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Goal: Approximate solutions of ODE of this form:
. 1, . -
y=(8) = ZAy™(1) + 9(y™(¢)) (1

ODE parameters:
o Initial condition: yo := y*(0) € R?
o High oscillations: Spec(A) C iZ and ¢ < 1.
o Other phenomenon: g : R* — R? smooth.

Main tools used:
o Function approximations by neural networks.

o Averaging theory.
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GE(0) = T4y (0) + 9 (7 (1) 2)

Theorem (P. Chartier, N. Crouseilles, M. Lemou & F. Méhats, 2016 -

Solution of (2) )
There exist A° and g° such that:

o A° generates a 2m—periodic flow: T — @5 = e

TA®
€
e g° generates a flow t — 7 .
€ £
° Piopl =¢i o0¢5.
€ €

Cr

v (0) = 6% (4 ()| < Ore™ .

e For allt €[0,T],e €]0,1]:

Problem: Very hard to compute A° and g° (formal series and derivatives')

!Philippe Chartier, Nicolas Crouseilles, and Mohammed Lemou (2016). “Averaging
of highly-oscillatory transport equations”. In: arXiv preprint arXiv:1609.09819
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Neural networks

Definition (Neural network - MLP)

A Multi-Layer Perceptron (MLP), is a mapping N : R% — R given,
for all & € R, by:

N(CC) = WL'E("'W1‘E(Wo'x+bo)+b1‘~~)+b[, (3)

where:
o Number of layers: L + 1
o Weights: Wy € Ma, q,(R), W1 € Mg, a,(R),..., WL € Ma, a, ,(R).
o Neurons: Lines of W;'’s.

o Activation function: X(y1,...,y4) = (6(y1),...,0(ya)) s a
componant-wise nonlinear mapping o.

W;’s and b;’s are adjustable.
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Theorem (Universal approximation)

Let f € C°(Q,R) where Q C R? is compact. Then, for all € > 0, there
exists N : RY — R¥ o MLP s.t.

||f_N||LOO(Q) < £ (4)

One can approximate every continuous function over a compact set by a
neural network, large enough.?

2George Cybenko (1989). “Approximation by superpositions of a sigmoidal
function”. In: Mathematics of control, signals and systemsc2.4, pp. 303=314
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ication to Autonomous highly oscillatory ODE’s Numerical integration and error bounds

Application to Van der Pol oscillator

Main goal: Model apgs and ¢° by neural networks:
Py, h.e) ~ @i, () and do(7,y.2) = 65 (1).

o Construction of the dataset: Computation with Python RK45
(approximation of exact flow of (2)) K data:

(o)
y =y (AW, (5)

where ys(k) (0) = yék)7 %) and e are randomly selected.

e Structure of neural networks:

909(3/, h, 5) =y+h RQ,#P(yfhvs) (6)
—————

MLP w.r.t. (y,h,e)

¢9(7—7y75):y+5[ R9,¢(COS(T),SiIl(7‘),y,€) - R9,¢'(1707y75) ] (7)

MLP w.r.t. (cos(t),sin(7),y,e) MLP w.r.t. (1,0,y,¢)

Properties of ¢ and ¢° are preserved with neural networks.
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o Training of the Neural Networks: We minimize the MSE
Losstrain over Ko (< K data) with gradient descent w.r.t. weights of
neural networks:

2

h(k) . .
(k) (b9< G 7¢9(J< ) ) o (A,))7€(k,)>

& o (P ) e
+ Ki(] ,; o\ Po (k) Yo > -,h , € (8)

o (B oy )|
—% | Gy v00(yy > h ), e”

Learned properties: Structure of the flow & Commutativity of both flows.

LossTrain = ? §
0 :
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Application to Autonomous highly oscillatory ODE’s

e Validation of the training of the Neural Networks: At each
step, we test our trained Neural Networks over the K — K remaining
data by observing the MSE Lossrest:

2

k
- (h((k)) ey, h““),e(’“)%a(k))

h(k)
( <E<myyék%s<“>,h<k>,e<’@>> (9)

Good training: LossT;qin and LossTes: have a similar decay as
optimization steps go by. Same principle than linear regression.

K—
LossTest = Z
=Ko

K-

i K- KOkZI:(

2
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Application to wn der Pol oscillator

o Numerical integration: We plot the points:

£ nh n £
Yo,n = o (?7@9('7’% )"y (0))> ) (10)
for all n € [0,N] and h = %

Theorem (M. B., P. Chartier, M. Lemou & F. Méhats, 202

Approximated solution of (2) )

Let denote the following learning errors:

g€
— g
85 = |6 = Poll o and b, := || F—FE (11)
LOO
Then there exists positive constant Ao 7 such that:
Mag_[45.n — 4 (tn)] < Aor(Fg +b,) + Cre™ & (12)
0SneN ye,n Yy n X 20, T\0¢ @ T .
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o System of equations:

{ ¢ =

o=t (i
0 1

A= [_1 0] and g(q,p) = [(%

o Parameters:

2
qe)p

(13)

quQ) p} (14)

Parameters

# Math Parameters:

Interval where time steps are selected:
Interval where small parameters are selected:
Time for ODE simulation:

Initial datum:

[h_, hy] = [0.001,0.1]
le—,e4] =[0.001,0.2]
T=1

y©(0) = (0.5,0.5)

# Machine Learning Parameters:

Domain where initial data are selected: Q=[-2,27
Number of data: K = 100000
Proportion of data for training: 80% - Ko = 80000
Hidden layers per MLP: 2

Neurons on each hidden layer: 200

Learning rate: 2.1073

Epochs: 200
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Application to Autonomous highly oscillatory ODE’s
Application to Van der Pol oscillator

Comparison o loca emars
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Figure: Comparison between Loss decays (green: LossTrgin, red: Lossrest),
trajectories (dashed dark: exact flow, green: numerical flow with learned vector
fields and local error (yellow) for the Van der Pol oscillator in the case e = 0.1.
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Comparison o loca emars
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Figure: Comparison between Loss decays (green: LossTrgin, red: Lossrest),
trajectories (dashed dark: exact flow, green: numerical flow with learned vector
fields and local error (yellow) for the Van der Pol oscillator in the case e = 0.001.
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Application to Van der Pol oscillator

Error between trajectories
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Figure: Integration errors (each color corresponds to a high oscillation parameter
€) of Van der Pol oscillator.
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Conclusion

e Main result: Good approximation of ¢ — y°(t) with reduced
computationnal time (faster than Python RK45) for ¢ < 1.

o Outlook: Geometric properties (e.g. Hamiltonian, divergence-free).

ines (IRMAR)
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Thanks for your attention !



	Toolbox
	Highly oscillatory ODE's
	Neural networks

	Application to Autonomous highly oscillatory ODE's
	Machine Learning strategy
	Numerical integration and error bounds
	Application to Van der Pol oscillator

	Conclusion
	Results and outlook
	Bibliography


