Intervals in a family of Fibonacci lattices Séminaire Jeune Chercheur Reims

Nathanaël Hassler

28 mai 2025

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Overview

Fibonacci lattices

2 Characteristic elements

Intervals

Lattices and intervals

Definition

A *lattice* is a poset in which each pair of elements admits a *meet* (greatest lower bound) and a *join* (lowest upper bound).

Definition

In a poset (\mathcal{P}, \leq) , an *interval* [P, Q] is a set of the form

$$\{R\in\mathcal{P}\mid P\leq R\leq Q\}.$$

If $[P, Q] = \{P, Q\}$, then this interval is called a *covering*.

Hasse diagram

Dyck path

Definition

A Dyck path of semilength n is a lattice path starting at the origin (0,0), ending at (2n,0), and never going below the x-axis, consisting of up steps U = (1,1) and down steps D = (1,-1).

Figure – The Dyck path UUDUUDDDUUDD

Theorem

The Dyck paths of semilength n are enumerated by the Catalan number

$$C_n=\frac{1}{n+1}\binom{2n}{n}.$$

Examples of lattices

Examples of lattices enumerated by the Catalan numbers :

- the Stanley lattice [Stanley, 1975]
- the Tamari lattice [Friedman, Tamari, 1967]
- the Kreweras lattice [Kreweras, 1972]
- the Phagocyte lattice [Baril, Pallo, 2006]
- the Pruning-grafting lattice [Baril, Pallo, 2008]
- the Pyramid lattice [Baril, Kirgizov, Naima, 2023]
- the Ascent lattice [Baril, Bousquet-Mélou, Kirgizov, Naima, 2024]

Examples of intervals in the Stanley lattice

The Stanley lattice. The Stanley lattice Stan_n is the lattice on Dyck paths of semilength *n* where $P \leq Q$ if *P* is always under *Q* when we draw them together.

Examples of intervals in the Stanley lattice

The Stanley lattice. The Stanley lattice Stan_n is the lattice on Dyck paths of semilength *n* where $P \leq Q$ if *P* is always under *Q* when we draw them together.

Examples of lattices on Dyck paths

The Stanley lattice. The Stanley lattice Stan_n is the lattice on Dyck paths of semilength *n* where $P \leq Q$ if *P* is always under *Q* when we draw them together.

Examples of intervals in the Stanley lattice

The Stanley lattice. The Stanley lattice Stan_n is the lattice on Dyck paths of semilength *n* where $P \leq Q$ if *P* is always under *Q* when we draw them together.

Enumeration of intervals

Intervals in Stan_n [De Sainte-Catherine, Viennot, 1986] :

$$\frac{6(2n)!(2n+2)!}{n!(n+1)!(n+2)!(n+3)!}$$

Intervals in Tam_n [Chapoton, 2006] :

$$\frac{2(4n+1)!}{(n+1)!(3n+2)!}.$$

Linear intervals in both Stan_n and Tam_n [Chenevrière, 2022] :

$$\frac{1}{n+1}\binom{2n}{n} + \binom{2n-1}{n-2} + 2\binom{2n-1}{n+2}$$

Intervals in a family of Fibonacci lattices Fibonacci lattices

Generalized Fibonacci numbers

Definition

The *p*-generalized Fibonacci sequences are defined for every $p \ge 2$ by

$$F_n^p = F_{n-1}^p + F_{n-2}^p + \dots + F_{n-p}^p$$

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえで

with initial conditions $F_i^p = 0$ for i < 0, and $F_0^p = 1$.

Dyck paths enumerated by the Fibonacci numbers

Definition

For $p \ge 2$, let \mathcal{F}^p (resp. \mathcal{F}^p_n) be the set of Dyck paths (resp. of semilength n) avoiding the patterns DUU and D^{p+1} .

Definition

Let \mathcal{F}^{∞} (resp. \mathcal{F}_{n}^{∞}) be the set of Dyck paths (resp. of semilength *n*) avoiding the pattern *DUU*.

Remark : For any $n \in \mathbb{N}$,

$$\mathcal{F}_n^2 \subseteq \mathcal{F}_n^3 \subseteq \cdots \subseteq \mathcal{F}_n^p \subseteq \mathcal{F}_n^{p+1} \subseteq \cdots \subseteq \mathcal{F}_n^{\infty},$$

 $|\mathcal{F}_n^p| = \mathcal{F}_n^p, \quad \text{and} \quad |\mathcal{F}_n^{\infty}| = 2^{n-1}.$

Intervals in a family of Fibonacci lattices Fibonacci lattices

Lattice on
$$\mathcal{F}_n^p$$

Let \leq be the Stanley order.

Definition-Proposition

 $\mathbb{F}_n^{\rho} = (\mathcal{F}_n^{\rho}, \leq)$ and $\mathbb{F}_n^{\infty} = (\mathcal{F}_n^{\infty}, \leq)$ are sublattices of the Stanley lattice.

Remark : The cover relation corresponds to transformations $DU \rightarrow UD$.

Intervals in a family of Fibonacci lattices Fibonacci lattices

Lattice on \mathcal{F}_n^p

Figure – The Hasse diagram of \mathbb{F}_{5}^{2} $(\mathbb{P}) (\mathbb{P}) (\mathbb{P})$

Upper covers

Let $F_p(x, y)$ be the generating function where the coefficient of $x^n y^k$ is the number of elements in \mathbb{F}_n^p that have exactly k upper covers.

Theorem

The generating function $F_{\rho}(x, y)$ is given by

$$F_{p}(x,y) = \frac{(1-x)(1+(y-1)x^{p})}{1-2x+x^{p+1}-(y-1)(x^{2}-x^{p}+x^{p+1}-x^{p+2})}.$$

Intervals in a family of Fibonacci lattices Characteristic elements

Coverings

Corollary

The generating function for the number of coverings in \mathbb{F}_n^p , $n \ge 0$, is

$$\partial_{y}F_{p}(x,y)|_{y=1} = \frac{(1-x)(x^{2}-x^{p+1})(1-x^{p})}{(1-2x+x^{p+1})^{2}}$$

Corollary

For any $p \ge 2$, the number of meet-irreducible elements in \mathbb{F}_{n}^{p} , is given by

$$b_p(n) = \left\lfloor \frac{n^2(p-1)}{2p}
ight
floor,$$

which also counts the number of edges in the (n, p)-Turán graph, *i.e.* the maximum number of edges in a graph on n vertices and avoiding (p + 1)-cliques.

Intervals in a family of Fibonacci lattices Characteristic elements

Number of meet-irreducible elements

Figure – There are 6 meet-irreducible elements in \mathbb{F}_5^2 , and 6 edges in the (5, 2)-Turán graph.

(ロ) (四) (E) (E) (E) (E)

Boolean intervals

Definition

An interval is said *boolean* if it is isomorphic to the poset of subsets of [n] ordered by inclusion.

Figure – The boolean lattice of size 3.

Intervals in a family of Fibonacci lattices Characteristic elements

Boolean intervals

Theorem

The generating function $B_p(x, y)$ for the number of boolean intervals in \mathbb{F}_n^p , with respect to the semilength $n \ge 0$, and the interval height is given by

$$B_{p}(x,y) = \frac{(1-x)(1+yx^{p})}{1-2x+x^{p+1}-y(x^{2}-x^{p}+x^{p+1}-x^{p+2})}$$

Proof. Since \mathbb{F}_{p}^{p} is a distributive lattice, we have that

$$B_p(x,y)=F_p(x,1+y).$$

Structure of the linear intervals I

Definition

An interval is said *linear* when all its elements are pairwise comparable.

< ロ > < 同 > < 回 > < 回 > < □ > <

Intervals in a family of Fibonacci lattices Characteristic elements

Structure of linear intervals II

Figure – The structures of linear intervals [P, Q] in \mathbb{F}_n^p .

Enumeration of the linear intervals

Corollary

The generating function $L_2(x, y)$ of the number of linear intervals in \mathbb{F}_n^2 with respect to *n* and the interval height is given by

$$L_{2}(x,y) = \frac{x^{4}y^{4} + y^{3}x^{4} + 1}{1 - x - x^{2}} + \frac{x^{2}y(x^{2} - 1)(x^{3}y^{2} - 1)}{(xy - 1)(x^{2} + x - 1)^{2}(x^{2}y - 1)}.$$

Theorem

Asymptotically, the number of linear intervals in \mathbb{F}_n^p is proportional to the number of coverings.

Extending a Dyck path

Extending a Dyck path in \mathbb{F}_n^{∞}

Extending a Dyck path in \mathbb{F}_n^{∞}

Generating intervals in \mathbb{F}_n^∞

Generating intervals in \mathbb{F}_n^∞

Generating intervals in \mathbb{F}_n^{∞}

Generating intervals in \mathbb{F}_n^{∞}

Theorem

There is a bijection between intervals in \mathbb{F}_n^{∞} and bicolored Motzkin paths of length n-1 in the quarter plane.

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー わえで

Corollary

There are $\binom{2n-1}{n}$ intervals in \mathbb{F}_n^{∞} .

Generating intervals in \mathbb{F}_n^{∞}

associated with the bicolored Motzkin path $UF_2UDF_1UF_2$.

Intervals in \mathbb{F}_n^p

Theorem

There is a bijection between intervals in \mathbb{F}_n^p and bicolored Motzkin paths of length n-1 and avoiding the $2^{p+1}-1$ consecutive patterns of the set $\{F_2, U\}^p \cup \{F_2, D\}^p$.

Corollary

The generating function J(x) for the number of intervals in \mathbb{F}_n^2 is

$$J(x) = \frac{-x^2 + 3x - 1 + \sqrt{x^4 - 2x^3 - x^2 - 2x + 1}}{2x(x^2 - 3x + 1)(x + 1)}$$

The coefficient of x^n in the series expansion is asymptotically

$$\frac{11+5\sqrt{5}}{20}\sqrt{\frac{14\sqrt{5}-30}{\pi}}\cdot n^{-1/2}\left(\frac{3+\sqrt{5}}{2}\right)^n.$$

Compositions of *n*

Proposition

There is a bijection between the elements of \mathcal{F}_n^p and the compositions of n with parts in [1, p].

Compositions of n

Proposition

The order induced by \mathbb{F}_n^p on the compositions of n with parts in [1, p] is known as the *dominance* order, defined by $\lambda \leq \mu$ if and only if for all k

$$\sum_{i=1}^{\kappa} \lambda_i \le \sum_{i=1}^{\kappa} \mu_i.$$

$$(3,1)$$

$$(2,2)$$

$$(1,3)$$

$$(2,1,1)$$

$$(1,2,1)$$

$$(1,1,2)$$

$$(1,1,1,1)$$

Figure – The lattice \mathbb{F}_4^3 on the compositions of 4 with parts in $[1, \overline{3}]$.

Compositions of n

$$(3,2)$$

$$(2,3)$$

$$(3,1,1)$$

$$(2,2,1)$$

$$(1,3,1)$$

$$(2,1,2)$$

$$(1,2,2)$$

$$(2,1,1,1)$$

$$(1,1,2,1)$$

$$(1,1,1,2)$$

$$(1,1,1,1)$$

Figure – The lattice \mathbb{F}_5^3 on the compositions of 5 with parts in [1,3].

Powerset of
$$[1, n-1]$$

Proposition

There is a bijection between \mathcal{F}_n^p and the subsets of [1, n-1] having no p consecutive elements.

Powerset of
$$[1, n-1]$$

Proposition

The order induced by \mathbb{F}_{p}^{p} on those subsets is the following :

$$A {\triangleleft} B \Longleftrightarrow \left\{ \begin{array}{l} 1 \notin A \text{ and } B = A \cup \{1\}, \text{ or} \\ \text{there exists a unique } x \in A \text{ such that } B = \{x + 1\} \cup A \setminus \{x\}. \end{array} \right.$$

Figure – The lattice \mathbb{F}_4^3 on the subsets of [1,3] having no 3 consecutive elements.

Powerset of [1, n-1]

Figure – The lattice \mathbb{F}_5^3 on the subsets of [1,4] having no 3 consecutive elements.