TD 2 : Connexité, complétude

EXERCICE 1. Soit

$$E = \left\{ \left(x, \sin\left(\frac{1}{x}\right) \right), x \in]0, 1] \right\}.$$

Soit X l'adhérence de E dans \mathbb{R}^2 muni de la topologie usuelle.

- a) Déterminer X.
- b) Montrer que X n'est pas connexe par arcs.
- c) Montrer que X est connexe.

EXERCICE 2. Soit (X, d) un espace métrique.

- a) Les boules ouvertes de (X, d) sont-elles nécessairement connexes? Et si X est connexe? On suppose maintenant que toutes les boules ouvertes sont connexes. Soit A une partie connexe.
- b) Montrer que l'ensemble $A_{\varepsilon} = \{x \in X, d(x, A) < \varepsilon\}$ est connexe pour tout $\varepsilon > 0$. On suppose maintenant que (X, d) est non borné et connexe.
 - c) Montrer que les sphères de X ne sont pas vides.

EXERCICE 3.

- a) Soit (X, d) un espace connexe. Montrer que X^2 muni du maximum des distances est connexe. Indication: utiliser le fait que les fibres $\{x\} \times X$ et $X \times \{x\}$ sont homéomorphes à X.
- b) Montrer que le plan \mathbb{R}^2 privé d'un point est connexe.
- c) Montrer que \mathbb{R}^2 n'est pas homéomorphe à \mathbb{R} .

EXERCICE 4. Soient E un espace vectoriel normé réel et F un sous-espace vectoriel de E.

- a) Si F est de codimension au moins 2, montrer que $E \setminus F$ est connexe.
- b) Si F est de codimension 1 et fermé, montrer que $E \setminus F$ a deux composantes connexes.

EXERCICE 5 (Les groupes linéaires). On munit $M_n(\mathbb{C})$ de la norme $||(a_{ij})|| := \max\{|a_{ij}|\}$.

- a) Montrer que le complémentaire d'un ensemble fini de points du plan complexe est connexe. Qu'en est-il du cas dénombrable?
- b) Montrer que le groupe $GL_n(\mathbb{C})$ est connexe par arcs. Indication: pour $A, B \in M_n(\mathbb{C})$, considérer $z \mapsto \det(zA + (1-z)B)$.
- c) Montrer que $GL_n(\mathbb{R})$ n'est pas connexe. Décrire ses composantes connexes. Indication: trouver des familles "paramétrisables par arcs" qui engendrent $GL_n(\mathbb{R})$.
- d) Montrer que $SO_n(\mathbb{R})$ est connexe.

EXERCICE 6 (Les ouverts connexes d'un evn sont connexes par lignes brisées). Soit U un ouvert connexe dans un espace vectoriel normé E.

- a) On définit la relation d'équivalence suivante sur U: on dit que $x \sim y$ quand x et y peuvent être reliés par lignes brisées, c'est-à-dire s'il existe une fonction continue et affine par morceaux $f:[0,1] \to U$ avec f(0)=x et f(1)=y. Montrer que les classes d'équivalences sont des ouverts fermés de U.
- b) En déduire que U est connexe par arcs.

EXERCICE 7. Soient E un espace vectoriel normé de dimension infinie et K une partie compacte de E. Montrer que $E \setminus K$ est connexe. Est-ce toujours le cas si E est de dimension finie?

EXERCICE 8. Montrer qu'un espace métrique est complet si et seulement s'il vérifie la propriété suivante, dite des *fermés emboîtés*: pour toute suite de fermés non vides $(F_n)_{n\in\mathbb{N}}$ décroissante pour l'inclusion et dont le diamètre tend vers 0, l'intersection $\bigcap_{n>0} F_n$ est un singleton.

EXERCICE 9 (Espaces fonctionnels). On considère l'espace E des fonctions continues de [0,1] dans \mathbb{R} (qui est de Banach pour $\|\cdot\|_{\infty}$) et F le sous-espace constitué des fonctions lipschitziennes.

- a) Est-ce que E est complet pour la norme $\|\cdot\|_1$?
- b) Le sous-espace induit $(F, \|\cdot\|_{\infty})$ est-il complet? Et la partie formée des fonctions 1-Lipschitziennes?
- c) Montrer que $N(f) = ||f||_{\infty} + \sup_{x \neq y \in [0,1]} \left(\left| \frac{f(x) f(y)}{x y} \right| \right)$ définit une norme sur F, et que (F, N) est complet.

EXERCICE 10 (Espaces ℓ^p). Pour $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$ et $p = [1, \infty[$, on note

$$\ell^p = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}} : \sum_{n \in \mathbb{N}} |u_n|^p < \infty \right\},$$

que l'on munit de la norme $\|\cdot\|_p$, et ℓ^{∞} l'ensemble des suites bornées muni de la norme $\|\cdot\|_{\infty}$.

- a) Montrer que ℓ^p est complet pour tout $p \in [1, \infty]$.
- b) Montrer que pour $p < q \in [1, \infty]$, on a toujours $\ell^p \subsetneq \ell^q$ avec injection continue.
- c) Montrer que la notation ℓ^{∞} est justifiée : $\lim_{p\to\infty} \|u\|_p = \|u\|_{\infty}$ pour $u\in\ell^1$.
- d) On note c_0 l'ensemble des suites qui convergent vers 0. Vérifier que c_0 est un sous-espace vectoriel de ℓ^{∞} qui contient tous les ℓ^p , $p < \infty$.
- e) Montrer que ℓ^1 n'est pas fermé dans ℓ^{∞} . Quelle est sa fermeture?
- f) Vérifier que pour $p < q < \infty$, ℓ^p est dense dans ℓ^q , lui-même dense dans c_0 pour la norme $\|\cdot\|_{\infty}$. Ces espaces sont-ils denses dans ℓ^{∞} ? Est-ce que ℓ^p est complet pour $\|\cdot\|_q$ si p < q? Indication: on pourra considérer les suites nulles à partir d'un certain rang.
- g) Vérifier que pour tout $p < \infty$, ℓ^p est séparable.
- h) Montrer que ℓ^{∞} n'est pas séparable. Indication : pour deux sous-ensembles différents $A, B \subset \mathbb{N}$, considérer $B(\chi_A, \frac{1}{2}) \cap B(\chi_B, \frac{1}{2})$.