TD 5: Weak topology

EXERCISE 1 (Properties of weakly convergent sequences). Let X be a normed vector space.

- 1. Let $(u_n)_n$ be a weakly convergent sequence in X. Justify that (u_n) is bounded and that the weak limit u of $(u_n)_n$ satisfies $||u|| \leq \liminf_{n \to +\infty} ||u_n||$.
- 2. Suppose that the sequence $(\varphi_n)_n$ in X^* is converging strongly to some $\varphi \in X^*$. Show that for any sequence $(u_n)_n$ in X that converges weakly to $u \in X$, then the sequence $(\varphi_n(u_n))_n$ converges strongly to $\varphi(u)$.
- 3. Assume that X is a Hilbert space. Let $(u_n)_n$ be a sequence in X that converges weakly to $u \in X$ and such that $(||u_n||)_n$ converges to ||u||. Prove that $(u_n)_n$ converges strongly to u.

EXERCISE 2 (Examples of weakly convergent sequences).

- 1. Let H be a separable Hilbert space and $(e_n)_n$ be a Hilbert basis of H. Prove that $(e_n)_n$ converges weakly to 0 but not strongly.
- 2. Let $K \subset \mathbb{R}^d$ be a compact set. Show that weak convergence in C(K) is equivalent to bounded pointwise convergence.
- 3. Let $\Omega \subset \mathbb{R}^d$ and $(u_n)_n$, $(v_n)_n$ be two sequences in $L^2(\Omega)$ such that $(u_n)_n$ converges weakly and $(v_n)_n$ strongly. Show that the sequence $(u_n v_n)_n$ converges weakly in $L^1(\Omega)$. What happens if the two sequences converge weakly ?

EXERCISE 3 (Weak topology). Let X be a topological vector space. Show that X, endowed with the weak topology, is a locally convex topological vector space.

EXERCISE 4. Let E be a Banach space.

- 1. Show that if E is finite-dimensional, then the weak topology $\sigma(E, E^*)$ and the strong topology coincide.
- 2. We assume that E is infinite-dimensional.
 - (a) Show that every weak open subset of E contains a straight line.
 - (b) Deduce that $B = \{x \in E : ||x|| < 1\}$ is not open for the weak topology.
 - (c) Let $S = \{x \in E : ||x|| = 1\}$ be the unit sphere of E. What is the weak closure of S?

EXERCISE 5. Let $p, q \in [1, +\infty]$ be such that $\frac{1}{p} + \frac{1}{q} = 1$. We introduce the canonical family of sequences e^k in $\ell^p(\mathbb{N})$, for which every term is zero, except the k^{th} which is 1. We also consider the map

$$J_p: \ \ell^q(\mathbb{N}) \to (\ell^p(\mathbb{N}))^*$$
$$(a_n)_n \mapsto \left((x_n)_n \mapsto \sum_{n=0}^{+\infty} a_n x_n \right)$$

- 1. When $p \in [1, \infty)$, show that J_p is a surjective isometry.
- 2. Show that J_{∞} is a non-surjective isometry.

- 3. When $p \in (1, \infty)$, prove that the sequence $(e^k)_k$ converges weakly but not strongly in $\ell^p(\mathbb{N})$ towards the null sequence.
- 4. Still assuming that $p \in (1, \infty)$, we consider the following subset of $\ell^p(\mathbb{N})$:

$$E = \{ e^{n} + ne^{m} : n, m \in \mathbb{N}, \ m > n \}.$$

- (a) Show that E is closed for the strong topology in $\ell^p(\mathbb{N})$.
- (b) Show that 0 is in the weak closure of E.
- (c) Show that a sequence of E cannot converge weakly towards 0.
- (d) Deduce that the weak topology on ℓ^p is not metrizable.

EXERCISE 6.

- 1. (Mazur's lemma) Let E be a Banach space and $(u_n)_n$ be a sequence in E weakly converging to $u_{\infty} \in E$. Show that u_{∞} is a strong limit of finite convex combinations of the u_n .
- 2. (Banach-Sacks' property) Show that if E is in addition a Hilbert space, we can extract a subsequence converging to u_{∞} strongly in the sens of Cesàro.

EXERCISE 7 (Schur's property for $\ell^1(\mathbb{N})$).

1. Recall why weak and strong topologies always differ in an infinite dimensional norm vector space.

The aim is to prove that a sequence of $\ell^1(\mathbb{N})$ converges weakly if and only if it converges strongly. Take $(u^n)_n$ a sequence in $\ell^1(\mathbb{N})$ weakly converging to 0.

- 2. Show that for all k, $\lim_{n\to\infty} u_k^n \to 0$.
- 3. Show that if $u_n \not\rightarrow 0$ in $\ell^1(\mathbb{N})$, one can additionally assume that $||u^n||_{\ell^1} = 1$.
- 4. Define via a recursive argument two increasing sequences of \mathbb{N} , $(a_k)_k$ and $(n_k)_k$, such that

$$\forall k \ge 0, \quad \sum_{j=a_k}^{a_{k+1}-1} |u_j^{n_k}| \ge \frac{3}{4}$$

5. Show that there exists $v \in \ell^{\infty}(\mathbb{N})$ such that $(v, u^{n_k})_{\ell^2} \geq \frac{1}{2}$ for all k. Conclude.