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Theory

Recall: Euler’s method

@ ODE (autonomous): § = f(y), f € C=°(R%,R%), y(0) € R?
(

)
@ Euler’s method: Approximation of y(nh) = Zh yo) on [0, T] by (yn)o<n<N
defined by yo = y(0):

Yn+1 = Yn + hf (yn)
h = %: Time step
@ Result of convergence:

M — y(nh)| < Ch
ogn‘?NW" y(nh)| < C

@ General comment: Cheap for computations, but not accurate method.

Euler method

200 === exact
W Forward Euler !

Figure: Example with § = 3y
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Theory

Problem: modified equation

@ Modified equation: § = ﬁl(y), E € C°(R%,R?): modified vector field s.t. if
(2n)ogngn is defined by zg = y(0) and:

Zn+1 = 2zn + hfh('zﬂ)
we have z, = y(nh)

@ Advantages: Easy to program and gives the exact solution.

Euler method & modified field

2001 === exact 7
m Forward Euler /
1751 ® Forward Euler - Modified field ;

Figure: Example with § = 3y

@ Theory: Structure ofﬁL: ﬁ;(y) = f(y) + hR(y, h)

@ Goal: Approximate f;, by a neural network fo,p 1

autonomou



Theory

Neural Network: Multi-Layer Perceptron

@ Artificial neuron: Mapping = + o (wiz1 + -+ + wpz, + b) w,z € RF b € R,
o : Transfer function (tanh for example)

@ MLP: mapping:

F: RF — RY

F(z)= W, S| Wp_12|---% Wo x+ by |-+ | +br_1 |+ 0L
~~ —— ~—~ ~~ ~—— ~—~
EM¢ k(R) EM(R) EM¢ k(R) ERF €RS €R4
¢ : Number of neurons on each layer, Wy, --- , W, : Weights of the MLP,

bo, -, by : bias, 3(z) = (o(z1),- -+ ,0(zK))
@ Universal approximation: Let g € CO(R* R%), Q C R¢ compact, € > 0 If
weights and bias are correctly choosen and ( is large enough:
[|[F — 9||Loo(Q) <e

@ Structure of f,, 12 fapp,n(¥) = f(y) + h - Rapp(y, h) (learning of the
perturbation)
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Fixed step time

Problem & s

’ Data selection: y(()k) € [-R, R]* selected and h fixed ’7

!

’ Computation: yl(k) = Lp{; (yék>) = y(()k) + hﬁz (yék>) ‘ Prediction:
s (k) — (B (k)
Y1 =Y + fapp,h Yo

Test: Good decay of Loss-Test Training: Optimization of the MSE Loss
K—1 e Ko—1 5
1 ~ (k e . k
Losstest = K—_Ko)h* Z ’y1< ) — Y1 Losstraim = ﬁ Z yl(k) - yf )’
k=Ko k=0

l

Integration: Numerical integration with the fup, 5 : RY — R which minimizes LosSTrain

@ Advantages: Efficient training, even with 10000 data

@ Disadvantages: New training has to be done if we want to change h
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Fixed step time

Numerical simulations

@ Dynamical system: Pendulum

{1’9 = —sin(q)

q

Il
3

@ Parameters:

Time step: h = 0.1

Duration of integration: T = 20
Data: K = 25000

Data for training: Ko = 20000 (80%)
Amplitude for data selection: R = 2
Hidden layers: L =2

Neurons per hidden layer: ¢ = 200
Epochs for training: 200

00000000
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Fixed ¢

Numerical simulations

tep time

Comparison of local errors.
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Step time into data

Problem & s

’ Data selection: yék> € [-R,R]* & h*) € [h_, hy] selected ’7

Computation: y( ) — Lp} * ( (k)) = yék> h(k)f * ( (% >) ‘ Prediction:
. (k) — &) | p(k) (k)
N =gy RS wm (Yo

Test: Good decay of Loss-Test Training: Optimization of the MSE Loss
— Kop—1

Lo k) |2 e S 1. k) |2

Losstest = ﬁ Z W yl( ) —y® Losstrain = ;%0 Z h(k)4 y1 *) y£ )‘
k=Ko k=0

l

Integration: Numerical integration with the f,p, 5 : R4+1 5 R9 which minimizes LossTyqin ‘

@ Advantages: Only one training is necessary for many step times, allows to
study error of the method.

@ Disadvantages: Many data are necessary to ensure a good training
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Step time into data

Numerical simulations

@ Property: We have:

.
— <
Dyﬂ{lgN lyn — y(nh)| < ok

where (y;t)ogngn is the numerical solution computed with Forward Euler for

fapp,n and 6 depends on the error between fj, and fupp 1

@ Dynamical system: Pendulum.

q
Q Parameters:

Time step (interval): [0.01,0.5]
Duration of integration: T = 20
Data: K = 1000000

Data for training: Ko = 800000 (80%)
Amplitude for data selection: R = 2
Hidden layers: L =1

Neurons per hidden layer: ¢ = 200
Epochs for training: 200

—sin(q)
p

00000000
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Step time into data

Numerical simulations

Comparison of local errors.

Trajectories
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Step time into data

Numerical simulations

Error between trajectories Forward Euler
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Figure: Global errors for various time steps - Forward Euler without training (red) &
Forward Euler with training (green)
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Step time into data

Numerical simulations

Computation time vs Error between trajectories
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Figure: Global errors vs Computation time for various time steps and numerical
methods




@ Change the numerical scheme: Example: Runge-Kutta 2

@ Non autonomous systems: Example of highly oscillatory equations:

i/=f(£7y)

where e — 0 and 7 — f(7,-) is periodic
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Thanks for your attention !
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