TD 10: PSEUDO-DIFFERENTIAL OPERATORS II

EXERCISE 1. Let $K: \mathbb{R}^{2d} \to \mathbb{C}$ be a continuous function. Assume that there exists A > 0 such that

$$\sup_{x \in \mathbb{R}^d} \int_{\mathbb{R}^d} |K(x,y)| \, \mathrm{d}y \le A, \quad \sup_{y \in \mathbb{R}^d} \int_{\mathbb{R}^d} |K(x,y)| \, \mathrm{d}x \le A.$$

For all $u \in C_0^{\infty}(\mathbb{R}^d)$, we set

$$(Pu)(x) = \int_{\mathbb{R}^d} K(x, y)u(y) \, dy, \quad x \in \mathbb{R}^d.$$

- 1. Check that Pu is well-defined and belongs to $L^{\infty}(\mathbb{R}^d)$.
- 2. We will prove Schur's lemma, stating that P can be uniquely extended to a bounded operator in $L^2(\mathbb{R}^d)$ satisfying $\|P\|_{\mathcal{L}(L^2)} \leq A$.
 - a) By using Cauchy-Schwarz' inequality, check that for all $u \in C_0^0(\mathbb{R}^d)$ and $x \in \mathbb{R}^d$,

$$|(Pu)(x)|^2 \le A \int_{\mathbb{R}^d} |K(x,y)| |u(y)|^2 dy.$$

b) Conclude.

EXERCISE 2. The purpose of this exercise is to prove Calderón-Vaillancourt's theorem: any pseudo-differential operator Op(a), with $a \in S^0$, is bounded in $L^2(\mathbb{R}^d)$.

- 1. We first assume that $a \in S^{-(d+1)}$.
 - a) Check that Op(a) can be written

$$\operatorname{Op}(a)u(x) = \int_{\mathbb{R}^d} K(x, y)u(y) \, dy, \quad x \in \mathbb{R}^d.$$

where K is a kernel to be precised.

- b) Prove that the function $(x,y) \in \mathbb{R}^{2d} \mapsto (1+|x-y|^{d+1})K(x,y)$ is bounded.
- c) Prove the theorem by using Exercise 1.
- 2. Prove with an induction that for all $k \in \{0, ..., d\}$, the theorem is true when $a \in S^{k-(d+1)}$. Hint: Consider the operator $\operatorname{Op}(a)^* \operatorname{Op}(a)$.
- 3. The previous question implies in particular that the theorem holds when $a \in S^{-1}$. We now assume that $a \in S^0$.
 - a) Prove that if M>0 is large enough, there exist symbols $c\in S^0$ and $r\in S^{-1}$ such that

$$\operatorname{Op}(c)^* \operatorname{Op}(c) = M \operatorname{Id} - \operatorname{Op}(a)^* \operatorname{Op}(a) + \operatorname{Op}(r).$$

b) Conclude.

EXERCISE 3. Let $m \in \mathbb{R} \cup \{-\infty\}$ and $a \in S^m$.

- 1. Recall the expression of the kernel K of the operator Op(a).
- 2. Prove that when $m = -\infty$, K belongs to $C^{\infty}(\mathbb{R}^{2d})$.
- 3. Let $x, y \in \mathbb{R}^d$ such that $x \neq y$. We consider $\varphi, \psi \in C_0^{\infty}(\mathbb{R}^d)$ satisfying
 - a) $\varphi = 1$ is a neighborhood of x,
 - b) $\psi = 1$ is a neighborhood of y,
 - c) supp $\varphi \cap \text{supp } \psi = \emptyset$.

Show that $M_{\varphi} \operatorname{Op}(a) M_{\psi}$ belongs to $\operatorname{Op}(S^{-\infty})$, where M_{φ} and M_{ψ} denote the multiplication by φ and ψ respectively.

- 4. Compute the kernel of the operator $M_{\varphi} \operatorname{Op}(a) M_{\psi}$ as a function of K.
- 5. Prove that K is C^{∞} in a neighborhood of (x, y).

Exercise 4.

1. Let $a \in C^{\infty}(\mathbb{R}^{2d})$ and $\chi \in C^{\infty}(\mathbb{R}^d)$ satisfying

$$\chi(\xi) \neq 0 \iff 1/2 < |\xi| < 2.$$

For all $\lambda \geq 1$, we set $a_{\lambda}(x,\xi) = \chi(\xi)a(x,\lambda\xi)$. Prove that the following conditions are equivalent:

- a) $a \in S^m$,
- b) $\forall (\alpha, \beta) \in \mathbb{N}^{2d}, \exists C_{\alpha, \beta} > 0, \forall \lambda \geq 1, \|\partial_{\varepsilon}^{\alpha} \partial_{x}^{\beta} a_{\lambda}\|_{L^{\infty}} \leq C\lambda^{m}.$
- 2. Let $f \in C^k(\mathbb{R}^d)$ satisfying that f and $\partial^{\alpha} f$ are bounded for all $\alpha \in \mathbb{N}^d$ such that $|\alpha| = k$.
 - a) Prove that there exists a positive constant c>0 independent on f such that for all $\beta\in\mathbb{N}^d$ satisfying $0\leq |\beta|\leq k$,

$$\|\partial^{\beta} f\|_{L^{\infty}} \le c \left(\|f\|_{L^{\infty}} + \sum_{|\alpha|=k} \|\partial^{\alpha} f\|_{L^{\infty}} \right).$$

b) Prove that for all $\beta \in \mathbb{N}^d$ satisfying $0 \le |\beta| \le k$,

$$\|\partial^{\beta} f\|_{L^{\infty}} \le c \|f\|_{L^{\infty}}^{1-|\beta|/k} \left(\sum_{|\alpha|=k} \|\partial^{\alpha} f\|_{L^{\infty}} \right)^{|\beta|/k}.$$

Hint: Consider the function $g: x \in \mathbb{R}^d \mapsto f(\lambda x)$ for a well-chosen $\lambda > 0$.

3. Let $a \in S^m$. Assume that there exists $\mu > 0$ and c > 0 such that

$$\forall (x,\xi) \in \mathbb{R}^{2d}, \quad |a(x,\xi)| \le c\langle \xi \rangle^{\mu}.$$

Prove that $a \in S^{\mu+\varepsilon}$ for all $\varepsilon > 0$.

- 4. Let A be a nilpotent pseudo-differential operator, i.e. satisfying $A^k=0$ for some $k\geq 1$.
 - a) Prove that $A \in \operatorname{Op}(S^{-\infty})$.
 - b) Give a non-trivial example when k = 2.