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Goal: solve highly oscillatory ODE’s, of the form:

{ ys(t) = f(é,ys(t)) (1)
y°(0) Yo

where 7 — f(7,+) is 2m-periodic, by using numerical methods performed by
machine learning. ¢ is a small parameter.

Main tools used:

@ Function approximations by neural networks and structure preservation
@ Modified field theory for autonomous ODE’s

@ Averaging theory & Numerical methods for highly oscillatory ODE’s
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Definition (Neural net

A Multi-Layer Perceptron (MLP), is a mapping N : R% — R given,
for all & € R, by:

where:

N(l’) = WL'E("'Wl'E(W0~$+bo)+b1~“)+b[, (2)

L + 1 is the number of layers. Shallow network: L =1, Deep
network: L > 2. Layers 1 to L — 1 are named hidden layers.

bo € R by € R, ... b, € R are the bias.

Wo € Mg, .ao(R), W1 € Ma,.a,(R),..., WL € Mg, a, ,(R) are the
wetghts. Lines of W;’s are neurons.

S(y1,---59d) = (0(y1),...,0(ya)) is a componant-wise nonlinear
mapping o, e.g. tanh, named activation function.
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Theorem (Universal approximation)

Let f € C°(Q,R*) where Q@ C R is compact. Then, for all € > 0, there
exists N : RY — R* o MLP s.t.

If =Mlpeeiey < ¢ 3)

Rate of convergence w.r.t. number of weights:

@ Polynomial decay (L = 1): Anastassiou, G. Quantitative
approzimations. Chapman and Hall/CRC, 2000.

@ Polynomial-Exponential decay (L = 3): De Ryck, T., Lanthaler,
S., & Mishra, S. (2021). On the approximation of functions by tanh
neural networks. Neural Networks, 143, 732-750.
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Structure preservation. Example: hamiltonian structure of the neural
network. For all x € R?¢

N(z) = JVH(z) (4)

where H : R?** — R is a MLP.

@ Hamiltonian structure (HNN): David, M., Méhats, F. Symplectic
learning for Hamiltonian neural networks. arXiv preprint
arXiv:2106.11753, 2021.

@ Free-divergence structure (VP-Nets): Zhu, A., Zhu, B., Zhang,
J., Tang, Y., Liu, J. VPNets: Volume-preserving neural networks for
learning source-free dynamics. arXiv preprint arXiv:2204.13843, 2022.
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Autonomous case: f is independant from 7.

Definition (Modified field w.r.t. a numerical method)

Let consider a one step numerical method ®p,(-). The modified vector
field w.r.t. @, denoted fr, is defined by the relation:

etao) = (o) (o) (5)

Example: Forward Euler scheme, linear ODE: y(t) = ay(t), f(y) = ay.

an hn._l n
y(nh) = My = <1+h'eT> Yo (6)

thus fi(y) = (52) v
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Proposition (Properties of the modified field

@ Formal serie w.r.t. h: If ® is of order p, then
Fu() = £(y) + B (y) + B y) + -

@ Hamuiltonian structure: If f is hamiltonian, then f;’s and fh are
hamiltonian.

Backward error analysis: Hairer, E., Lubich, C., Wanner, G. Geometric
Numerical integration: structure-preserving algorithms for ordinary
differential equations. Springer, 2006.




Introduction

For all t € R:

where:

@ F*¢ is called averaged field. Structure:
Fe(y) = (f)(y) + eFU] (y) + 52F[2](y) + -+, where (f) is the average
field w.r.t. time variable:

1 27

Ny) = o= [ [flrydr (8)

21 Jo
@ ¢(y)=y+e-G(r,y) (Near to identity mapping) and is 2w-periodic
w.r.t. T.

@ Hamiltonian structure: If f is hamiltonian w.r.t. y, then F, (f)
and F;’s are hamiltonian, ¢ is symplectic w.r.t. y.
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Lemou,

There exists a numerical method of order r, named uniformly accurate
method, (), s.t.

Maz |(®r)" (yo) =y (nh)| < ChH 9)

0<n<N

where h = % and the constant C is independant from e.

Uniformy accurate methods: Chartier, P., Lemou, M., Méhats, F., &
Vilmart, G. (2020). A new class of uniformly accurate numerical schemes
for highly oscillatory evolution equations. Foundations of Computational

Mathematics, 20, 1-33.
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@ Autonomous ODE:

{0

@ Numerical method: ®(-), assumed to be of order p.

I (y(t)
Yo (10)

@ Goal: Approximate the modified field f, by a neural network
fapp(+, h) in order to get approximated solution y,, = (@{f”("h)) (vo)
very close to the exact solution y(nh).
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@ Structure of fupp: Sum of N, terms

fapp(ush) = fy) + R fr(y) + P faly) + -
+ RN f, o (y) + RV Ry, )

@ Data creation: Computation of exact solutions y%k) = gp}’:(k) )

with accurate and expensive integrator, where yék) is randomly

selected in the compact set Q € R?, h® is randomly selected in
[h—,hy] ,foral0 < k<K -1
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@ Training of the neural network: Optimization of:

Ko—1

1 1 Fapp (B o (k)Y (k)|
LosSTrain = Ko Z B(E)2PTZ <I>h(5§’ (Z/o )—211
k=0
—yjy ()
@ Good training: Lossrrqin has the same decay pattern than:
K—1 2
1 1 Fapp (R )Y 0 (k) (k)
LoSSTest = K — K, Z B (k)2P T2 q)h(,ff (yo )_yl

k=Ko




General fran

Autonomous ODE’s Machin
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@ Numerical integration: fo,;(:,h) is an accurate approximation of
fn, thus we get a small numerical error:

* a SR\
en = (‘P;fLPP( )) (¥0) = P (v0) (11)

Denoting the learning error by

‘fh(yv h) - fapp(lh h’)
0 = Max (12)

(y,h)ex[h_,h ] hp
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Theorem (M.Bouchereau, P.Chartier

Assuming that
@ For any pair smooth vector fields fi1 and f2, we have

ey S Chl|fr = fallpoo () (13)

VO < h < ha, H@ﬁl — o

for some positive constant C, independent of fi and fa;
@ For any smooth vector field f, there exists a constant L > 0 such that
YO < h < by, V(y1,y2) € Q°:

< (L4 Lh) [y — g2l (14)

of (1) — ® (y2)

Then there exist two constants C, L > 0 such that:
P -
Coh (eLT - 1) (15)

.
< =
Ofg\{%vlen\ S

IBouchereau, M., Chartier, P., Lemou, M., & Méhats, F. (2023). Machine
Learning Methods for Autonomous Ordinary Differential Equations. arXiv
preprint arXiv:2304.09036.
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. _ 1 1
B = Ts To Y2y3
_ 1 1
Y2 = 7 I ) Y1¥s
. _ 1 1
Yys = Ta T Y1y2
with (I1, I2, Is) = (1,2, 3).
Parameters
# Math Parameters:
Interval where time steps are selected: = [0.5,2.5]
Time for ODE simulation:
Time step for ODE simulation:
7 Al Parameters:
Domain where data are selected: - {I €1-2,212:0.98 < |z| < 1.02}
Number of data: K = 100000000
Proportion of data for training: 80% - Kqg = 80000000
Number of terms in the perturbation (MLP’s): Ny =1
Hidden layers per MLP: 2
Neurons on each hidden layer: 250
Epochs: 200

Computational time for training: 1 Day 21 h 59 min 51 s




General framework
Machine Learning method

Autonomous ODE’s 5
Convergence result

Numerical tests - Rigid Body system - Forward Euler
Numerical tests - Nonlinear Pendulum - Midpoint method

Trajecories Comparison o loca emars

Evalution o the Loss function (LP)

o 25 0 s 10 125 150 s 200

Figure: Comparison between Loss decays (green: Lossrygin, red: Lossrest),
trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical
flow with fapp(-, h)) and local error (blue: exact flow and numerical flow with f,
yellow: exact and numerical flow with fapp(-, h) )
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Error between trajectories with Forward Euler Computation time vs Error between trajectories

100 w ™ ® ForwardEuler-f 1007 & g m  Forward Euler - f
- " W Forward Euler - fopp " . an W Forward Euler - fopp
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Figure: Left: Integration errors (green: integration with f, red: integration with
fapp (-, h)). Right: Comparison between computational time and integration error
(red: numerical method with f, green: integration with fapp(-, k), yellow:
integration with DOPRI5).
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Y2 = Y1
Hamiltonian function:

Learning

rk
method

result

t

- Nonlinear Pendulum - Midpoint method

1
H:y 5y5+(1—608(y2))

Number of data:
Proportion of data for training:

Parameters
# Math Parameters:
Interval where time steps are selected: [h_, hi] = [0.05,0.5]
Time for ODE simulation: T = 20
Time step for ODE simulation: h = 0.2
# Al Parameters:
Domain where data are selected: Q=[-2,2]2

K = 20000000
80% - Kg = 16 000 000

Number of terms in the perturbation (MLP’s): Ny =1
Hidden layers per MLP: 2
Neurons on each hidden layer: 200
Epochs: 200

Computational time for training: 9 h 47 min 51 s
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Evalution o the Loss function (LP)
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Figure: Comparison between Loss decays (green: Lossrygin, red: Lossrest),
trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical
flow with fapp(-, h)) and local error (blue: exact flow and numerical flow with f,

yellow: exact and numerical flow with fapp(-, h) )
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Numerical tests - Rigid Body system - Fo wrd Euler
Numerical te: - Nonlinear Pendulum - Midpoint method

Error between trajectories MidPoint Error for Hamiltonian
10-1] = Midpoint - £ =
L] -3
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Figure: Left: Integration errors (green: integration with f, red: integration with
fapp(+, h)). Right: Evolution of the error between Hamiltonian
H:yw— (1—-cos(y2)) + %y% over the numerical flow and Hamiltonian at ¢t = 0,

H(yo).
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@ Goal: Find an approximation of the solution of

{zf(t) = f(Gy®) (17)

Yo

<
o
—~
(=)
=
\

@ General strategy: Use the decomposition

<
o
—
~
=
©-

3 (of (w0) (18)

in order to approximate F° and ¢%(-) with neural networks, denoted
Fepp and GGpp (-, 0).




Highly oscillatory ODE’s . e solution
Numerical test - Van der Pol oscillator - Midpoint method

@ Structure of F(fpp: Sum of N; + 2 terms.

Fop(y) = Fo(y)+eFi(y) +*Fa(y) +-
+ NPy, (y) + eV R(y,e)

@ Structure of G5,,: Identity & truncated Fourier serie.

Gapp(y,7)

y+e [Ham, (y,e)sin(r) +--- + Hﬁ,; (y,e) sin(NT)
+Hi, (4,9) (cos(r) = 1) 4+ -+ Hipy (4,) (cos(NT) — 1)]

(k) (k)

@ Data creation: Computation of exact solutions y;"’ = gp}’:(k) (yo ')

with accurate and expensive integrator, where y( ) is randomly
selected in the compact set Q € R?, h® is randomly selected in
[h—,hy] , foral 0 < k<K -1
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@ First learning: Approximation of F* by Fg,,

@ Data creation: Computation of exact solutions at time t = 2me(F)
(stroboscopic time)

k k < (k) k (k) &
y§ - Sogm(k) (y((J >) = 5 (ﬁmm (y(() >> = <02Fﬂ_6(k) (y(g >>

with accurate integrator where y(()k) is randomly selected in the compact

set Q C R?, £(F) is randomly selected in [e_,e4] , for all 0 < k < K — 1
@ Loss optimization: If we consider a numerical method of order p
denoted ®.(+), then we optimize the LossT,qin function

1 ! 1N FE gy (%) ’
) - app _
LossTrgin = o kZ:O (27r5(k)) <I>2Tr5(k) (yo > Y
@ We get Fp,, as an approximation of the modified field

FE

2me

= F*¢ + O(eP) with a learning error ¢
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@ Second learning: Approximation of F by Fy

app
@ Data creation: Computation of exact solutions at time t = (R (k)
& _ Ry e (e ( <k>)
Yo = ‘PT(k)E(k)(yo ) = L)\ Prk) () \ Yo
and exact flow associated to F‘f;? at time t = 7(K)g(k)
(k)
k Fg k
2= el (v87) (19)

with accurate integrator where yék) is randomly selected in the compact
set Q C R?, £(F) is randomly selected in [e_,e4] , 7(¥) is randomly
selected in [0,27] , foral 0 < k< K/ — 1

@ Loss optimization: If we consider a numerical method of order p
denoted ®.(-), then we optimize the LossTrqin function

/

Losstoain = = 30 |Gi) (8,9 - 4
k=0

‘2
4
K

@ We get G¢, (+,) as an approximation of the map ¢ with a learning
error ¢&'.

app
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We get an approximated solution of the ODE:

* e Foy
y (t) = Gapp ga ‘Pt or (yO) (20)

For T > 0, there exists a constant C > 0 s.t.

Mag [y"(t) —y* ()] < C(5+7) (21)

0<t<T
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Numerical tes an der Pol oscillator - Midpoint method

q = p
{ P —q+e(t-d)p (22)

by the first variable change t — ﬁ and then the second variable change, i.e.
multiplication by the matrix:

we get the system:

vit) = —sin(t) [% — (v1 () cos (1) + ya(t) sin (ﬁ))Q] [~v1 @) sin (L) + vz () cos (£)]
ya(t) =  cos(1) [i — (v1(®)cos (L) + 2(t) sin (g))z} [~v1 () sin (L) + y2(t) cos ()]
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Parameters

# Math Parameters:

Interval small parameters ¢ are selected:
Time for ODE simulation:

[e—,e4] =10.01,0.1]
0

Small parameter for ODE simulation: e=0.1

# Al Parameters:

Domain where data are selected (both training): | Q = [-2,2]?
Number of data (both training): K = 1000000
Proportion of data for training (both training): 80% - Ko = 800000
Number of terms in Fg,, (MLP’s): Ny =5
Number of Fourier coefficients in G, ,(-): N =4
Hidden layers per MLP (both training): 2

Neurons on each hidden layer (first training): 200
Neurons on each hidden layer (second training): | 25

Epochs (both training): 200

Numerical test - Van der Pol oscillator - Midpoint method

de Rennes (IR
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Iofed - (6F 1y

Evoluton o the Loss function - Second

o 2 s s w0 15 10 w5 20 o 2 s 5 w0 15 150 w5 20
Epacns Epacns

Figure: Integration (green: approximated solution, red: exact solution, orange:
numerical error), Loss decays (green: LoSsTrqin, red: LossTest, Left: first
training, Right: second training)
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Approximation of the solution

Numerical t - Van der Pol oscillator - Midpoint method

Trajectories after variable change

1.00 4 ¢ e
— eV-GE,, (0™ (y0). )

== e -9{lyo)
0.75 A

0.50 A

0.25 A

a  0.00 4

—0.25 A

—0.50

—-0.75 A

—1.00 A

T T
-1.0 -0.5 0.0 0.5 1.0

Figure: Integration after inverse variable change (green: approximated solution,
red: exact solution)




Outlook

@ Get a consistent numerical method for highly oscillatory ODE’s like in
autonomous case. Idea: performing existing UA methods & adaptation
of modified field theory to nonautonomous ODE’s.

@ Study geometric properties and energy conservation (e.g. hamiltonian
highly oscillatory ODE’s ).
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Thanks for your attention !
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