TD 10: Pseudo-differential operators II

Exercise 1. Let $K: \mathbb{R}^{2 d} \rightarrow \mathbb{C}$ be a continuous function. Assume that there exists $A>0$ such that

$$
\sup _{x \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|K(x, y)| \mathrm{d} y \leq A, \quad \sup _{y \in \mathbb{R}^{d}} \int_{\mathbb{R}^{d}}|K(x, y)| \mathrm{d} x \leq A .
$$

For all $u \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$, we set

$$
(P u)(x)=\int_{\mathbb{R}^{d}} K(x, y) u(y) \mathrm{d} y, \quad x \in \mathbb{R}^{d} .
$$

1. Check that $P u$ is well-defined and belongs to $L^{\infty}\left(\mathbb{R}^{d}\right)$.
2. We will prove Schur's lemma, stating that P can be uniquely extended to a bounded operator in $L^{2}\left(\mathbb{R}^{d}\right)$ satisfying $\|P\|_{\mathcal{L}\left(L^{2}\right)} \leq A$.
a) By using Cauchy-Schwarz' inequality, check that for all $u \in C_{0}^{0}\left(\mathbb{R}^{d}\right)$ and $x \in \mathbb{R}^{d}$,

$$
|(P u)(x)|^{2} \leq A \int_{\mathbb{R}^{d}}|K(x, y) \| u(y)|^{2} \mathrm{~d} y .
$$

b) Conclude.

Exercise 2. The purpose of this exercise is to prove Calderón-Vaillancourt's theorem: any pseudodifferential operator $\operatorname{Op}(a)$, with $a \in S^{0}$, is bounded in $L^{2}\left(\mathbb{R}^{d}\right)$.

1. We first assume that $a \in S^{-(d+1)}$.
a) Check that $\mathrm{Op}(a)$ can be written

$$
\mathrm{Op}(a) u(x)=\int_{\mathbb{R}^{d}} K(x, y) u(y) \mathrm{d} y, \quad x \in \mathbb{R}^{d} .
$$

where K is a kernel to be precised.
b) Prove that the function $(x, y) \in \mathbb{R}^{2 d} \mapsto\left(1+|x-y|^{d+1}\right) K(x, y)$ is bounded.
c) Prove the theorem by using Exercise 1.
2. Prove with an induction that for all $k \in\{0, \ldots, d\}$, the theorem is true when $a \in S^{k-(d+1)}$. Hint: Consider the operator $\mathrm{Op}(a)^{*} \mathrm{Op}(a)$.
3. The previous question implies in particular that the theorem holds when $a \in S^{-1}$. We now assume that $a \in S^{0}$.
a) Prove that if $M>0$ is large enough, there exist symbols $c \in S^{0}$ and $r \in S^{-1}$ such that

$$
\mathrm{Op}(c)^{*} \mathrm{Op}(c)=M \mathrm{Id}-\mathrm{Op}(a)^{*} \mathrm{Op}(a)+\mathrm{Op}(r) .
$$

b) Conclude.

Exercise 3. Let $m \in \mathbb{R} \cup\{-\infty\}$ and $a \in S^{m}$.

1. Recall the expression of the kernel K of the operator $\mathrm{Op}(a)$.
2. Prove that when $m=-\infty, K$ belongs to $C^{\infty}\left(\mathbb{R}^{2 d}\right)$.
3. Let $x, y \in \mathbb{R}^{d}$ such that $x \neq y$. We consider $\varphi, \psi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying
a) $\varphi=1$ is a neighborhood of x,
b) $\psi=1$ is a neighborhood of y,
c) $\operatorname{supp} \varphi \cap \operatorname{supp} \psi=\emptyset$.

Show that $M_{\varphi} \operatorname{Op}(a) M_{\psi}$ belongs to $\operatorname{Op}\left(S^{-\infty}\right)$, where M_{φ} and M_{ψ} denote the multiplication by φ and ψ respectively.
4. Compute the kernel of the operator $M_{\varphi} \mathrm{Op}(a) M_{\psi}$ as a function of K.
5. Prove that K is C^{∞} in a neighborhood of (x, y).

Exercise 4.

1. Let $a \in C^{\infty}\left(\mathbb{R}^{2 d}\right)$ and $\chi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ satisfying

$$
\chi(\xi) \neq 0 \Longleftrightarrow 1 / 2<|\xi|<2 .
$$

For all $\lambda \geq 1$, we set $a_{\lambda}(x, \xi)=\chi(\xi) a(x, \lambda \xi)$. Prove that the following conditions are equivalent:
a) $a \in S^{m}$,
b) $\forall(\alpha, \beta) \in \mathbb{N}^{2 d}, \exists C_{\alpha, \beta}>0, \forall \lambda \geq 1,\left\|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} a_{\lambda}\right\|_{L^{\infty}} \leq C \lambda^{m}$.
2. Let $f \in C^{k}\left(\mathbb{R}^{d}\right)$ satisfying that f and $\partial^{\alpha} f$ are bounded for all $\alpha \in \mathbb{N}^{d}$ such that $|\alpha|=k$.
a) Prove that there exists a positive constant $c>0$ independent on f such that for all $\beta \in \mathbb{N}^{d}$ satisfying $0 \leq|\beta| \leq k$,

$$
\left\|\partial^{\beta} f\right\|_{L^{\infty}} \leq c\left(\|f\|_{L^{\infty}}+\sum_{|\alpha|=k}\left\|\partial^{\alpha} f\right\|_{L^{\infty}}\right)
$$

b) Prove that for all $\beta \in \mathbb{N}^{d}$ satisfying $0 \leq|\beta| \leq k$,

$$
\left\|\partial^{\beta} f\right\|_{L^{\infty}} \leq c\|f\|_{L^{\infty}}^{1-|\beta| / k}\left(\sum_{|\alpha|=k}\left\|\partial^{\alpha} f\right\|_{L^{\infty}}\right)^{|\beta| / k}
$$

Hint: Consider the function $g: x \in \mathbb{R}^{d} \mapsto f(\lambda x)$ for a well-chosen $\lambda>0$.
3. Let $a \in S^{m}$. Assume that there exists $\mu>0$ and $c>0$ such that

$$
\forall(x, \xi) \in \mathbb{R}^{2 d}, \quad|a(x, \xi)| \leq c\langle\xi\rangle^{\mu}
$$

Prove that $a \in S^{\mu+\varepsilon}$ for all $\varepsilon>0$.
4. Let A be a nilpotent pseudo-differential operator, i.e. satisfying $A^{k}=0$ for some $k \geq 1$.
a) Prove that $A \in \operatorname{Op}\left(S^{-\infty}\right)$.
b) Give a non-trivial example when $k=2$.

