a numerical method of order p denoted Φ .(·), then we optimize the $Loss_{Train}$ function

$$Loss_{Train} = \frac{1}{K'_0} \sum_{k=0}^{K'_0-1} \left| G_{app}^{\varepsilon^{(k)}} \left(\tau^{(k)}, z_0^{(k)} \right) - y_2^{(k)} \right|^2$$

• We get $G_{app}^{\varepsilon}(\cdot,\cdot)$ as an approximation of the map ϕ with a learning error δ' .

We get an approximated solution of the ODE:

$$y^*(t) = G_{app}^{\varepsilon} \left(\frac{t}{\varepsilon}, \varphi_t^{F_{app}^{\varepsilon}}(y_0) \right)$$
 (20)

Proposition

For T > 0, there exists a constant C > 0 s.t.

$$\max_{0 \leqslant t \leqslant T} |y^*(t) - y^{\varepsilon}(t)| \leqslant C(\delta + \delta')$$
(21)

$$\begin{cases} \dot{q} & = & p \\ \dot{p} & = & -q + \varepsilon \left(\frac{1}{4} - q^2\right) p \end{cases}$$
 (22)

by the first variable change $t\mapsto \frac{t}{\varepsilon}$ and then the second variable change, i.e. multiplication by the matrix:

$$\left[\begin{array}{cc} \cos\left(\frac{t}{\varepsilon}\right) & -\sin\left(\frac{t}{\varepsilon}\right) \\ \sin\left(\frac{t}{\varepsilon}\right) & \cos\left(\frac{t}{\varepsilon}\right) \end{array}\right]$$

we get the system:

$$\begin{cases} & y_1(t) &= & -\sin\left(\frac{t}{\varepsilon}\right) \left[\frac{1}{4} - \left(y_1(t)\cos\left(\frac{t}{\varepsilon}\right) + y_2(t)\sin\left(\frac{t}{\varepsilon}\right)\right)^2\right] \left[-y_1(t)\sin\left(\frac{t}{\varepsilon}\right) + y_2(t)\cos\left(\frac{t}{\varepsilon}\right)\right] \\ & y_2(t) &= & \cos\left(\frac{t}{\varepsilon}\right) \left[\frac{1}{4} - \left(y_1(t)\cos\left(\frac{t}{\varepsilon}\right) + y_2(t)\sin\left(\frac{t}{\varepsilon}\right)\right)^2\right] \left[-y_1(t)\sin\left(\frac{t}{\varepsilon}\right) + y_2(t)\cos\left(\frac{t}{\varepsilon}\right)\right] \end{cases}$$

Parameters		
# Math Parameters:		
Interval small parameters ε are selected:	$[\varepsilon_{-}, \varepsilon_{+}] = [0.01, 0.1]$	
Time for ODE simulation:	T=10	
Small parameter for ODE simulation:	$\varepsilon = 0.1$	
# AI Parameters:		
Domain where data are selected (both training):	$\Omega = [-2, 2]^2$	
Number of data (both training):	K = 1000000	
Proportion of data for training (both training):	$80\% - K_0 = 800000$	
Number of terms in F_{app}^{ε} (MLP's):	$N_t = 5$	
Number of Fourier coefficients in $G_{app}^{\varepsilon}(\cdot)$:	N=4	
Hidden layers per MLP (both training):	2	
Neurons on each hidden layer (first training):	200	
Neurons on each hidden layer (second training):	25	
Epochs (both training):	200	

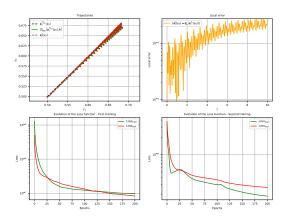


Figure: Integration (green: approximated solution, red: exact solution, orange: numerical error), Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$, Left: first training, Right: second training)

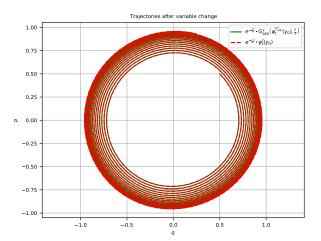


Figure: Integration after inverse variable change (green: approximated solution, red: exact solution)

- Get a consistent numerical method for highly oscillatory ODE's like in autonomous case. Idea: performing existing UA methods & adaptation of modified field theory to nonautonomous ODE's.
- Study geometric properties and energy conservation (e.g. hamiltonian highly oscillatory ODE's).

Thanks for your attention!