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Goal: solve highly oscillatory ODE’s, of the form:

{ ys(t) = f(ﬁays(t)) (1)
v (0 = w

where 7 — f(7,+) is 2m-periodic, by using numerical methods performed by
machine learning. ¢ is a small parameter.

Main tools used:

@ Function approximations by neural networks and structure preservation
@ Modified field theory for autonomous ODE’s

@ Averaging theory & Numerical methods for highly oscillatory ODE’s
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Introduction

Definition (Neural network - MLP)

A Multi- Layer Perceptron (MLP), is a mapping N : R%® — R given,
for all x € R, by:

N@E) = WL -2 -Wi-S(Wo-x+bo)+byi---)+br 2)
where:
@ L+ 1 is the number of layers. Shallow network: L =1, Deep
network: L > 2. Layers 1 to L — 1 are named hidden layers.
@ b €R™, by € R, ... by € R are the bias.
@ Wy e Ma,,q0(R), W1 € Mgy.ay,R),..., W € /\/ldL,del(R) are the
wetghts. Lines of W;’s are neurons.
@ X(y1,..-,ya) = (c(y1),-..,0(ya)) is a componant-wise nonlinear

mapping o, e.g. tanh, named activation function.
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Theorem (Universal approximation)

Let f € C°(Q,RF) where Q C R? is compact. Then, for all € > 0, there
exists N : RY — R* o MLP s.t.

If =Mlpooiey < ¢ 3)

Rate of convergence w.r.t. number of weights:

@ Polynomial decay (L = 1): Anastassiou, G. Quantitative
approxzimations. Chapman and Hall/CRC, 2000.

@ Polynomial-Exponential decay (L = 3): De Ryck, T., Lanthaler,
S., & Mishra, S. (2021). On the approximation of functions by tanh
neural networks. Neural Networks, 143, 732-750.
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Structure preservation. Example: hamiltonian structure of the neural
network. For all x € R?¢

N(z) = JVH(z) (4)

where H : R?** — R is a MLP.

@ Hamiltonian structure (HNN): David, M., Méhats, F. Symplectic
learning for Hamiltonian neural networks. arXiv preprint
arXiv:2106.11753, 2021.

@ Free-divergence structure (VP-Nets): Zhu, A., Zhu, B., Zhang,
J., Tang, Y., Liu, J. VPNets: Volume-preserving neural networks for
learning source-free dynamics. arXiv preprint arXiv:2204.13843, 2022.
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Highly oscillatory ODE’s: theory & UA method

Autonomous case: f is independant from .

Definition (Modified field w.r.t. a numerical method)

Let consider a one step numerical method ®p,(-). The modified vector
field w.r.t. @, denoted fn, is defined by the relation:

etao) = (o) () (5)

Example: Forward Euler scheme, linear ODE: y(t) = ay(t), f(y) = ay.

on hﬂ'fl n
y(nh) = "My = <1+h'eT) Yo (6)
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Proposition (Property of the modified field)

@ Perturbation w.r.t. h: If ® is of order p, then
fu(y) = f(y) + WP R(y, h)

Backward error analysis: Hairer, E., Lubich, C., Wanner, G. Geometric
Numerical integration: structure-preserving algorithms for ordinary
differential equations. Springer, 2006.
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Function eural networks and structure
Modifi eory for auto 1s ODE’s
Highly atory ’s: theory & UA methods

For all t € R:

where:

@ F¢ is called averaged field. Structure:
Fe(y) = (F)(y) + eFi(y) + e*Fo(y) + - - -, where (f) is the average field
w.r.t. time variable:

Nw = 5 [ frwr ®)

@ ¢:(y)=y+e-G°(r,y) (Near to identity mapping) and is 2w-periodic
w.r.t. T.
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Theorem (P. Chartier, M. Lemou, F. Méha . Vilmart -

There exists a numerical method of order r, named uniformly accurate
method, (), s.t.

Maz |(®n)" (yo) —y°(nh)| < Ch )
where h = % and the constant C is independant from e.

Uniformy accurate methods: Chartier, P., Lemou, M., Méhats, F., &
Vilmart, G. (2020). A new class of uniformly accurate numerical schemes
for highly oscillatory evolution equations. Foundations of Computational

Mathematics, 20, 1-33.

Function approximations by neural networks and structure
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Functi

Modifi
Highly

Example: Forward Euler - Micro-Macro method
We solve with Forward Euler the system:

Fi(u(t))
(L) +wm) - (2o-0% + 0,00 FY) (w(t))

—
IS

—_~

GON
Il

where FIU = F¢ 4 O(e?) and ®M1 = &° + O(e?) are computable with
explicit formulas. This is a UA-method of order 1. We get:

y'(t) = () +uw() (10)
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Autonomous ODE’s Machine Learning method
Con esult

Numerica € - Rigid Body system - Forward Euler

Autonomous ODE:

= Yo

<
N
=
=
|

Numerical method: ®(-), assumed to be of order p.

Goal: Approximate the modified field f, by a neural network fy(-, h)
in order to get approximated solution y;, = (@{l"("h))n (yo) very close
to the exact solution y(nh).
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Structure of fy:

fo(y,h) = f(y)+h’Re(y,h)

Data creation: Computation of exact solutions y§k) = @fl(k) (Z/(()k))
with accurate and expensive integrator, where, for all 0 < k < K — 1,

y(()k) € Q cRY h™ € [h_, hy] are randomly selected.

Training of the neural network: Optimization of MSE Loss:

Ko—1
1

1
Losstrain X Z OEEE P
k=0

Fo( By ()Y (k) |2
h?k-) (yo )—y1

iy (B)
Good training: LosSrTrqin has the same decay pattern than:

1 K-1 1 2
— E ~ (k)
LOSSTest - K — KO h(k)2p+2 —
k=Kg

k
i =y

Y
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@ Numerical integration: fy(-,h) is an accurate approximation of fh,
thus we get a small numerical error:

* S\
en = (‘1>£"( )) (¥0) = ¥} (o) (12)
Denoting the learning error by

|Faly. h) = foly, )

Max
(y,h)EQx[h_,h ] hp
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Numerical / system - Forward Euler

Theorem (M.B., P.Chartier, M.Lemou, F.Méhats - 20231)

Assuming that
@ For any pair smooth vector fields fi and fa, we have

iy S OBl Folle ey (19)

wghgmj‘@ﬁfﬁ2

for some positive constant C, independent of f1 and fa2;
@ For any smooth vector field f, there exists a constant L > 0 such that
VO < h < hy, V(yl,yg) € 0%

(1) — ®fw2)| < (14 LRy —pel. (15)

Then there exist two constants C’, L > 0 such that:

D _
Maz le,| < Coh (eLT—l) (16)

0<n< N L

1B., M., Chartier, P., Lemou, M., & Méhats, F. (2023). Machine Learning
Methods for Autonomous Ordinary Differential Equations. arXiv preprint
arXiv:2304.09036.
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—3Y1Y2

Parameters

7# Math Parameters:

Interval where time steps are selected:
Time for ODE simulation:
Time step for ODE simulation:

[0.5,2.5]

# AI Parameters:

Domain where data are selected:

Number of data:
Proportion of data for training:

Hidden layers per MLP:
Neurons on each hidden layer:
Epochs:

Number of terms in the perturbation (MLP’s):

a={oel-2,22:098 < [a|
K = 100000 000

80% - Ko = 80 000 000
Ny=1

2

250

200

<

<

1.02}

Computational time for training:

1 Day 21 h 59 min 51 s
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Error between trajectories with Forward Euler

10° - = m  Forward Euler - f
" m Forward Euler - fy,

Global error
g
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Figure: Left: Comparison between Loss decays (green: LossTrqin, red: LossTest),
trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical
flow with fg(-,h)) and local error (blue: exact flow and numerical flow with f,
yellow: exact and numerical flow with fg(-,h) ). Right: Integration errors (green:
integration with f, red: integration with fo(-, h)).
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Machine Learning method
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{yf(t) = f(Gy®) (17)
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=

wt) = f(Lele) +em) - (2o-0f +a,08 ) we)

yi(t) = @) +w()

and transform this system into an autonomous system in order to use
the strategy used for autonomous ODE’s.
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@ Transformation to autonomous system:
Let denote W (t) = (v(t), w(t)). We denote the Micro-Macro system:

W(t) =G* (E,W(t)> (18)

If we denote X (t) = (£, W (t)), we have this system:

e

X)) = G(X@) (19)

where G* (7, W) = (1,G*(r,W)). This is an autonomous system.
@ “Modified field” (Forward Euler): We get:

W(to+h) = Wl(to)+h-GS <%O,W(t0)) (20)
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Data creation: Computation of exact solutions

e (k)
Wl(k) = an(k) h(k>(W0 ) where t(k> € [0, 27] with accurate and
expensive integrator, where W0 is randomly selected in the compact
set Q € R?*? h® and £ are randomly selected in [h_, h] and
[e—,eq] ,forall 0 < k< K — 1.
Neural network structure:

Go(t,W,e,h) = G°(1,W)+ hRg(cos(t),sin(r), W,e,h) (21)
Training of the neural network: Optimization of:
Ko—1
b 1 *® _ <k>)2
LOSSTrazn - K() ; h(k)4 W1 W1

~ (k)
where Wl(k) = Wék + hGy (Z?T)’ Wék), a(k), h(k))

Good training: LossTrqin has the same decay pattern than:

K—-1

1
LOSSTest = K — KO k;{ h(k)4

2
™ - wi|
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We get an approximated solution of the ODE:
Denoting the learning error by

Go(m,W,e,h) — G5, (T, W)
6 = Max

(1, W,e,h)€[0,27] x2x [e_,e 4 |X[h_,h ] h

If we denote (W)} )o<ngn the sequence given by Wg = W(0) and, for all
n € N:

W;:+1 = W;{ + h- GG (n?h, W’r’; & h) (22)

we get the flollowing proposition:

For T > 0, there exist constants C, L > 0 s.t. for allm € [0, N]:

Maz |W,; —W(nh)] < ———Cbh (23)

0<n<N L
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ye(t) =y () (1—y () +sin (£ (24)

3
Parameters

7 Math Parameters:
Interval where time steps h are selected: [h—, hy4] =10.001,0.1]
Interval where small parameters ¢ are selected: l[e—,eq] =[0.01,1]
Time for ODE simulation: T =1
Time step for ODE simulation: h = 0.1
Small parameter for ODE simulation: e = 0.
7 Al Parameters:
Domain where data are selected: Q =10,2] X [—2,2]
Number of data: K = 10000
Proportion of data for training: 80% - Ko = 8000
Hidden layers per MLP: 2
Neurons on each hidden layer: 200
Epochs: 2000
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p— Error between trajectories with Forward Euler - T = 1
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Figure: Left: Comparison between Loss decays (green: LossTrqgin, red: Lossrest),
trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical
flow with Gg(-,h)) and local error (blue: exact flow and numerical flow with f,
yellow: exact and numerical flow with Gy(-, h) ). Right: Integration errors (circles:
integration with G, squares: integration with Gy (-, h)). Integration with Machine
Learning is very powerful for small values of e.




Outlook

@ Improve results for highly oscillatory ODE’s with Micro-Macro scheme.

@ Use other Neural Network structure.
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Thanks for your attention !
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