TD 5: WEAK TOPOLOGIES (II)

EXERCISE 1. Let *E* and *F* be two Banach spaces, and $T : E \to F$ be a linear map. Show that *T* is strongly continuous (*i.e.* continuous from $(E, \|\cdot\|_E)$ to $(F, \|\cdot\|_F)$) if and only if *T* is weakly continuous (*i.e.* continuous from $(E, \sigma(E, E^*))$ to $(F, \sigma(F, F^*))$).

EXERCISE 2. Let *E* be a separable real normed vector space. Let $(u_n)_n$ be a dense sequence in $B_E(0,1)$. By considering the following metric *d* on the unit ball of E^* ,

$$d(f,g) = \sum_{n=0}^{+\infty} \frac{1}{2^n} |(f-g)(u_n)|, \quad f,g \in B_{E^*}(0,1),$$

prove that the weak-* topology on $B_{E^*}(0,1)$ is metrizable.

EXERCISE 3 (Goldstine lemma). Let X be a Banach space. For any $x \in X$, let us define the evaluation $ev_x : \varphi \in X^* \mapsto \varphi(x) \in \mathbb{R}$. We can therefore consider the following application

$$J: \left\{ \begin{array}{ccc} X & \to & X^{**} \\ x & \mapsto & \operatorname{ev}_x \end{array} \right.$$

For any normed vector space E, we denote by B_E its closed unit ball.

- 1. Check that J is an isometry and that J(X) is strongly closed in X^{**} .
- 2. Let E be a normed vector space. Determine all the linear forms on E^* which are continuous for the weak-* topology $\sigma(E^*, E)$.
- 3. By using the Hahn-Banach theorem, prove that $J(B_X)$ is dense in $B_{X^{**}}$ for the weak-* topology $\sigma(X^{**}, X^*)$.

EXERCISE 4.

1. In $\ell^{\infty}(\mathbb{N})$ we consider

$$C = \left\{ x \in \ell^{\infty}(\mathbb{N}) : \liminf x_n \ge 0 \right\}.$$

Show that C is strongly closed but not weakly-* closed.

2. Let *E* be a normed vector space. Show that an hyperplane $H \subset E^*$ which is closed for the weak-* topology $\sigma(E^*, E)$ is the kernel of $ev_x : \varphi \mapsto \varphi(x)$ for some $x \in E$.

EXERCISE 5. Let $(E, \|\cdot\|)$ be a reflexive space and B_E be its unit ball. Show that for all $\varphi \in E^*$, there exists $x_{\varphi} \in B_E$, such that $\|\varphi\|_{E^*} = |\varphi(x_{\varphi})|$, i.e. the supremum in the definition of the norm operator is in fact a maximum.

EXERCISE 6. The aim of this exercise is to prove by two different methods that the space $(C^0([0,1]), \|\cdot\|_{\infty})$ of continuous real-valued functions on [0,1] is not reflexive.

- 1. Method by compactness.
 - (a) Define $\varphi \in C^0([0,1])^*$ by

$$\varphi(f) = \int_0^{1/2} f(t) \,\mathrm{d}t - \int_{1/2}^1 f(t) \,\mathrm{d}t, \quad f \in C^0([0,1]),$$

and show that $\|\varphi\| = 1$.

- (b) Prove that $|\varphi(f)| < 1$ for all $f \in C^0([0,1])$ such that $||f||_{\infty} \le 1$.
- (c) Conclude that the space $C^{0}([0, 1])$ is not reflexive.
- 2. Method by separability.
 - (a) Prove that if E is a Banach space and its dual E^* is separable, then E is separable.
 - (b) Show that C([0,1]) is separable.
 - (c) Prove that $C([0,1])^*$ is not separable. Hint: Consider the functions $\delta_t : C([0,1]) \to \mathbb{R}$ defined by $\delta_t(f) = f(t)$ for any $t \in [0,1]$.
 - (d) Conclude that C([0, 1]) is not isomorphic to $C([0, 1])^{**}$ as Banach spaces. Remark: This is stronger than not being reflexive.

EXERCISE 7.

- 1. Let E be a reflexive, separable Banach space. Let $(u_n)_n$ be a bounded sequence in E. Show that one can extract a subsequence $(u_{n'})_{n'}$ which converges weakly in E.
- 2. Does this result hold when E is not reflexive ?

EXERCISE 8. Let *E* be a reflexive Banach space and $I : E \to \mathbb{R}$ be a continuous, convex and coercive functional, in the sense that there exist $\alpha > 0$ and $M \ge 0$ such that for all $x \in E$,

$$I(x) \ge \alpha \|x\|_E - M.$$

We also consider $A \subset E$ a non-empty, closed and convex set. Prove that the functional I admits a minimum on A.

EXERCISE 9. Let *B* denote the closed unit ball of $L^1([0,1])$. Recall that a function $f \in B$ is called an extreme point if, whenever $f = \theta f_1 + (1 - \theta) f_2$ with $\theta \in (0,1)$ and $f_1, f_2 \in B$, one has $f_1 = f_2$. Prove that *B* does not admit extremal points. Deduce that there is no isometry between $L^1([0,1])$ and the topological dual of a normed vector space.

Hint: We admit Krein-Milman's theorem, stating that any non-empty convex compact subset of any *l.c.t.v.s* coincides with the closed convex envelop of its extremal points.