Modelling of Highly oscillatory phenomenon by neural networks

Maxime BOUCHEREAU - Université de Rennes (IRMAR)

Séminaire Landau - October 2023

Ph. D supervisors: Francois CASTELLA - Philippe CHARTIER Mohammed LEMOU - Florian MEHATS

Goal: solve highly oscillatory ODE's, of the form:

$$\begin{cases}
\dot{y}^{\varepsilon}(t) & = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\
y^{\varepsilon}(0) & = y_{0}
\end{cases} \tag{1}$$

where $\tau \mapsto f(\tau, \cdot)$ is 2π -periodic, by using numerical methods performed by machine learning. ε is a small parameter.

Main tools used:

- Function approximations by neural networks and structure preservation
- Modified field theory for autonomous ODE's
- Averaging theory & Numerical methods for highly oscillatory ODE's

- Introduction
 - Function approximations by neural networks and structure preservation
 - Modified field theory for autonomous ODE's
 - Highly oscillatory ODE's: theory & UA methods
- Autonomous ODE's
 - General framework
 - Machine Learning method
 - Convergence result
 - Numerical tests Rigid Body system Forward Euler
- 3 Highly oscillatory ODE's
 - General Framework
 - Machine Learning method
 - Convergence result
 - Numerical test Logistic equation Forward Euler
- 1 Outlook

Introduction

Definition (Neural network - MLP)

A Multi-Layer Perceptron (MLP), is a mapping $\mathcal{N}: \mathbb{R}^{d_0} \longrightarrow \mathbb{R}^{d_L}$ given, for all $x \in \mathbb{R}^{d_0}$, by:

$$\mathcal{N}(x) = W_L \cdot \Sigma \left(\cdots W_1 \cdot \Sigma \left(W_0 \cdot x + b_0 \right) + b_1 \cdots \right) + b_L \tag{2}$$

where:

- L+1 is the number of layers. Shallow network: L=1, Deep network: $L \ge 2$. Layers 1 to L-1 are named hidden layers.
- $b_0 \in \mathbb{R}^{d_0}, b_1 \in \mathbb{R}^{d_1}, \dots, b_L \in \mathbb{R}^{d_L}$ are the **bias**.
- $W_0 \in \mathcal{M}_{d_1,d_0}(\mathbb{R}), W_1 \in \mathcal{M}_{d_2,d_1}(\mathbb{R}), \dots, W_L \in \mathcal{M}_{d_L,d_{L-1}}(\mathbb{R})$ are the weights. Lines of W_i 's are neurons.
- $\Sigma(y_1, \ldots, y_d) = (\sigma(y_1), \ldots, \sigma(y_d))$ is a component-wise nonlinear mapping σ , e.g. tanh, named activation function.

Theorem (Universal approximation)

Let $f \in C^0(\Omega, \mathbb{R}^k)$ where $\Omega \subset \mathbb{R}^d$ is compact. Then, for all $\varepsilon > 0$, there exists $\mathcal{N} : \mathbb{R}^d \longrightarrow \mathbb{R}^k$ a MLP s.t.

$$||f - \mathcal{N}||_{L^{\infty}(\Omega)} \leqslant \varepsilon$$
 (3)

Rate of convergence w.r.t. number of weights:

- Polynomial decay (L=1): Anastassiou, G. Quantitative approximations. Chapman and Hall/CRC, 2000.
- Polynomial-Exponential decay (L=3): De Ryck, T., Lanthaler, S., & Mishra, S. (2021). On the approximation of functions by tanh neural networks. Neural Networks, 143, 732-750.

Structure preservation. Example: hamiltonian structure of the neural network. For all $x \in \mathbb{R}^{2d}$

$$\mathcal{N}(x) = J\nabla \mathcal{H}(x) \tag{4}$$

where $\mathcal{H}: \mathbb{R}^{2d} \longrightarrow \mathbb{R}$ is a MLP.

- Hamiltonian structure (HNN): David, M., Méhats, F. Symplectic learning for Hamiltonian neural networks. arXiv preprint arXiv:2106.11753, 2021.
- Free-divergence structure (VP-Nets): Zhu, A., Zhu, B., Zhang, J., Tang, Y., Liu, J. VPNets: Volume-preserving neural networks for learning source-free dynamics. arXiv preprint arXiv:2204.13843, 2022.

Autonomous case: f is independent from τ .

Definition (Modified field w.r.t. a numerical method)

Let consider a one step numerical method $\Phi_h(\cdot)$. The modified vector field w.r.t. Φ_h , denoted \tilde{f}_h , is defined by the relation:

$$\varphi_{nh}^{f}(y_0) = \left(\Phi_h^{f_h}\right)^n(y_0) \tag{5}$$

Example: Forward Euler scheme, linear ODE: $\dot{y}(t) = ay(t)$, f(y) = ay.

$$y(nh) = e^{anh}y_0 = \left(1 + h \cdot \frac{e^{ha} - 1}{h}\right)^n y_0$$
 (6)

thus
$$\tilde{f}_h(y) = \left(\frac{e^{ha}-1}{h}\right) y$$

Proposition (Property of the modified field)

• Perturbation w.r.t. h: If Φ is of order p, then $\tilde{f}_h(y) = f(y) + h^p R(y, h)$

Backward error analysis: Hairer, E., Lubich, C., Wanner, G. Geometric Numerical integration: structure-preserving algorithms for ordinary differential equations. Springer, 2006.

Theorem (Solution of highly oscillatory ODE)

For all $t \in \mathbb{R}$:

$$y^{\varepsilon}(t) = \phi_{\frac{t}{\varepsilon}}^{\varepsilon} \left(\varphi_t^{F^{\varepsilon}}(y_0) \right) \tag{7}$$

where:

• F^{ε} is called **averaged field**. Structure: $F^{\varepsilon}(y) = \langle f \rangle(y) + \varepsilon F_1(y) + \varepsilon^2 F_2(y) + \cdots$, where $\langle f \rangle$ is the average field w.r.t. time variable:

$$\langle f \rangle(y) := \frac{1}{2\pi} \int_0^{2\pi} f(\tau, y) d\tau$$
 (8)

• $\phi_{\tau}^{\varepsilon}(y) = y + \varepsilon \cdot G^{\varepsilon}(\tau, y)$ (Near to identity mapping) and is 2π -periodic w.r.t. τ .

Theorem (P. Chartier, M. Lemou, F. Méhats, G. Vilmart - 2020)

There exists a numerical method of order r, named uniformly accurate method, $\Phi_h(\cdot)$, s.t.

$$\underset{0 \leq n \leq N}{Max} \left| \left(\Phi_h \right)^n (y_0) - y^{\varepsilon}(nh) \right| \quad \leqslant \quad Ch^r \tag{9}$$

where $h = \frac{T}{N}$ and the constant C is independent from ε .

Uniformy accurate methods: Chartier, P., Lemou, M., Méhats, F., & Vilmart, G. (2020). A new class of uniformly accurate numerical schemes for highly oscillatory evolution equations. Foundations of Computational Mathematics, 20, 1-33.

Example: Forward Euler - Micro-Macro method

We solve with Forward Euler the system:

$$\left\{ \begin{array}{ll} \dot{v}(t) & = & F^{[1]}(v(t)) \\ \dot{w}(t) & = & f\left(\frac{t}{\varepsilon}, \Phi^{[1]}_{\frac{t}{\varepsilon}}(v(t)) + w(t)\right) - \left(\frac{1}{\varepsilon}\partial_{\tau}\Phi^{[1]}_{\frac{t}{\varepsilon}} + \partial_{y}\Phi^{[1]}_{\frac{t}{\varepsilon}}F^{[1]}\right)(v(t)) \end{array} \right.$$

where $F^{[1]} = F^{\varepsilon} + \mathcal{O}(\varepsilon^2)$ and $\Phi^{[1]} = \Phi^{\varepsilon} + \mathcal{O}(\varepsilon^2)$ are computable with explicit formulas. This is a UA-method of order 1. We get:

$$y^{\varepsilon}(t) = \Phi^{[1]}(v(t)) + w(t) \tag{10}$$

Autonomous ODE's

Autonomous ODE:

$$\begin{cases}
\dot{y}(t) &= f(y(t)) \\
y(0) &= y_0
\end{cases}$$
(11)

General framework

- **Numerical method:** $\Phi_h(\cdot)$, assumed to be of order p.
- Goal: Approximate the modified field \tilde{f}_h by a neural network $f_{\theta}(\cdot, h)$ in order to get approximated solution $y_n^* = \left(\Phi_h^{f_{\theta}(\cdot,h)}\right)^n(y_0)$ very close to the exact solution y(nh).

• Structure of f_{θ} :

$$f_{\theta}(y,h) = f(y) + h^{p}R_{\theta}(y,h)$$

- Data creation: Computation of exact solutions $y_1^{(k)} = \varphi_{h^{(k)}}^f(y_0^{(k)})$ with accurate and expensive integrator, where, for all $0 \le k \le K 1$, $y_0^{(k)} \in \Omega \subset \mathbb{R}^d$, $h^{(k)} \in [h_-, h_+]$ are randomly selected.
- Training of the neural network: Optimization of MSE Loss:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \frac{1}{h^{(k)^{2p+2}}} \left| \underbrace{\Phi_{h^{(k)}}^{f_{\theta}(\cdot, h^{(k)})}(y_0^{(k)})}_{=\hat{y_1}^{(k)}} - y_1^{(k)} \right|^2$$

Output Good training: $Loss_{Train}$ has the same decay pattern than:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \frac{1}{h^{(k)^{2p+2}}} \left| \hat{y_1}^{(k)} - y_1^{(k)} \right|^2$$

• Numerical integration: $f_{\theta}(\cdot, h)$ is an accurate approximation of \tilde{f}_h , thus we get a small numerical error:

$$e_n^* = \left(\Phi_h^{f_\theta(\cdot,h)}\right)^n (y_0) - \varphi_{nh}^f(y_0) \tag{12}$$

Denoting the **learning error** by

$$\delta := \underset{(y,h)\in\Omega\times[h_{-},h_{+}]}{\operatorname{Max}} \frac{\left|\tilde{f}_{h}(y,h) - f_{\theta}(y,h)\right|}{h^{p}}$$
(13)

Theorem (M.B., P.Chartier, M.Lemou, F.Méhats - 2023¹)

Assuming that

• For any pair smooth vector fields f_1 and f_2 , we have

$$\forall 0 \le h \le h_+, \quad \left\| \left| \Phi_h^{f_1} - \Phi_h^{f_2} \right| \right|_{L^{\infty}(\Omega)} \leqslant Ch \left\| f_1 - f_2 \right\|_{L^{\infty}(\Omega)} \tag{14}$$

for some positive constant C, independent of f_1 and f_2 ;

• For any smooth vector field f, there exists a constant L > 0 such that $\forall 0 \le h \le h_+, \forall (y_1, y_2) \in \Omega^2$:

$$\left| \Phi_h^f(y_1) - \Phi_h^f(y_2) \right| \leq (1 + Lh) |y_1 - y_2|.$$
 (15)

Then there exist two constants $\tilde{C}, \tilde{L} > 0$ such that:

$$\underset{0 \leqslant n \leqslant N}{Max} |e_n^*| \leqslant \frac{C\delta h^p}{\tilde{L}} \left(e^{\tilde{L}T} - 1 \right) \tag{16}$$

¹B., M., Chartier, P., Lemou, M., & Méhats, F. (2023). *Machine Learning Methods for Autonomous Ordinary Differential Equations*. arXiv preprint arXiv:2304.09036.

$$\begin{cases} \dot{y_1} &= -\frac{1}{6}y_2y_3\\ \dot{y_2} &= \frac{2}{3}y_1y_3\\ \dot{y_3} &= -\frac{1}{2}y_1y_2 \end{cases},$$

Parameters	
# Math Parameters:	
Interval where time steps are selected:	$[h_{-}, h_{+}] = [0.5, 2.5]$
Time for ODE simulation:	T = 20
Time step for ODE simulation:	h = 0.5
# AI Parameters:	
Domain where data are selected:	$\Omega = \left\{ x \in [-2, 2]^2 : 0.98 \leqslant x \leqslant 1.02 \right\}$
Number of data:	K = 100000000
Proportion of data for training:	$80\% - K_0 = 80000000$
Number of terms in the perturbation (MLP's):	$N_t = 1$
Hidden layers per MLP:	2
Neurons on each hidden layer:	250
Epochs:	200

Computational time for training: 1 Day 21 h 59 min 51 s

Figure: Left: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical flow with $f_{\theta}(\cdot,h)$) and local error (blue: exact flow and numerical flow with f, yellow: exact and numerical flow with $f_{\theta}(\cdot,h)$). Right: Integration errors (green: integration with f, red: integration with $f_{\theta}(\cdot,h)$).

Machine Learning method Convergence result Numerical test - Logistic equation - Forward Euler

Highly oscillatory ODE's

Goal: Find an approximation of the solution of

$$\begin{cases}
\dot{y}^{\varepsilon}(t) & = f\left(\frac{t}{\varepsilon}, y^{\varepsilon}(t)\right) \\
y^{\varepsilon}(0) & = y_{0}
\end{cases}$$
(17)

• General strategy: Use the Micro-Macro UA-method

$$y^{\varepsilon}(t) = \Phi^{[1]}(v(t)) + w(t)$$

and transform this system into an autonomous system in order to use the strategy used for autonomous ODE's.

• Transformation to autonomous system:

Let denote W(t) = (v(t), w(t)). We denote the Micro-Macro system:

$$\dot{W}(t) = G^{\varepsilon} \left(\frac{t}{\varepsilon}, W(t) \right) \tag{18}$$

If we denote $X(t) = (\frac{t}{\varepsilon}, W(t))$, we have this system:

$$\dot{X}(t) = \mathcal{G}^{\varepsilon}(X(t)) \tag{19}$$

where $\mathcal{G}^{\varepsilon}(\tau, W) = (\frac{1}{\varepsilon}, G^{\varepsilon}(\tau, W))$. This is an autonomous system.

"Modified field" (Forward Euler): We get:

$$W(t_0 + h) = W(t_0) + h \cdot \tilde{G}_h^{\varepsilon} \left(\frac{t_0}{\varepsilon}, W(t_0)\right)$$
 (20)

- Data creation: Computation of exact solutions $W_1^{(k)} = \varphi_{t_0^{(k)},h^{(k)}}^{G^{\varepsilon(k)}}(W_0^{(k)})$ where $t_0^{(k)} \in [0,2\pi]$ with accurate and expensive integrator, where $W_0^{(k)}$ is randomly selected in the compact set $\Omega \subset \mathbb{R}^{2d}$, $h^{(k)}$ and $\varepsilon^{(k)}$ are randomly selected in $[h_-,h_+]$ and $[\varepsilon_-,\varepsilon_+]$, for all $0 \leq k \leq K-1$.
- Neural network structure:

$$G_{\theta}(\tau, W, \varepsilon, h) = G^{\varepsilon}(\tau, W) + hR_{\theta}(\cos(\tau), \sin(\tau), W, \varepsilon, h)$$
 (21)

• Training of the neural network: Optimization of:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \frac{1}{h^{(k)^4}} \left| \hat{W_1}^{(k)} - W_1^{(k)} \right|^2$$

where
$$\hat{W_1}^{(k)} = W_0^{(k} + hG_{\theta}\left(\frac{t_0^{(k)}}{\varepsilon_0^{(k)}}, W_0^{(k)}, \varepsilon^{(k)}, h^{(k)}\right)$$

6 Good training: $Loss_{Train}$ has the same decay pattern than:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \frac{1}{h^{(k)^4}} \left| \hat{W}_1^{(k)} - W_1^{(k)} \right|^2$$

We get an approximated solution of the ODE:

Denoting the **learning error** by

$$\delta := \underset{(\tau,W,\varepsilon,h)\in[0,2\pi]\times\Omega\times[\varepsilon_{-},\varepsilon_{+}]\times[h_{-},h_{+}]}{\operatorname{Max}} \frac{\left|G_{\theta}(\tau,W,\varepsilon,h)-\tilde{G}_{h}^{\varepsilon}(\tau,W)\right|}{h}$$

If we denote $(W_n^*)_{0 \leqslant n \leqslant N}$ the sequence given by $W_0^* = W(0)$ and, for all $n \in \mathbb{N}$:

$$W_{n+1}^* = W_n^* + h \cdot G_\theta \left(\frac{nh}{\varepsilon}, W_n^*, \varepsilon, h \right)$$
 (22)

we get the following proposition:

Proposition

For T > 0, there exist constants C, L > 0 s.t. for all $n \in [0, N]$:

$$\underset{0 \leqslant n \leqslant N}{Max} |W_n^* - W(nh)| \quad \leqslant \quad \frac{e^{LT} - 1}{L} C \delta h \tag{23}$$

$$\dot{y^{\varepsilon}}(t) = y^{\varepsilon}(t) (1 - y^{\varepsilon}(t)) + \sin\left(\frac{t}{\varepsilon}\right)$$
 (24)

Parameters		
# Math Parameters:		
Interval where time steps h are selected:	$[h-, h_+] = [0.001, 0.1]$	
Interval where small parameters ε are selected:	$[\varepsilon_{-}, \varepsilon_{+}] = [0.01, 1]$	
Time for ODE simulation:	T = 1	
Time step for ODE simulation:	h = 0.1	
Small parameter for ODE simulation:	$\varepsilon = 0.1$	
# AI Parameters:		
Domain where data are selected:	$\Omega = [0, 2] \times [-2, 2]$	
Number of data:	K = 10000	
Proportion of data for training:	$80\% - K_0 = 8000$	
Hidden layers per MLP:	2	
Neurons on each hidden layer:	200	
Epochs:	2000	

Figure: Left: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, red: numerical flow with f, green: numerical flow with $G_{\theta}(\cdot,h)$) and local error (blue: exact flow and numerical flow with f, yellow: exact and numerical flow with $G_{\theta}(\cdot,h)$). Right: Integration errors (circles: integration with G, squares: integration with $G_{\theta}(\cdot,h)$). Integration with Machine Learning is very powerful for small values of ε .

- Improve results for highly oscillatory ODE's with Micro-Macro scheme.
- Use other Neural Network structure.

Introduction Autonomous ODE's Highly oscillatory ODE's Outlook

Thanks for your attention!