
Greedy generation of some restricted classes of
binary words
GASCom 2024

Laboratoire d’Informatique de Bourgogne & Macao Polytechnic University

Nathanaël Hassler, Vincent Vajnovszki, Dennis Wong

Greedy generation of some restricted classes of binary words

Overview

1 The greedy Gray code algorithm

2 Fibonacci words and generalised Dyck prefixes

3 Efficient generation

2/29

Greedy generation of some restricted classes of binary words

The greedy Gray code algorithm

A Gray code for a class of combinatorial objects is a list that contains
each object from the class exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.
[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]

3/29

Greedy generation of some restricted classes of binary words

Gray codes

000

001

100

111

110010

011

101

000
001
011
010
110
111
101
100

4/29

Greedy generation of some restricted classes of binary words

Homogeneous transposition

0100110000101
Homogeneous transposition

0100110000101
Non homogeneous transposition

Let S be a set of same length and same weight binary words.

Definition
A homogeneous Gray code for S is a list containing every words of S ,
such that two consecutive words differ by a homogeneous transposition.

5/29

Greedy generation of some restricted classes of binary words

Homogeneous transposition

0100110000101
Homogeneous transposition

0100110000101
Non homogeneous transposition

Let S be a set of same length and same weight binary words.

Definition
A homogeneous Gray code for S is a list containing every words of S ,
such that two consecutive words differ by a homogeneous transposition.

5/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

The greedy Gray code algorithm

S : set of same length and same weight binary words

Algorithm
1 Initialize the list L with a particular word in S .
2 For the last word in L, homogeneously transposes the leftmost

possible 1 with the leftmost possible 0, such that the obtained
word is in S but not in L.

3 If at point 2. a new word is obtained, then append it to the list L
and return to point 2.

This definition is a specialisation of that introduced in
[Aaron Williams, The greedy Gray code algorithm, 2013]

6/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001

7/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001

0101

8/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001
0101

8/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001
0101

0011

9/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001
0101
0011

9/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001
0101
0011

L = [1001, 0101, 0011].

10/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101
0110

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101
0110

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101
0110
1010

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101
0110
1010

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101
0110
1010
1100

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 2

0011
1001
0101
0110
1010
1100

11/29

Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Questions

1. Which classes of binary words this algorithm
generates ?

2. Which first words generate the whole class ?

12/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Fibonacci words

Definition

Let Fn(2, k) be the set of length n and weight k binary words that do not
have two consecutive 1’s.

|Fn(2, k)| =
(
n − k + 1

k

)
.

Example:
F5(2, 2) = {10100, 01010, 00101, 10010, 01001, 10001}.

13/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Fibonacci words and the greedy algorithm

Definition

For α ∈ Fn(2, k), we denote by F(α) the list obtained by applying the
greedy algorithm for Fn(2, k), starting with α.

Example : F(01010) is the list

[01010,
10010,
10100,
10001,
01001,
00101].

14/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Last word in F(α)

Let
γn,k := 0n−2k(01)k ∈ Fn(2, k).

Lemma
For any α ∈ Fn(2, k) with α ̸= γn,k , the last word of F(α) is γn,k .

15/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Some generators of Fn(2, k)

Definition

We denote by GenF(n, k) the set of generators, i.e. words α ∈ Fn(2, k)
such that F(α) is a homogeneous Gray code for Fn(2, k).

Remark:
By definition of the greedy algorithm, α ∈ GenF(n, k) if and only if
F(α) contains every word of Fn(2, k).

16/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Some generators of Fn(2, k)

Example : 01010 ∈ GenF(5, 2), while 10010 ̸∈ GenF(5, 2).

F(01010) is the list

[01010,
10010,
10100,
10001,
01001,
00101].

F(10010) is the list

[10010,
01010,
01001,
10001,
00101].

17/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Some generators of Fn(2, k)

For n, k with n ≥ 2k , let αi
n,k = 0i1(01)k−10n−2k+1−i .

Theorem
Let n ∈ N⋆. Then for all k with n ≥ 2k , we have

1 αi
n,k ∈ GenF(n, k) for all 0 ≤ i ≤ n − 2k , and F(αi

n,k) is a suffix
partitioned list, with γn,k as last word.

2 γn,k ∈ GenF(n, k), F(γn,k) is a suffix partitioned list and its last
word is

1 α0
n,k if k is even,

2 αn−2k
n,k if k is odd.

18/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

F(α) is suffix partitioned

Lemma
For any α ∈ Fn(2, k), F(α) is a suffix partitioned list.

19/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

The generators of Fn(2, k)

Theorem
Let n ≥ 2k − 1. Then

GenF(n, k) = {0i1(01)k−10n−2k+1−i | 0 ≤ i ≤ n − 2k + 1}.

In particular, |GenF(n, k)| = n − 2k + 2.

20/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Generalised Dyck prefixes

Definition

Let Cn(p, k) be the set of length n and weight k binary words with the
property that any prefix contains at least p times as many 0’s as 1’s.

|Cn(p, k)| =
(
n

k

)
− p

(
n

k − 1

)
.

Example:
Cn(0, k) is the set of length n binary words of weight k ,
C2n(1, n) is the set of length 2n Dyck words,
C3n(2, n) is in bijection with size 3n ternary trees.

21/29

Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

The generators of Cn(p, k)

Theorem

Let n ≥ (p + 1)k . If p ≥ 1 then

Genp(n, k) =
k⋃

j=1

{0pj−i1j−10i1(0p1)k−j0n−(p+1)k | 0 ≤ i ≤ p − 1}

∪ {0i1k0n−i−k | pk + 1 ≤ i ≤ n − k}.

If p = 0 then Gen0(n, k) = {0i1k0n−i−k | 0 ≤ i ≤ n − k}. In particular,

|Genp(n, k)| = n − k + 1− p.

22/29

Greedy generation of some restricted classes of binary words
Efficient generation

Recursive tail partitioned lists

L is a recursive tail partitioned list if it has the form

L = L1 · 01u,L2 · 01u+1,L3 · 01u+2, · · · ,Lℓ+1 · 01u+ℓ

or the form

L = L1 · 01u+ℓ,L2 · 01u+ℓ−1,L3 · 01u+ℓ−2, · · · ,Lℓ+1 · 01u

for some u, ℓ ≥ 0, and each list Li , is in turn recursive tail partitioned.

23/29

Greedy generation of some restricted classes of binary words
Efficient generation

Recursive tail partitioned lists

Theorem
If the list L is a homogeneous and suffix partitioned Gray code for a set
of (same length and same weight) binary words, then L is an r-t
partitioned list.

24/29

Greedy generation of some restricted classes of binary words
Efficient generation

CAT generation for a homogeneous Gray code for
Cn(p, k)

procedure pref(m, j)
if m = (p + 1)j then

if p = 0 then return
end if
m← m − 1 ; j ← j − 1

end if
if Sj < m then # Increasing tail

for i = 0 to j − 1 do # i is the number of 1’s in the tail
pref(m − i − 1, j − i)
Sj−i ← m − i
print(S)

end if
if Sj = m then # Decreasing tail

for i = j − 1 downto 0 do # i is the number of 1’s in the tail
Sj−i ← max(Sj−i−1 + 1, (p + 1)(j − i))
print(S)
pref(m − i − 1, j − i)

end if
end procedure

25/29

Greedy generation of some restricted classes of binary words
Efficient generation

the main call is pref(n, k), it generates Cn(p, k)

Si is the position of the ith 1 in the word
table S and the parameter p are global
S is initialized as Si ← (p + 1)i for 1 ≤ i ≤ k

26/29

Greedy generation of some restricted classes of binary words
Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).

27/29

Greedy generation of some restricted classes of binary words
Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).

[01010101,
00110101,
00101101,
01001101,
00011101,
00011011,
01001011,

00101011,
00110011,
01010011,
01000111,
00100111,
00010111,
00001111]

27/29

Greedy generation of some restricted classes of binary words
Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).

[01010101,
00110101,
00101101,
01001101,
00011101,
00011011,
01001011,

00101011,
00110011,
01010011,
01000111,
00100111,
00010111,
00001111]

27/29

Greedy generation of some restricted classes of binary words
Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).

[01010101,
00110101,
00101101,
01001101,
00011101,
00011011,
01001011,

00101011,
00110011,
01010011,
01000111,
00100111,
00010111,
00001111]

27/29

Greedy generation of some restricted classes of binary words
Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).

[01010101,
00110101,
00101101,
01001101,
00011101,
00011011,
01001011,

00101011,
00110011,
01010011,
01000111,
00100111,
00010111,
00001111]

27/29

Greedy generation of some restricted classes of binary words
Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).

[01010101,
00110101,
00101101,
01001101,
00011101,
00011011,
01001011,

00101011,
00110011,
01010011,
01000111,
00100111,
00010111,
00001111]

27/29

Greedy generation of some restricted classes of binary words
Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).

[01010101,
00110101,
00101101,
01001101,
00011101,
00011011,
01001011,

00101011,
00110011,
01010011,
01000111,
00100111,
00010111,
00001111]

27/29

Greedy generation of some restricted classes of binary words
Efficient generation

Algorithm analysis

With a classical complexity analysis, we can obtain the following result

Proposition
The call pref(n, k) generates the homogeneous greedy Gray code for
Cn(p, k) efficiently.

See [Frank Ruskey, Combinatorial Generation Book].

28/29

Greedy generation of some restricted classes of binary words

Biblio

A. Bultena and F. Ruskey.
An Eades-McKay algorithm for well-formed parentheses strings.
Information Processing Letters, 68 :255–259, 1998.

T. Mütze.
Combinatorial Gray codes – an updated survey.
Electronic Journal of Combinatorics, (Dynamic Survey DS26), 2023.

F. Ruskey.
Combinatorial Generation.
Book in preparation.

A. Williams.
The greedy Gray code algorithm.
In Algorithms and Data Structures, page 525–536, Berlin,
Heidelberg, 2013.

D. Wong and V. Vajnovszki.
Greedy Gray codes for Dyck words and ballot sequences.
In COCOON 2023, 2023.

29/29

	The greedy Gray code algorithm
	Fibonacci words and generalised Dyck prefixes
	Efficient generation
	

