Artificial intelligence's methods for autonomous ODE's

Presentation - April 15^{th} 2022

Plan of the talk

- Theory
 - Recall: Euler's method
 - Problem: modified equation
 - Neural Network: Multi-Layer Perceptron
- Fixed step time
 - Problem
 - Numerical simulations
- Step time into data
 - New formulation of the problem
 - Numerical simulations
- Outlook

- **ODE** (autonomous): $\dot{y} = f(y), f \in \mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d), y(0) \in \mathbb{R}^d$
- **© Euler's method:** Approximation of $y(nh) = \varphi_{nh}^f(y_0)$ on [0, T] by $(y_n)_{0 \leqslant n \leqslant N}$ defined by $y_0 = y(0)$:

$$y_{n+1} = y_n + hf(y_n)$$

 $h = \frac{T}{N}$: Time step

Result of convergence:

$$\max_{0 \leqslant n \leqslant N} |y_n - y(nh)| \leqslant Ch$$

© General comment: Cheap for computations, but not accurate method.

Figure: Example with $\dot{y} = 3y$

 Modified equation: $\dot{y} = \overset{\sim}{f_h}(y), \overset{\sim}{f_h} \in \mathcal{C}^{\infty}(\mathbb{R}^d, \mathbb{R}^d)$: modified vector field s.t. if $(z_n)_{0 \leqslant n \leqslant N}$ is defined by $z_0 = y(0)$ and:

$$z_{n+1} = z_n + h \widetilde{f_h}(z_n)$$

we have $z_n = y(nh)$

Advantages: Easy to program and gives the exact solution.

Figure: Example with $\dot{y} = 3y$

- Theory: Structure of $\widetilde{f_h}$: $\widetilde{f_h}(y) = f(y) + hR(y,h)$
- Goal: Approximate f_h by a neural network $f_{app,h}$

- Artificial neuron: Mapping $x \mapsto \sigma(w_1x_1 + \cdots + w_kx_k + b)$ $w, x \in \mathbb{R}^k, b \in \mathbb{R}, \sigma$: Transfer function (tanh for example)
- MLP: mapping:

$$F: \mathbb{R}^k \longmapsto \mathbb{R}^d$$

$$F(x) = \underbrace{W_L}_{\in \mathcal{M}_{\zeta,k}(\mathbb{R})} \Sigma \left(\underbrace{W_{L-1}}_{\in \mathcal{M}_{\zeta}(\mathbb{R})} \Sigma \left(\cdots \Sigma \left(\underbrace{W_0}_{\in \mathcal{M}_{\zeta,k}(\mathbb{R})} x + \underbrace{b_0}_{\in \mathbb{R}^k} \right) \cdots \right) + \underbrace{b_{L-1}}_{\in \mathbb{R}^d} \right) + \underbrace{b_L}_{\in \mathbb{R}^d}$$

 ζ : Number of neurons on each layer, W_0, \dots, W_L : Weights of the MLP, b_0, \dots, b_L : bias, $\Sigma(x) = (\sigma(x_1), \dots, \sigma(x_k))$

• Universal approximation: Let $g \in C^0(\mathbb{R}^k, \mathbb{R}^d)$, $\Omega \subseteq \mathbb{R}^d$ compact, $\varepsilon > 0$ If weights and bias are correctly choosen and ζ is large enough:

$$||F - g||_{L^{\infty}(\Omega)} \leqslant \varepsilon$$

• Structure of $f_{app,h}$: $f_{app,h}(y) = f(y) + h \cdot R_{app}(y,h)$ (learning of the perturbation)

$$\begin{array}{c} \textbf{Data selection:} \ y_0^{(k)} \in [-R,R]^d \ \text{selected and} \ h \ \text{fixed} \\ \hline \\ \textbf{Computation:} \ y_1^{(k)} = \varphi_h^f \left(y_0^{(k)}\right) = y_0^{(k)} + h \widetilde{f_h} \left(y_0^{(k)}\right) \\ \hline \\ \textbf{Test:} \ \text{Good decay of Loss-Test} \\ Loss_{test} = \frac{1}{(K-K_0)h^4} \sum_{k=K_0}^{K-1} \left| \hat{y_1}^{(k)} - y_1^{(k)} \right|^2 \\ \hline \\ Loss_{Train} = \frac{1}{K_0h^4} \sum_{k=0}^{K_0-1} \left| \hat{y_1}^{(k)} - y_1^{(k)} \right|^2 \\ \hline \end{array}$$

- **Integration:** Numerical integration with the $f_{app,h}: \mathbb{R}^d \to \mathbb{R}^d$ which minimizes $Loss_{Train}$
 - Advantages: Efficient training, even with 10000 data
 - **Disadvantages:** New training has to be done if we want to change h

Dynamical system: Pendulum

$$\begin{cases} \dot{p} &= -\sin(q) \\ \dot{q} &= p \end{cases}$$

Parameters:

- Time step: h = 0.1
- ightharpoonup Duration of integration: T=20
- **D**ata: K = 25000
- **Data for training:** $K_0 = 20000 (80\%)$
- Amplitude for data selection: R=2
- ightharpoonup Hidden layers: L=2
- Neurons per hidden layer: $\zeta = 200$
- Epochs for training: 200

Numerical simulations

$$\begin{array}{c} \textbf{Data selection:} \ y_0^{(k)} \in [-R,R]^d \ \& \ h^{(k)} \in [h_-,h_+] \ \text{selected} \\ \hline \\ \textbf{Computation:} \ y_1^{(k)} = \varphi_{h^{(k)}}^f \left(y_0^{(k)}\right) = y_0^{(k)} + h^{(k)} f_{h^{(k)}}^{\sim} \left(y_0^{(k)}\right) \\ \hline \\ \textbf{Test:} \ \text{Good decay of Loss-Test} \\ Loss_{test} = \frac{1}{(K-K_0)} \sum_{k=K_0}^{K-1} \frac{1}{h^{(k)^4}} \left| \hat{y_1}^{(k)} - y_1^{(k)} \right|^2 \\ \hline \\ Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0-1} \frac{1}{h^{(k)^4}} \left| \hat{y_1}^{(k)} - y_1^{(k)} \right|^2 \\ \hline \end{array}$$

Integration: Numerical integration with the $f_{app,h}: \mathbb{R}^{d+1} \to \mathbb{R}^d$ which minimizes $Loss_{Train}$

- Advantages: Only one training is necessary for many step times, allows to study error of the method.
- Disadvantages: Many data are necessary to ensure a good training

• Property: We have:

$$\max_{0 \le n \le N} |y_n^* - y(nh)| \le \delta h$$

where $(y_n^*)_{0 \leqslant n \leqslant N}$ is the numerical solution computed with Forward Euler for $f_{app,h}$ and δ depends on the error between $\widetilde{f_h}$ and $f_{app,h}$

Oynamical system: Pendulum.

$$\begin{cases} \dot{p} &= -\sin(q) \\ \dot{q} &= p \end{cases}$$

Parameters:

- Time step (interval): [0.01, 0.5]
- Duration of integration: T=20
- Data: K = 1000000
- **②** Data for training: $K_0 = 800000 (80\%)$
- Amplitude for data selection: R=2
- ightharpoonup Hidden layers: L=1
 - Neurons per hidden layer: $\zeta = 200$
- Epochs for training: 200

Figure: Simulation for h = 0.1

Figure: Global errors for various time steps - Forward Euler without training (red) & Forward Euler with training (green)

Figure: Global errors vs Computation time for various time steps and numerical methods

Outlook

- Change the numerical scheme: Example: Runge-Kutta 2
- Non autonomous systems: Example of highly oscillatory equations:

$$\dot{y} = f\left(\frac{t}{\varepsilon}, y\right)$$

where $\varepsilon \to 0$ and $\tau \mapsto f(\tau, \cdot)$ is periodic

Thanks for your attention!