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Greedy generation of some restricted classes of binary words

The greedy Gray code algorithm

A Gray code for a class of combinatorial objects is a list that contains
each object from the class exactly once, such that any two consecutive
objects in the list differ only by a ‘small change’.
[Torsten Mütze, Combinatorial Gray codes – an updated survey, 2023]
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Greedy generation of some restricted classes of binary words

Homogeneous transposition

0100110000101
Homogeneous transposition

0100110000101
Non homogeneous transposition

Let S be a set of same length and same weight binary words.

Definition
A homogeneous Gray code for S is a list containing every words of S ,
such that two consecutive words differ by a homogeneous transposition.
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Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

The greedy Gray code algorithm

S : set of same length and same weight binary words

Algorithm
1 Initialize the list L with a particular word in S .
2 For the last word in L, homogeneously transposes the leftmost

possible 1 with the leftmost possible 0, such that the obtained
word is in S but not in L.

3 If at point 2. a new word is obtained, then append it to the list L
and return to point 2.

This definition is a specialisation of that introduced in
[Aaron Williams, The greedy Gray code algorithm, 2013]

6/29



Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001
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The greedy Gray code algorithm

Example 1

Let S be the set of length four binary words with two 1’s.

1001
0101
0011

L = [1001, 0101, 0011].
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The greedy Gray code algorithm

Example 2

0011
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Example 2
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Greedy generation of some restricted classes of binary words
The greedy Gray code algorithm

Questions

1. Which classes of binary words this algorithm
generates ?

2. Which first words generate the whole class ?
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Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Fibonacci words

Definition

Let Fn(2, k) be the set of length n and weight k binary words that do not
have two consecutive 1’s.

|Fn(2, k)| =
(
n − k + 1

k

)
.

Example:
F5(2, 2) = {10100, 01010, 00101, 10010, 01001, 10001}.
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Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Fibonacci words and the greedy algorithm

Definition

For α ∈ Fn(2, k), we denote by F(α) the list obtained by applying the
greedy algorithm for Fn(2, k), starting with α.

Example : F(01010) is the list

[01010,
10010,
10100,
10001,
01001,
00101].
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Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

Last word in F(α)

Let
γn,k := 0n−2k(01)k ∈ Fn(2, k).

Lemma
For any α ∈ Fn(2, k) with α ̸= γn,k , the last word of F(α) is γn,k .
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Fibonacci words and generalised Dyck prefixes

Some generators of Fn(2, k)

Definition

We denote by GenF(n, k) the set of generators, i.e. words α ∈ Fn(2, k)
such that F(α) is a homogeneous Gray code for Fn(2, k).

Remark:
By definition of the greedy algorithm, α ∈ GenF(n, k) if and only if
F(α) contains every word of Fn(2, k).
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Fibonacci words and generalised Dyck prefixes

Some generators of Fn(2, k)

Example : 01010 ∈ GenF(5, 2), while 10010 ̸∈ GenF(5, 2).

F(01010) is the list

[01010,
10010,
10100,
10001,
01001,
00101].

F(10010) is the list

[10010,
01010,
01001,
10001,
00101].
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Fibonacci words and generalised Dyck prefixes

Some generators of Fn(2, k)

For n, k with n ≥ 2k , let αi
n,k = 0i1(01)k−10n−2k+1−i .

Theorem
Let n ∈ N⋆. Then for all k with n ≥ 2k , we have

1 αi
n,k ∈ GenF(n, k) for all 0 ≤ i ≤ n − 2k , and F(αi

n,k) is a suffix
partitioned list, with γn,k as last word.

2 γn,k ∈ GenF(n, k), F(γn,k) is a suffix partitioned list and its last
word is

1 α0
n,k if k is even,

2 αn−2k
n,k if k is odd.

18/29



Greedy generation of some restricted classes of binary words
Fibonacci words and generalised Dyck prefixes

F(α) is suffix partitioned

Lemma
For any α ∈ Fn(2, k), F(α) is a suffix partitioned list.
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Fibonacci words and generalised Dyck prefixes

The generators of Fn(2, k)

Theorem
Let n ≥ 2k − 1. Then

GenF(n, k) = {0i1(01)k−10n−2k+1−i | 0 ≤ i ≤ n − 2k + 1}.

In particular, |GenF(n, k)| = n − 2k + 2.
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Fibonacci words and generalised Dyck prefixes

Generalised Dyck prefixes

Definition

Let Cn(p, k) be the set of length n and weight k binary words with the
property that any prefix contains at least p times as many 0’s as 1’s.

|Cn(p, k)| =
(
n

k

)
− p

(
n

k − 1

)
.

Example:
Cn(0, k) is the set of length n binary words of weight k ,
C2n(1, n) is the set of length 2n Dyck words,
C3n(2, n) is in bijection with size 3n ternary trees.
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Fibonacci words and generalised Dyck prefixes

The generators of Cn(p, k)

Theorem

Let n ≥ (p + 1)k . If p ≥ 1 then

Genp(n, k) =
k⋃

j=1

{0pj−i1j−10i1(0p1)k−j0n−(p+1)k | 0 ≤ i ≤ p − 1}

∪ {0i1k0n−i−k | pk + 1 ≤ i ≤ n − k}.

If p = 0 then Gen0(n, k) = {0i1k0n−i−k | 0 ≤ i ≤ n − k}. In particular,

|Genp(n, k)| = n − k + 1− p.
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Efficient generation

Recursive tail partitioned lists

L is a recursive tail partitioned list if it has the form

L = L1 · 01u,L2 · 01u+1,L3 · 01u+2, · · · ,Lℓ+1 · 01u+ℓ

or the form

L = L1 · 01u+ℓ,L2 · 01u+ℓ−1,L3 · 01u+ℓ−2, · · · ,Lℓ+1 · 01u

for some u, ℓ ≥ 0, and each list Li , is in turn recursive tail partitioned.
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Efficient generation

Recursive tail partitioned lists

Theorem
If the list L is a homogeneous and suffix partitioned Gray code for a set
of (same length and same weight) binary words, then L is an r-t
partitioned list.
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Efficient generation

CAT generation for a homogeneous Gray code for
Cn(p, k)

procedure pref(m, j)
if m = (p + 1)j then

if p = 0 then return
end if
m← m − 1 ; j ← j − 1

end if
if Sj < m then # Increasing tail

for i = 0 to j − 1 do # i is the number of 1’s in the tail
pref(m − i − 1, j − i)
Sj−i ← m − i
print(S)

end if
if Sj = m then # Decreasing tail

for i = j − 1 downto 0 do # i is the number of 1’s in the tail
Sj−i ← max(Sj−i−1 + 1, (p + 1)(j − i))
print(S)
pref(m − i − 1, j − i)

end if
end procedure
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Greedy generation of some restricted classes of binary words
Efficient generation

the main call is pref(n, k), it generates Cn(p, k)

Si is the position of the ith 1 in the word
table S and the parameter p are global
S is initialized as Si ← (p + 1)i for 1 ≤ i ≤ k
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Efficient generation

The list D1(01010101) obtained by the call of pref(8, 4) with p = 1,
which is an homogeneous Gray code for C8(1, 4).
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00101101,
01001101,
00011101,
00011011,
01001011,

00101011,
00110011,
01010011,
01000111,
00100111,
00010111,
00001111]
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Efficient generation

Algorithm analysis

With a classical complexity analysis, we can obtain the following result

Proposition
The call pref(n, k) generates the homogeneous greedy Gray code for
Cn(p, k) efficiently.

See [Frank Ruskey, Combinatorial Generation Book].
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