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Figure – The four possible right-moves of a knight on a chessboard.
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Knight’s paths

Definition
A grand knight’s path is

• a lattice path in Z2,
• starting at the origin,
• consisting of steps N = (1, 2), N̄ = (1,−2), E = (2, 1), and
Ē = (2,−1).

Figure – The grand knight’s path ENĒĒ N̄ĒE ĒNENN̄.



Grand zigzag knight’s paths
Definitions

Grand zigzag knight’s paths

Definition
A grand zigzag knight’s path is

• a grand knight’s path,
• such that two consecutive steps cannot be in the same direction.

Equivalently, two consecutive steps cannot be NN, NE , N̄N̄, N̄Ē , EE ,
EN, Ē Ē , Ē N̄.

Figure – The grand zigzag knight’s path EN̄EĒEN̄EĒEN̄E .
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Generating function

The number of grand zigzag knight’s paths ending at (n, k)

Let Zn,k be the set of grand zigzag knight’s paths of size n ending at
height k , and Z+

n,k (resp. Z−
n,k) be the subset of Zn,k of paths starting

with E or N (resp. Ē or N̄).

Figure – A path in Z+
19,−2, and a path in Z−

19,1.
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Generating functions

Let

F (u, z) =
+∞∑
k=0

+∞∑
n=0

|Z+
n,k |u

kzn,

G (u, z) =
+∞∑
k=0

+∞∑
n=0

|Z−
n,k |u

kzn,

H(u, z) = F (u, z) + G (u, z).
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Generating function

Functional equations

Theorem
F and G satisfy the following equations

F (u, z) =

(
1 +

z3u

1 − z

)
f0(z) + zu(z + u)(G (u, z) + 1),

G (u, z) = −
(

z

u2 +
z2

u
+

z3

u(1 − z)

)
f0(z) +

(
z

u2 +
z2

u

)
F (u, z),

with f0(z) =
∑+∞

n=0 |Z
+
n,0|zn.
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Generating function

Kernel method

The previous equations can be restated as follows :

K (u, z)F (u, z) = a(u, z)f0(z) + b(u, z),

K (u, z)G (u, z) = c(u, z)f0(z) + d(u, z),

with K (u, z) a polynomial that we call the kernel of the equation. The
unknowns are in blue.

Let r(z) be a root of the kernel : K (r(z), z) = 0.
Thus,

f0(z) = − a(r(z), z)

b(r(z), z)
.
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Generating function

Kernel method

The previous equations can be restated as follows :

K (u, z)F (u, z) = a(u, z)f0(z) + b(u, z),

K (u, z)G (u, z) = c(u, z)f0(z) + d(u, z),

with K (u, z) a polynomial that we call the kernel of the equation. The
unknowns are in blue. Let r(z) be a root of the kernel : K (r(z), z) = 0.
Thus,

f0(z) = − a(r(z), z)

b(r(z), z)
.
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Generating function

The generating function

Theorem

H(u, z) = −u2 + u(r(z) + z + z2) + z2s(z)(2f0(z)− 1)
z2(u − s(z))

,

with

s(z) = r(z)−1 =
1 − z4 − z2 +

√
z8 − 2 z6 − z4 − 2 z2 + 1

2z3 ,

and
f0(z) =

r(z)(z − 1)
z3(r(z)z2 + z − 1)

.
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Generating function

Example

k
n 0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 2 0 4 2 10 6 22 16 52 44 126
1 0 0 1 2 2 4 4 10 11 26 28 64 71
2 0 1 0 1 0 3 2 7 6 16 18 40 52
3 0 0 0 0 1 0 2 0 6 2 16 8 41
4 0 0 0 0 0 0 0 1 0 3 0 10 2

Table – The number of grand zigzag knight’s paths from (0, 0) to (n, k) for
(n, k) ∈ [[0, 15]]× [[0, 4]].
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Generating function

Example

Figure – The 6 grand zigzag knight’s paths of size 7 ending on the x-axis.
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Generating function

Average final height

Theorem
An asymptotic approximation for the expected final height of a grand
zigzag knight’s path of size n ending on or above the x-axis is

(1 +
√

5)
√

7
√

5 − 15
2
√

5

√
n

π
.

Figure – The final height of two grand zigzag knight’s paths of size 19.
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Bijection with pairs of compositions

Pairs of compositions

Definition
Let Cn,m be the set of ordered pairs (X ,Y ) such that

• X is a composition of n,
• Y is a composition of m,
• all parts are equal to 1 or 2,
• X and Y have the same number of parts.

Example:
Let X = (1, 2, 2, 1, 1) and Y = (2, 2, 1, 2, 1). Then (X ,Y ) ∈ C7,8.
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Bijection with pairs of compositions

Cardinal of Cn,m

Lemma
If n ≤ m, then

|Cm,n| = |Cn,m| =
n−⌈m/2⌉∑

i=0

(
n − i

i

)(
n − i

m − n + i

)
.
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Bijection with pairs of compositions

Proposition
If n, k ∈ N with n = k mod 2, then there is a bijection ϕ between
C n−k

2 , n+k
2

and Z+
n,k , and a bijection ψ between C n−k

2 , n+k
2

and Z−
n,k .

Proof. Let X = (x1, . . . , xi ) and Y = (y1, . . . , yi ) such that
(X ,Y ) ∈ C n−k

2 , n+k
2

. We define ϕ(X ,Y ) as the path ϕ(x1, y1) · · ·ϕ(xk , yk),
where

ϕ(xj , yj) =


EĒ , if xj = yj = 2,
NN̄, if xj = yj = 1,
NĒ , if xj = 1 and yj = 2,
EN̄, if xj = 2 and yj = 1.
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Bijection with pairs of compositions

Example

X = (2, 2, 2, 1, 1, 1, 1, 2, 1)
Y = (1, 2, 1, 2, 2, 1, 2, 1, 2)

ϕ(X ,Y ) = EN̄ EĒ EN̄ NĒ NĒ NN̄ NĒ EN̄ NĒ

Figure – The path ϕ(X ,Y ) is a grand zigzag knight’s path of size 27 and final
height 1.
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Bijection with pairs of compositions

Example

X = (2, 2, 2, 1, 1, 1, 1, 2, 1)
Y = (1, 2, 1, 2, 2, 1, 2, 1, 2)

ϕ(X ,Y ) = EN̄ EĒ EN̄ NĒ NĒ NN̄ NĒ EN̄ NĒ

Figure – The path ϕ(X ,Y ) is a grand zigzag knight’s path of size 27 and final
height 1.
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Step number

Grand zigzag knight’s paths with i steps

For n/2 ≤ i ≤ n, let Z i
n,k be the subset of Zn,k consisting of paths with i

steps. We define similarly Z i,+
n,k and Z i,−

n,k .

Theorem
For n = k mod 2 and i even,

|Z i,+
n,k | = |Z i,−

n,k | =
(

i/2
n−i−k

2

)(
i/2

n−i+k
2

)
.

For n ̸= k mod 2 and i odd,

|Z i,+
n,k | =

( i+1
2

n−k−i
2 + 1

)( i−1
2

n+k−i
2 − 1

)
,

|Z i,−
n,k | =

( i−1
2

n−k−i
2 − 1

)( i+1
2

n+k−i
2 + 1

)
.
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Step number

Closed form for the number of grand zigzag knight’s paths

Corollary:
If n = k mod 2 with (n, k) ̸= (0, 0),

|Zn,k | = 2
n−k∑
i=0

i even

(
i/2

n−i−k
2

)(
i/2

n−i+k
2

)
.

If n ̸= k mod 2,

|Zn,k | =
n−k+1∑
i=0
i odd

[( i+1
2

n−k−i
2 + 1

)( i−1
2

n+k−i
2 − 1

)
+

( i−1
2

n−k−i
2 − 1

)( i+1
2

n+k−i
2 + 1

)]
.
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Step number

Average number of steps

Theorem
An asymptotic approximation for the expected number of steps of a
grand zigzag knight’s path ending on the x-axis of size 2n is

1 +
√

5
2
√

5
(2n).
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Grand zigzag knight’s paths staying above a horizontal line

Grand zigzag knight’s paths staying above a horizontal line

Figure – A grand zigzag knight’s path staying above the line y = −3, with size
27, and ending at height -2.
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Grand zigzag knight’s paths staying above a horizontal line

Bijection with pairs of compositions

When n = k mod 2, there is a bijection between those paths ending at
(n, k) and pairs of compositions (X ,Y ) ∈ C n−k

2 , n+k
2

such that for all j ,

−m ≤
j∑

i=1

(yi − xi ).
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Grand zigzag knight’s paths staying above a horizontal line

Generating functions

Theorem
The bivariate generating functions for the number of grand zigzag
knight’s paths staying above y = −m and ending with respectively an
up-step and a down-step with respect to the size and the final height are

Fm(u, z) = −u(um(1 + z2u + zu2)− rm−1z(u + z)(z + rz2 + r2))

z3(u − r)(u − s)
,

Gm(u, z) =
rm−1(z + r2 + z2r)− zum−1(1 + zu)(1 + z2u + zu2)

z3(u − r)(u − s)
.
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Grand zigzag knight’s paths staying above a horizontal line

Probability that a path stays above a horizontal line

Proposition
For m ≥ 0, the probability that a grand zigzag knight’s path chosen
uniformly at random among all grand zigzag knight’s paths of size n
stays above the line y = −m is asymptotically cm/

√
n, with

cm =

 2+
√

5
2

√
7
√

5−15
π , if m = 0,

4m+3−
√

5
4(
√

5−2)

√
7
√

5−15
π , if m ≥ 1.
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Grand zigzag knight’s paths staying in a tube

Figure – A grand zigzag knight’s path staying between the lines y = −2 and
y = +2, with size 27 and ending at height 0.
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Grand zigzag knight’s paths staying in a tube

Bijection with pairs of compositions

When n = k mod 2, there is a bijection between those paths ending at
(n, k) and pairs of compositions (X ,Y ) ∈ C n−k

2 , n+k
2

such that for all j ,∣∣∣∣∣
j∑

i=1

(yi − xi )

∣∣∣∣∣ ≤ m.
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Grand zigzag knight’s paths staying in a tube

Generating function

Theorem
The generating functions Fm,m(u, z) and Gm,m(u, z) counting the
number of grand zigzag knight’s paths staying between y = −m and
y = +m with respect to the size and the final height are given by :

Fm,m(u, z) = − (z(1[m=1]−f−m+1)u
2m+1−z2(u+z)f−m+1+um(1+z2u+zu2))u

z3(u−r)(u−s) ,

Gm,m(u, z) = − z(1+zu)(1[m=1]−f−m+1)u
2m+1−uf−m+1+um(1+zu)(1+z2u+zu2)

z2(u−r)(u−s) .
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Grand zigzag knight’s paths staying in a tube

A bijection in a small case

Proposition
There is an explicit bijection Φ between grand zigzag knight’s paths
from (0, 0) to (2n + 4, 0), starting with E and staying between y = −1
and y = 1 and compositions of n with parts in {2, 1, 3, 5, 7, 9, 11 . . .}.

Proof. Indeed, such a path can be uniquely decomposed as EPĒ with P
of size 2n and having its steps in {ĒE} ∪

⋃
k≥0{N̄(EĒ )kN}. If

P = S1 · · · Sj , then we set Φ(EPĒ ) = (Φ(S1), . . . ,Φ(Sj)) with
Φ(ĒE ) = 2 and Φ(N̄(EĒ )kN) = 2k + 1.
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Grand zigzag knight’s paths staying in a tube

Example

2 3 1 5

Figure – The path EĒEN̄EĒNN̄NN̄EĒEĒNĒ of size 26 = 2 × 11 + 4 is
mapped to the composition (2, 3, 1, 5) of 11.

Thank you for your attention !
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Figure – The path EĒEN̄EĒNN̄NN̄EĒEĒNĒ of size 26 = 2 × 11 + 4 is
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