TD 2: Sobolev spaces

EXERCISE 1.

- 1. Show that u(x) = |x| belongs to $W^{1,2}(-1,1)$ but not to $W^{2,2}(-1,1)$.
- 2. Check that $v(x) = \frac{\sin(x^2)}{\sqrt{1+x^2}}$ belongs to $L^2(\mathbb{R})$ but not to $W^{1,2}(\mathbb{R})$.
- 3. Show that $H^1(\mathbb{R}^2)$ is not included in $L^{\infty}(\mathbb{R}^2)$. Hint: Consider a function of the form $x \mapsto \chi(|x|) |\log |x||^{1/3}$.

EXERCISE 2. Let $\Omega = (0, 1)$.

1. Prove that the following continuous embeddings hold

$$W^{1,1}(\Omega) \hookrightarrow C^0(\bar{\Omega})$$
 and $W^{1,p}(\Omega) \hookrightarrow C^{0,1-1/p}(\bar{\Omega})$ when $p \in (1,\infty]$,

with the convention $1/\infty = 0$.

2. Prove that for all $1 \le p < \infty$, the space $W_0^{1,p}(\Omega)$ is given by

$$W_0^{1,p}(\Omega) = \left\{ u \in W^{1,p}(\Omega) : u(0) = u(1) = 0 \right\}.$$

EXERCISE 3. The aim of this exercise is to give a characterization of the space $H^1(0,1)$.

1. (a) Prove that if $u \in C^1[0,1]$, then we have for any $\alpha \in (0,1/2)$, $x \in (\alpha, 1-\alpha)$ and $h \in \mathbb{R}$ such that $|h| < \alpha$,

$$|u(x+h) - u(x)|^2 \le h^2 \int_0^1 |u'(x+sh)|^2 \, \mathrm{d}s.$$

(b) Deduce that for any $u \in H^1(0,1)$, any $\alpha \in (0,1/2)$ and $h \in \mathbb{R}$ such that $|h| < \alpha$, we have

$$\|\tau_h u - u\|_{L^2(\alpha, 1-\alpha)} \le |h| \|u'\|_{L^2(0, 1)}$$

2. Conversely, we assume that $u \in L^2(0,1)$ is such that there exists a constant C > 0 such that for any $\alpha \in (0, 1/2)$ and for any $h \in \mathbb{R}$ such that $|h| < \alpha$, we have

$$\|\tau_h u - u\|_{L^2(\alpha, 1-\alpha)} \le C|h|.$$

(a) Let $\phi \in C_0^1(0,1)$ and $\alpha > 0$ such that ϕ is supported in $(\alpha, 1 - \alpha)$. Prove that for any $|h| < \alpha$, we have

$$\int_{\alpha}^{1-\alpha} (u(x+h) - u(x))\phi(x) \, \mathrm{d}x = \int_{0}^{1} u(x)(\phi(x-h) - \phi(x)) \, \mathrm{d}x.$$

Deduce that

$$\left| \int_0^1 u(x)\phi'(x) \, \mathrm{d}x \right| \le C \|\phi\|_{L^2(0,1)}.$$

(b) Conclude that $u \in H^1(0, 1)$.

EXERCISE 4. Let $p \in [1, +\infty)$ and let Ω be an open subset of \mathbb{R}^d .

1. Assume that Ω is bounded in one direction, meaning that Ω is contained in the region between two parallel hyperplanes. Prove Poincaré's inequality: there exists c > 0 such that for every $f \in W_0^{1,p}(\Omega)$,

$$||f||_{L^p(\Omega)} \le c ||\nabla f||_{L^p(\Omega)}$$

Hint: Consider first the case $\Omega \subset \mathbb{R}^{d-1} \times [-M, M]$ *.*

2. Assume that Ω is bounded. Prove Poincaré-Wirtinger's inequality: there exists a constant c > 0 such that for any $f \in W^{1,p}(\Omega)$ satisfying $\int_{\Omega} f = 0$,

$$\|f\|_{L^p(\Omega)} \le c \|\nabla f\|_{L^p(\Omega)}$$

EXERCISE 5. Let Ω be an open subset of \mathbb{R}^d and let $p \in (1, +\infty)$. Prove that for all $F \in W_0^{1,p}(\Omega)'$, there exist $f_0, f_1, \ldots, f_d \in L^q(\Omega)$ (with $\frac{1}{p} + \frac{1}{q} = 1$) such that for all $g \in W_0^{1,p}(\Omega)$,

$$\langle F,g\rangle_{W_0^{1,p}(\Omega)',W_0^{1,p}(\Omega)} = \int_{\Omega} f_0 g \,\mathrm{d}x + \sum_{i=1}^d \int_{\Omega} f_i \partial_i g \,\mathrm{d}x.$$

Assuming that Ω is bounded, prove that we may take $f_0 = 0$.

EXERCISE 6. Given some real number $s \in \mathbb{R}$, we define the Sobolev space $H^s(\mathbb{R}^d)$ by

$$H^{s}(\mathbb{R}^{d}) = \left\{ u \in \mathscr{S}'(\mathbb{R}^{d}) : \langle \xi \rangle^{s} \widehat{u} \in L^{2}(\mathbb{R}^{d}) \right\},\$$

equipped with the following scalar product

$$\langle u, v \rangle_{H^s} = \int_{\mathbb{R}^d} \langle \xi \rangle^{2s} \widehat{u}(\xi) \overline{\widehat{v}(\xi)} \, \mathrm{d}\xi, \quad u, v \in H^s(\mathbb{R}^d).$$

1. Prove that there exists a positive constant c > 0 such that for all $u \in \mathcal{S}(\mathbb{R}^3)$,

$$\|u\|_{L^{\infty}(\mathbb{R}^{3})} \leq c \, \|u\|_{H^{1}(\mathbb{R}^{3})}^{1/2} \|u\|_{H^{2}(\mathbb{R}^{3})}^{1/2}.$$

Hint: Considering R > 0, use the following decomposition

$$\|\widehat{u}\|_{L^1(\mathbb{R}^3)} = \int_{|\xi| \le R} \langle \xi \rangle |\widehat{u}(\xi)| \frac{\mathrm{d}\xi}{\langle \xi \rangle} + \int_{|\xi| > R} \langle \xi \rangle^2 |\widehat{u}(\xi)| \frac{\mathrm{d}\xi}{\langle \xi \rangle^2}.$$

- 2. (a) Prove that if s > d/2, the space $H^s(\mathbb{R}^d)$ embeds continuously to $C^0_{\to 0}(\mathbb{R}^d)$, the space of continuous functions u on \mathbb{R}^d satisfying $u(x) \to 0$ as $|x| \to +\infty$.
 - (b) State an analogous result in the case where s > d/2 + k for some $k \in \mathbb{N}$. Deduce that $\bigcap_{s \in \mathbb{R}} H^s(\mathbb{R}^d) \subset C^{\infty}(\mathbb{R}^d)$.

EXERCISE 7. Let us consider the function

$$\gamma_0: \varphi(x', x_d) \in C_0^{\infty}(\mathbb{R}^d) \mapsto \varphi(x', x_d = 0) \in C_0^{\infty}(\mathbb{R}^{d-1}).$$

Prove that for all s > 1/2, the function γ_0 can be uniquely extended as an application mapping $H^s(\mathbb{R}^d)$ to $H^{s-1/2}(\mathbb{R}^{d-1})$.

Hint: For all $\varphi \in C_0^{\infty}(\mathbb{R}^d)$, begin by computing the Fourier transform of the function $\gamma_0 \phi$.