Modelling of highly oscillatory phenomenon by Neural Networks

Maxime BOUCHEREAU - Université de Rennes (IRMAR)

Rencontres Doctorales Lebesgue - April 2024

Ph. D supervisors:

Francois CASTELLA - Philippe CHARTIER Mohammed LEMOU - Florian MEHATS

Goal: Approximate solutions of ODE of this form:

$$\dot{y}^{\varepsilon}(t) = \frac{1}{\varepsilon} A y^{\varepsilon}(t) + g(y^{\varepsilon}(t)) \tag{1}$$

ODE parameters:

- Initial condition: $y_0 := y^{\varepsilon}(0) \in \mathbb{R}^d$
- High oscillations: $Spec(A) \subset i\mathbb{Z}$ and $\varepsilon \ll 1$.
- Other phenomenon: $g: \mathbb{R}^d \longrightarrow \mathbb{R}^d$ smooth.

Main tools used:

- Function approximations by neural networks.
- Averaging theory.

Toolbox

$$\dot{y^{\varepsilon}}(t) = \frac{1}{\varepsilon} A y^{\varepsilon}(t) + g(y^{\varepsilon}(t))$$
 (2)

Theorem (P. Chartier, N. Crouseilles, M. Lemou & F. Méhats, 2016 - Solution of (2))

There exist A^{ε} and g^{ε} such that:

- A^{ε} generates a 2π -periodic flow: $\tau \longmapsto \phi_{\tau}^{\varepsilon} = e^{\tau A^{\varepsilon}}$.
- g^{ε} generates a flow $t \longmapsto \varphi_t^{g^{\varepsilon}}$.
- $\bullet \ \phi^{\varepsilon}_{\frac{t}{\varepsilon}} \circ \varphi^{g^{\varepsilon}}_{t} = \varphi^{g^{\varepsilon}}_{t} \circ \phi^{\varepsilon}_{\frac{t}{\varepsilon}}.$
- For all $t \in [0,T], \varepsilon \in]0,1]$: $\left| y^{\varepsilon}(t) \phi_{\frac{t}{\varepsilon}}^{\varepsilon} \left(\varphi_t^{g^{\varepsilon}}(y_0) \right) \right| \leqslant C_T e^{-\frac{C_T}{\varepsilon}}$.

Problem: Very hard to compute A^{ε} and g^{ε} (formal series and derivatives¹)

¹Philippe Chartier, Nicolas Crouseilles, and Mohammed Lemou (2016). "Averaging of highly-oscillatory transport equations". In: $arXiv\ preprint\ arXiv:1609.09819 \Rightarrow 3$

Definition (Neural network - MLP)

A Multi-Layer Perceptron (MLP), is a mapping $\mathcal{N} : \mathbb{R}^{d_0} \longrightarrow \mathbb{R}^{d_L}$ given, for all $x \in \mathbb{R}^{d_0}$, by:

$$\mathcal{N}(x) = W_L \cdot \Sigma \left(\cdots W_1 \cdot \Sigma \left(W_0 \cdot x + b_0 \right) + b_1 \cdots \right) + b_L \tag{3}$$

where:

- Number of layers: L+1
- Weights: $W_0 \in \mathcal{M}_{d_1,d_0}(\mathbb{R}), W_1 \in \mathcal{M}_{d_2,d_1}(\mathbb{R}), \dots, W_L \in \mathcal{M}_{d_L,d_{L-1}}(\mathbb{R}).$
- Neurons: Lines of W_i 's.
- Activation function: $\Sigma(y_1, \ldots, y_d) = (\sigma(y_1), \ldots, \sigma(y_d))$ is a componant-wise nonlinear mapping σ .

 W_i 's and b_i 's are adjustable.

Theorem (Universal approximation)

Let $f \in C^0(\Omega, \mathbb{R}^k)$ where $\Omega \subset \mathbb{R}^d$ is compact. Then, for all $\varepsilon > 0$, there exists $\mathcal{N} : \mathbb{R}^d \longrightarrow \mathbb{R}^k$ a MLP s.t.

$$||f - \mathcal{N}||_{L^{\infty}(\Omega)} \leqslant \varepsilon$$
 (4)

One can approximate every continuous function over a compact set by a neural network, large enough. 2

²George Cybenko (1989). "Approximation by superpositions of a sigmoidal function". In: Mathematics of control, signals and systems:2.4, pp. 303≡314∗ №

Application to Autonomous highly oscillatory ODE's

Main goal: Model $\varphi^{g^{\varepsilon}}$ and ϕ^{ε} by neural networks:

$$\varphi_{\theta}(y, h, \varepsilon) \approx \varphi_{h}^{g^{\varepsilon}}(y) \text{ and } \phi_{\theta}(\tau, y, \varepsilon) \approx \phi_{\tau}^{\varepsilon}(y).$$

• Construction of the dataset: Computation with Python RK45 (approximation of exact flow of (2)) K data:

$$y_1^{(k)} = y^{\varepsilon^{(k)}}(h^{(k)}),$$
 (5)

where $y^{\varepsilon^{(k)}}(0) = y_0^{(k)}$, $h^{(k)}$ and $\varepsilon^{(k)}$ are randomly selected.

• Structure of neural networks:

$$\varphi_{\theta}(y, h, \varepsilon) = y + h \underbrace{R_{\theta, \varphi}(y, h, \varepsilon)}_{MLP \ w.r.t. \ (y, h, \varepsilon)}$$
(6)

$$\phi_{\theta}(\tau, y, \varepsilon) = y + \varepsilon \left[\underbrace{R_{\theta, \phi}(\cos(\tau), \sin(\tau), y, \varepsilon)}_{MLP \ w.r.t. \ (\cos(\tau), \sin(\tau), y, \varepsilon)} - \underbrace{R_{\theta, \phi}(1, 0, y, \varepsilon)}_{MLP \ w.r.t. \ (1, 0, y, \varepsilon)} \right]$$
(7)

Properties of $\varphi^{g^{\varepsilon}}$ and φ^{ε} are preserved with neural networks.

• Training of the Neural Networks: We minimize the MSE $Loss_{Train}$ over K_0 ($\leq K$ data) with gradient descent w.r.t. weights of neural networks:

$$Loss_{Train} = \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| y_1^{(k)} - \phi_{\theta} \left(\frac{h^{(k)}}{\varepsilon^{(k)}}, \varphi_{\theta}(y_0^{(k)}, h^{(k)}, \varepsilon^{(k)}), \varepsilon^{(k)} \right) \right|^2 + \frac{1}{K_0} \sum_{k=0}^{K_0 - 1} \left| \varphi_{\theta} \left(\phi_{\theta} \left(\frac{h^{(k)}}{\varepsilon^{(k)}}, y_0^{(k)}, \varepsilon^{(k)} \right), h^{(k)}, \varepsilon^{(k)} \right) - \phi_{\theta} \left(\frac{h^{(k)}}{\varepsilon^{(k)}}, \varphi_{\theta}(y_0^{(k)}, h^{(k)}, \varepsilon^{(k)}), \varepsilon^{(k)} \right) \right|^2$$

$$(8)$$

Learned properties: Structure of the flow & Commutativity of both flows.

• Validation of the training of the Neural Networks: At each step, we test our trained Neural Networks over the $K - K_0$ remaining data by observing the MSE $Loss_{Test}$:

$$Loss_{Test} = \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| y_1^{(k)} - \phi_{\theta} \left(\frac{h^{(k)}}{\varepsilon^{(k)}}, \varphi_{\theta}(y_0^{(k)}, h^{(k)}, \varepsilon^{(k)}), \varepsilon^{(k)} \right) \right|^2 + \frac{1}{K - K_0} \sum_{k=K_0}^{K-1} \left| \varphi_{\theta} \left(\phi_{\theta} \left(\frac{h^{(k)}}{\varepsilon^{(k)}}, y_0^{(k)}, \varepsilon^{(k)} \right), h^{(k)}, \varepsilon^{(k)} \right) - \phi_{\theta} \left(\frac{h^{(k)}}{\varepsilon^{(k)}}, \varphi_{\theta}(y_0^{(k)}, h^{(k)}, \varepsilon^{(k)}), \varepsilon^{(k)} \right) \right|^2$$

$$(9)$$

Good training: $Loss_{Train}$ and $Loss_{Test}$ have a similar decay as optimization steps go by. Same principle than linear regression.

• Numerical integration: We plot the points:

$$y_{\theta,n}^{\varepsilon} = \phi_{\theta} \left(\frac{nh}{\varepsilon}, \varphi_{\theta}(\cdot, h, \varepsilon)^{n} (y^{\varepsilon}(0)) \right),$$
 (10)

for all $n \in \llbracket 0, N \rrbracket$ and $h = \frac{T}{N}$

Theorem (M. B., P. Chartier, M. Lemou & F. Méhats, 2024 - Approximated solution of (2))

Let denote the following learning errors:

$$\delta_{\phi} := \left| \left| \phi^{\varepsilon} - \phi_{\theta} \right| \right|_{L^{\infty}} \quad and \quad \delta_{\varphi} := \left| \left| \frac{\varphi^{g^{\varepsilon}} - \varphi_{\theta}}{h} \right| \right|_{L^{\infty}}. \tag{11}$$

Then there exists positive constant $\Lambda_{\theta,T}$ such that:

$$\max_{0 \le n \le N} \left| y_{\theta,n}^{\varepsilon} - y^{\varepsilon}(t_n) \right| \le \Lambda_{\theta,T}(\delta_{\phi} + \delta_{\varphi}) + C_T e^{-\frac{C_T}{\varepsilon}}. \tag{12}$$

System of equations:

$$\begin{cases}
\dot{q^{\varepsilon}} &= \frac{1}{\varepsilon} p^{\varepsilon} \\
\dot{p^{\varepsilon}} &= -\frac{1}{\varepsilon} q^{\varepsilon} + \left(\frac{1}{4} - q^{\varepsilon^{2}}\right) p
\end{cases}$$
(13)

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \text{ and } g(q, p) = \begin{bmatrix} 0 \\ \left(\frac{1}{4} - q^2\right)p \end{bmatrix}$$
 (14)

• Parameters:

Parameters	
# Math Parameters:	
Interval where time steps are selected:	$[h, h_+] = [0.001, 0.1]$
Interval where small parameters are selected:	$[\varepsilon_{-}, \varepsilon_{+}] = [0.001, 0.2]$
Time for ODE simulation:	T=1
Initial datum:	$y^{\varepsilon}(0) = (0.5, 0.5)$
# Machine Learning Parameters:	
Domain where initial data are selected:	$\Omega = [-2, 2]^2$
Number of data:	K = 100000
Proportion of data for training:	$80\% - K_0 = 80000$
Hidden layers per MLP:	2
Neurons on each hidden layer:	200
Learning rate:	$2 \cdot 10^{-3}$
Epochs:	200

Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, green: numerical flow with learned vector fields and local error (yellow) for the Van der Pol oscillator in the case $\varepsilon = 0.1$.

Figure: Comparison between Loss decays (green: $Loss_{Train}$, red: $Loss_{Test}$), trajectories (dashed dark: exact flow, green: numerical flow with learned vector fields and local error (yellow) for the Van der Pol oscillator in the case $\varepsilon = 0.001$.

Figure: Integration errors (each color corresponds to a high oscillation parameter ε) of Van der Pol oscillator.

Conclusion

- Main result: Good approximation of $t \mapsto y^{\varepsilon}(t)$ with reduced computationnal time (faster than Python RK45) for $\varepsilon \ll 1$.
- Outlook: Geometric properties (e.g. Hamiltonian, divergence-free).

Chartier, Philippe and Crouseilles, Nicolas and Lemou, Mohammed, Averaging of highly-oscillatory transport equations, arXiv preprint arXiv:1609.09819, 2016

CYBENKO, George, Approximation by superpositions of a sigmoidal function, Mathematics of control, signals and systems, 1989

Thanks for your attention!