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Abstract

This study focuses on a posteriori error estimation for the isotropic heterogeneous diffusion
operator within the framework of discontinuous Galerkin methods.

The study is divided into three main parts and one appendix:

Part 1 places the research project in the context of industrial applications. The first concepts
of a posteriori error estimation are introduced to build intuition about the mathematical objects
and their purpose.

Part 2 presents the numerical method used, called the Discontinuous Galerkin Method, correspond-
ing to discontinuous finite elements. The considered mesh is defined, and the method is constructed.
Finally, a priori error analysis is given for both homogeneous and heterogeneous diffusion cases.

Part 3 summarizes an article by Mark Ainsworth, 2007 [AIN07], which constructs an a posteri-
ori error estimate. A modification of the article is added to fit the heterogeneous diffusion case. A
second section presents numerical results of the estimator to verify its behavior, serving as a basis
for benchmarking another estimator.

In Appendix 4, auxiliary computations for reproducing test cases and justifying numerical results
are provided.

For any question, error, or typo:

raphael.lecoq@ens-rennes.fr
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I - THE CEA 6

Part 1

Industrial Context

I - The CEA

The CEA (French Alternative Energies and Atomic Energy Commission) is a major player in French
research, active in many fields related to energy, health, defense, and advanced technologies.

1) The Paris-Saclay Center

The Paris-Saclay site is one of the nine CEA centers. It brings together about 7,000 people, including
CEA employees and scientific partners. The center focuses on a large share of CEA’s civil activities,
particularly in low-carbon energy, environment, life sciences, materials, and information technologies.

Located mainly in Saclay, Fontenay-aux-Roses, and Évry, it also has facilities in Orsay, Jouy-en-Josas,
Paris, and Caen. It is a strategic partner of the University of Paris-Saclay, which alone accounts for
more than 13% of French research.

2) The STMF and the LDEL

The Thermo-Hydraulics and Fluid Mechanics Service (STMF) is an applied research unit within the
Department of Modeling for Systems and Structures (DM2S), part of the ISAS Institute (Applied
Sciences and Simulation for Low-Carbon Energy), under the Energy Division (DES) of the CEA. Its
director is Nicolas DORVILLE.

The STMF specializes in the development and validation of simulation software for fluid mechanics
and thermo-hydraulics. These tools are used mainly in nuclear applications but also in other energy
fields. The service’s scientific approach relies on multi-scale modeling, from detailed multiphase flow
simulations to large-scale representation of circuits and energy systems.
STMF also contributes to safety studies, particularly related to hydrogen, both in the nuclear sector
and in emerging energy technologies (such as transport).
The Local Scale Development Laboratory (LDEL) is part of STMF, with 25 permanent researchers
and 25 non-permanent members (PhD students, postdocs, apprentices, interns) under the direction of
Julie DARONA.

A key focus of the laboratory is the development and sustainability of its industrial simulation plat-
form TRUST6, which supports the open-source code TrioCFD7, dedicated to numerical simulation of
multiphase flows.

6https://cea-trust-platform.github.io/
7https://triocfd.cea.fr/

Raphaël LECOQ Part 1 | Summary

https://cea-trust-platform.github.io/
https://triocfd.cea.fr/


7

II - Theoretical and Industrial Motivation

In the analysis of numerical methods, a crucial step is establishing the convergence of the scheme. This
is done via a priori error estimates such as Corollary 2.9 or Theorem 2.10.

The goal of a posteriori error estimation is to accurately estimate the numerical error using the data
and the computed solution when the exact solution is unknown.
During this internship, we studied and implemented an a posteriori error estimator to integrate it into
TrioCFD within the framework of Discontinuous Galerkin Methods (DGM).

The LDEL is interested in DGM for several reasons:

• Mesh flexibility:
DGM allows complex meshes and supports cells of different shapes within the same mesh.

Figure 1: Mesh presented by ANSYS8showing several cell shapes within the same grid.

• GPU suitability:
New, faster GPU architectures are increasingly used in simulation research. DGM benefits greatly
from GPU computation.

• Parallelization:
DGM is easy to parallelize, enabling efficient use of supercomputers and multi-processor simula-
tions.

Applications of a posteriori estimation include:

• Determining convergence order without over-refined meshes.

• hp-adaptive mesh refinement [D11].

• Model coupling [FAD22].

The study was conducted using the MATLAB prototype of TrioCFD, as well as C++ with FreeFEM++,
and the method will later be integrated into the official TrioCFD version in C++.

8https://www.ansys.com
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II - THEORETICAL AND INDUSTRIAL MOTIVATION 8

We denote by ϵh the exact simulation error in an energy norm, which may correspond to the broken
flux norm (Theorem 3.1), the SIP norm (Definition 2.6), the SWIP norm (Equation (16)), or any other
norm defined for a Discontinuous Galerkin method.
We consider a variational formulation obtained by a DGM with a source term represented by f and
g = (gD, gN ), on a mesh Th and for a solution uh.

Definition 1.1: A posteriori error estimator

An a posteriori error estimator Sh(uh, f, g, Th) is defined by an analogy to a norm equivalence:

∃C > 0, ∀h > 0, ∀T ∈ Th, CSh
∣∣
T
≤ ϵh

∣∣
T
≤ Sh

∣∣
T
.

Sh is asymptotically correct if

ϵh − Sh
ϵh

−→
h→0

0 ⇐⇒ ξh :=
Sh
ϵh

−→
h→0

1,

where ξh ≥ 1 is the effectivity of the estimator. This means Sh tends toward eh faster than eh
tends to 0.

We then use this estimator to construct local error maps, allowing visualization of mesh regions where
the discretization is less accurate:

Figure 2: Local map of the a posteriori error estimate Sh (left) and the exact local error ϵh (right) for
the problem −∆u = π2 sin(πx) sin(πy) with homogeneous Dirichlet conditions, h = 0.1, vh ∈ P1.

The error estimate can then be used to locally refine (see Fig.3) the mesh only in regions where the
estimate has high amplitude.
This allows obtaining superconvergence results, as observed in Fig. 28.
This superconvergence—recovering optimal convergence for problems with low-regularity solutions—helps
reduce computation times.

Raphaël LECOQ Part 1 | Summary
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It enables higher simulation accuracy or faster numerical results.

Figure 3: Example of an L-shaped mesh locally refined near the re-entrant corner.

Raphaël LECOQ Part 1 | Summary
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Part 2

Discontinuous Galerkin Methods
This part is mainly based on the book Mathematical Aspects of Discontinuous Galerkin Methods [DE12,
Section 1.2, Section 1.4, Section 4.1, Section 4.2, Section 4.5].

I - Domain, mesh, and broken spaces

1) Homogeneous diffusion problem

We first consider the Poisson problem. This problem is an elementary building block for Stokes and
Navier-Stokes equations.
It also naturally introduces all necessary concepts for properly defining discontinuous Galerkin meth-
ods, including the descriptive elements of the mesh.

Let Ω ⊂ Rd be a bounded open set with Lipschitz boundary, ∂Ω = ΓD ⊔ ΓN , with data f ∈ L2(Ω),
gD ∈ H1/2(ΓD), and gN ∈ L2(ΓN ).
We are interested in the following problem:

Find u ∈ H1(Ω) such that


−∆u = f in Ω,

u = gD on ΓD,

∇u · n = gN on ΓN .

(1)

To simplify the study, we assume gD ≡ 0 and ΓN = ∅, the rest of the analysis being reproducible in
the case of non-homogeneous data; see Appendix A.
By integration by parts, (1) is equivalent to

Find u ∈ H1
0 (Ω) ,

∫
Ω
∇u · ∇w =

∫
Ω
fw, ∀w ∈ H1

0 (Ω) . (2)

The well-posedness of the problem follows from the Lax-Milgram theorem [BRE11, Corollary 5.8].
Indeed, defining the bilinear form

a(v, w) =

∫
Ω
∇v · ∇w = ⟨v|w⟩H1

0(Ω) ,

a(·, ·) is a continuous bilinear form on H1
0(Ω) × H1

0(Ω) by Cauchy-Schwarz [BRE11, Definition p.131]
and coercive by Poincaré [BRE11, Proposition 8.13].
We define the linear form

ℓ(w) =

∫
Ω
fw = ⟨f |w⟩L2(Ω) ,

which is continuous on H1
0(Ω) by Cauchy-Schwarz and Poincaré.

The diffusion problem can also be expressed in a mixed formulation involving fluxes:

Find σ(u) ∈ H(div ; Ω), u ∈ H1
0(Ω) such that

{
−div σ =f in Ω,

σ(u) =∇u in Ω.
(3)

with appropriate boundary conditions.

Raphaël LECOQ Part 2 | Summary



11 2) Domain discretization

2) Domain discretization

Remark :
To ensure that ∀T ∈ Th,∇u ∈ Hs (T ), s > 1/2, which will later allow us to define its trace
by Sobolev embedding [TAR07, Lemma 16.1], we must assume that Ω is a sufficiently
smooth manifold [HIR12, Chapter 1] so that u ∈ H3/2+ε (Ω). According to [GRI11; DAU88]:

• If Ω is of class C2 or convex, then u ∈ H2(Ω).

• If Ω is a non-convex polyhedron, there exists ε ∈]0; 1/2[ such that u ∈
⋂

0<s<ε
H3/2+ε(Ω).

These assumptions therefore ensure sufficient regularity of the solution u.

DGM allow the use of very general meshes; see [DE12, Section 1.2, Section 1.4]:

Ω

(a) Non-convex polyhedral do-
main Ω ⊂ R2.

Ω•
xT1

•xT2•
xT3

(b) Non-conforming mesh of Ω.
Ω•

xT1

•xT2•
xT3

(c) Conforming but non-
simplicial discretization of the
domain Ω.

Figure 4: Example of a polyhedral domain and its mesh.

For our study, we restrict the domain discretization to a mesh made of simplices, whose definition is
recalled in [DE12, Section 1.2.2], and whose properties are studied in [BMR04].
We assume the mesh is conforming in the following sense: a face F is shared by a single pair (T1, T2)
if F ⊂ Ω, or by a single T1 if F ⊂ ∂Ω.

•
T2 T4

T3

T5T1

a

Figure 5: Simplicial discretization of a pentagon in 2D (triangulation).

We denote Th = {T / T is a mesh element}.
We denote FT the set of faces of T , Fh the set of all mesh faces, and define Fb

h :=
⋃

T∈Th

FT ∩ Ω,

F i
h =

⋃
T∈Th

FT ∩ ∂Ω as the sets of interior and boundary faces, respectively. We have Fh = Fb
h ⊔ F i

h.

We denote Ah(T ) := {a / a is a vertex of T} the set of vertices. We sometimes write ai ∈ Ah if ai is
the i-th vertex of an element and we are interested in elements sharing that vertex.
Finally, we define TF := {T / F ⊂ ∂T} the elements having F as a face and Ωi := {T / ai ∈ T} the

Raphaël LECOQ Part 2 | Summary
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set of elements sharing the vertex ai.

For an interior face F ∈ F i
h and its two elements in TF , we fix a unique numbering T1 and T2 such

that the unit normal nF is directed from T1 to T2, and tF the unit tangent vector directed to form a
direct basis.
The unnormalized normal vector is denoted SF = |F |nF and the tangential vector τF = |F | tF .

T1
T2tF

nF

F

Figure 6: In blue, a face F shared by two elements T1 and T2, nF its unit normal vector and tF its
tangential vector.

When focusing on a particular element T , the unit normal is oriented outward from T , and the unit
tangent is oriented counterclockwise.
We denote n∂T and t∂T when considering only an element T ∈ Th, and nT,F , tT,F when considering
them on F ∈ FT .

T1

T2

nF,T1

tF,T1

F

+

(a) Normal and tangent unit vector of facet
F seen from T1.

T1

T2

nF,T2

tF,T2

F

+

(b) Normal and tangent unit vector of facet
F seen from T2.

Figure 7: Orientation of normal and tangent unit vectors depending on the chosen element.

We will sometimes need to define quantities with respect to a given vertex. The convention is as
follows: on the vertex ai of a triangle T , the face Fi considered will be the opposite face.
The numbering of the faces is fixed arbitrarily in the counterclockwise direction.

T1

•
a2

•
a1

•
a3 tF3

nF3

F3

+

Figure 8: In blue, the face F3 opposite to vertex a3 (also in blue), nF3 its unit normal vector, and tF3

its unit tangential vector, with T1 and T2 being the elements sharing F3.

In the following, some properties will depend on the mesh regularity. In our framework, this notion is
much simpler than for a more general mesh; see [DE12, Section 1.4.1].
We define rT as the radius of the inscribed circle (ball) in T , hT := max

x,y∈T
∥x− y∥ as the diameter of

the simplex T , and hF := |F | as the length of a face for d ≥ 2, with hF = min(hT1 , hT2) for d = 1. We
denote by hT,F the height of the vertex opposite to F . We define h = max

T∈Th
hT as the mesh diameter,

and we denote by (Th)h>0 the formal sequence of meshes as the refinement tends to 0. We define the

Raphaël LECOQ Part 2 | Summary



13 3) Space of discontinuous finite elements

•

•

•
•

rT

(a) Inscribed circle in a triangle and its ra-
dius.

•

•

•
hT

hF

hT,F

(b) Diameter of a triangle T and one of its
faces, height associated with a facet F .

Figure 9: Geometric quantities for simplices of dimension d = 2.

mesh regularity σ ∈]0; +∞] as the largest σ̂ independent of h > 0 such that for all h > 0:

∀T ∈ Th, σ ≤ rT
hT
. (4)

In what follows, we assume σ < +∞, meaning that the diameters of the simplices are comparable to
the radii of their inscribed balls.

3) Space of discontinuous finite elements

a) Broken polynomials

We denote by Pk
d (Ω) the space of polynomials of total degree k ∈ N:

Pk
d (Ω) :=

P : Ω → R

/
∃n ≤ k, P (x) =

∑
|α|≤n

aαx
α, ∀α, aα ∈ R

 ,

where α is a multi-index and xα = xα1
1 . . . xαd

d . We then define the space of broken polynomials:

Pk
d (Th) :=

{
V ∈ L2(Ω)

/
∀T ∈ Th, v

∣∣
T
∈ Pk

d(T )
}
.

A standard method for the discrete solution of a variational formulation of PDEs is the finite element
method. For example, Lagrange finite elements seek the discrete solution uh in

Vh := Pk
d (Th) ∩ C0(Ω).

x

y
ϕ3ϕ1 ϕ4

T1 T2 T3 T4
x1 x2 x3 x4 x5
× × ×

(a) Some functions of Lagrange’s basis
P1
1 (Th) ∩ C0(Ω) en 1D.

T1 T2 T3 T4
x

y

x1 = a x2 x3 x4 x5 = b

(b) Approximation in Lagrange’s basis of the
function u(x) = (x− a)(x− b).

Figure 10: Basis and approximation of the continuous finite elements P1
1(Th) ∩ C0(Ω).

In the discontinuous finite element method, discontinuities of the discrete solution are allowed within
the mesh itself. This notably reduces the stencil size and thus yields sparser matrices. The discrete
solution uh is then sought in

Vh = Pk
d(Th).

Raphaël LECOQ Part 2 | Summary
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x

y

x1 x2 x3 x4 x5

ψ4

ψ1

ψ2

ψ7

ψ6

x1
T1 T2 T3 T4

× × × ×
x2 x3 x4 x5

Figure 11: Some basis functions of P1
1(Th) en 1D.

b) Jumps and averages inside the mesh

Discontinuities within the mesh are characterized by the jump and the average at interfaces:

Definition 2.1: Jump and average

Consider two elements T1 and T2, and let F ∈ FT1 ∩ FT2 be their common face.
The termwise average of v on F is defined by

{{v}}F (x) :=
1

2

(
TrF

(
v
∣∣
T1

)
(x) + TrF

(
v
∣∣
T2

)
(x)

)
,

and the termwise jump of v on F is defined by

JvKF (x) := TrF
(
v
∣∣
T1

)
(x)− TrF

(
v
∣∣
T2

)
(x).

In the following, we will write {{·}} and J·K when there is no ambiguity about the considered face.

x

y

•{{v}}

JvK

Figure 12: Jump and average of a discontinuous function.

If F ∈ Fb
T , i.e. F is a boundary face on ∂Ω, there is no element T2 to define {{v}} or JvK; we then set

by convention:
{{v}}= JvK := TrF (v).

Remark :
If v ∈ Hs(T ) with s ≤ 1/2, it is not always possible to define a trace L2, which motivates
the assumption v ∈ Hs(T ) with s > 1/2 for all considered functionals, see [DE12, Remark
2.16].
If u ∈ Hs(Ω), s > 3/2, then u and ∇u satisfy JuK = 0 and J∇huK = 0Rd , see [DE12, Lemma
1.23].

Raphaël LECOQ Part 2 | Summary



15 3) Space of discontinuous finite elements

c) Broken Sobolev spaces

Allowing discontinuous discrete solutions makes the variational formulation (2) invalid!
Indeed, if uh is a discontinuous function, its gradient satisfies ∇uh = δx ̸∈ L2 at the discontinuities.
To overcome this issue, it is necessary to redefine Sobolev spaces on the mesh to give meaning to the
functions we manipulate and to define a new gradient: the broken gradient.

We define the broken Sobolev spaces

Hs (Th) :=
{
v ∈ L2(Ω)

/
∀T ∈ Th, v

∣∣
T
∈ Hs (T )

}
,

which then allows us to define the broken gradient for v ∈ Hs (Th) such that for any T ∈ Th

(∇hv)
∣∣
T
:= ∇

(
v
∣∣
T

)
.

In the following, when there is no ambiguity, we will write inside T : ∇hv = ∇v.

(a) Fonction v avec discontinuité
en 0.

(b) Gradient ∇v de la fonction
admettant un dirac en 0.

(c) Gradient brisé ∇hv de la fonc-
tion.

Figure 13: Comparison between the gradient and the broken gradient.

We define analogously the broken space of H(div ; Ω):

H (div ; Th) :=
{
τ ∈ L2(Ω)

/
∀T ∈ Th, div

(
τ
∣∣
T

)
∈ L2(T )

}
,

which will be useful later for defining fluxes.
The algebraic properties and the strong relationships between these spaces and Hs(Ω) and H

s
(div; Ω) =

H (div; Ω) ∩Hs (Ω) are well studied in [DE12, Sections 1.2.5, 1.2.6 and 5.1].

d) Inequalities

We recall here the inequalities essential for the analysis of discretization errors.

Remark :
When the constants in inequalities are independent of h, σ and are not required for the
method analysis, they will be omitted using the symbol ≲:

∃C > 0, X ≤ CY ⇐⇒ X ≲ Y.

Raphaël LECOQ Part 2 | Summary
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Lemma 2.2: Discrete trace inequality

Let k ∈ N. There exists Ctr = Ctr(d, k) > 0 such that for all h > 0, for all v ∈ Pk
d (Th), and for all

T ∈ Th we have
h
1/2
T ∥vh∥L2(F ) ≤ Ctrσ

−1/2 ∥vh∥L2(T ) .

D: Lemma 2.2

The proof in [WH03, Theorems 4 and 5] shows the existence of C = C(d, k) > 0 such that

∥vh∥L2(F ) ≤ C

(
|∂T |
|T |

)1/2

∥vh∥L2(T ) .

Using [CR73, Inequality (3.17)], we obtain

∥vh∥L2(F ) ≤ C(rT )
−1/2 ∥vh∥L2(T ) .

Then, using the definition of σ from Equation (4), we have

∥vh∥L2(F ) ≤ C(σhT )
−1/2 ∥vh∥L2(T ) ,

which gives the result.

Lemma 2.3: Inverse inequality

Let k ∈ N. There exists Cinv = Cinv(d, k) > 0 such that for all h > 0, for all vh ∈ Pk
d (Th), and for

all T ∈ Th we have
∥∇vh∥L2(T ) ≤ Cinvσ

−1h−1
T ∥vh∥L2(T ) .

D: Lemma 2.3

We prove it in the case v ∈ P1(T ) following [ABJ25, Proposition 3]:

∥∇v∥2L2(T ) =

∫
T
|∇v|2 = |T | |∇v|2 (since ∇v is constant)

= |T |
∣∣∣∣ |T |−1

∫
T
∇v

∣∣∣∣2 (since ∇v is constant)

= |T |−1

∣∣∣∣∫
∂T
v n∂T

∣∣∣∣2 (by integration by parts)

≤ |T |−1

∣∣∣∣∫
∂T

1× v

∣∣∣∣2 (since ∥nT ∥ ≤ 1)

≤ |T |−1 |∂T | ∥v∥2L2(∂T ) (by Cauchy–Schwarz)

≤ |T |−1 |∂T |σ−1h−1
T ∥v∥2T (by Lemma 2.2)

≤C2
invσ

−2h−2
T ∥v∥2T (by [CR73, Inequality (3.17)]).
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17 3) Space of discontinuous finite elements

Lemma 2.4: Approximation by L2-orthogonal projection

Let πh be the L2-orthogonal projection of v ∈ Hk+1(Th) onto Pk
d (Th). There exists a constant

Capp > 0 independent of T and h such that

|v − πhv|Hm(T ) ≤ Capph
k+1−m
T σm |v|Hk+1(T ) ,

where |v|Hk(Ω) is the Hk(Ω) semi-norm.

D: Lemma 2.4

We rely on [EG21, Lemma 11.9], known as the Pk Bramble-Hilbert/Deny-Lions lemma, which
states that for S a Lipschitz domain in Rd, k ∈ N, there exists c > 0 such that

inf
q∈Pk

d(S)
∥v − q∥Hk+1(S) ≤ c |v|Hk+1(S)

and on the property of affine transformations from the reference element T̂ .
Let ψT : T̂ → T be the affine function transforming the reference element T̂ into T in an invertible
manner, so that a functional operator can be written as

ϕ(v) = AT (v ◦ ψT ),

where AT is an invertible matrix. We define J = DψT as the Jacobian matrix of ψ. According to
[EG21, Lemma 11]:

∥J∥ℓ2
∥∥J−1

∥∥
ℓ2

≲ σ.a

Note that the L2 projection on T , denoted πT , satisfies

πT = ψ−1
T ◦ πT̂ ◦ ψT .

The proof of [EG21, Theorem 11.13] then shows that for v ∈ Hk+1(T )

|v − πhv|Hk+1(T ) ≤
∥∥J−1

∥∥m
ℓ2

∣∣v − πT̂ (v)
∣∣
Hk+1(T )

≲ ∥J∥k+1
ℓ2

∥∥J−1
∥∥m
ℓ2
|v|Hk+1(T ) ≲ σmhk+1−m |v|Hk+1(T ) .

a∥·∥ℓ2 is the norm subordinate to the 2-norm in Rd.
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II - VARIATIONAL FORMULATIONS 18

II - Variational Formulations

1) Symmetric Interior Penalty

We start here from the variational formulation (2) by replacing the gradients with broken gradients:
for vh, wh ∈ Vh = Pk

d (Th),

a
(0)
h (vh, wh) =

∫
Ω
∇hvh · ∇hwh.

The idea is then to check whether this formulation is consistent with (2). We have:

a
(0)
h (vh, wh) =

∫
Ω
∇hvh · ∇hwh

=
∑
T∈Th

∫
T
∇vh · ∇wh

=
∑
T∈Th

∫
∂T

(∇vh) · n∂Twh −
∑
T∈Th

∫
T
∆vhwh (by IBP)

=
∑
T∈Th

∑
F∈FT

∫
F
(∇vh) · nF,Twh −

∑
T∈Th

∫
T
∆vhwh

=
∑
F∈Fh

∑
T∈TF

∫
F
(∇vh) · nF,Twh −

∑
T∈Th

∫
T
∆vhwh

(looking at each face by triangle
or each triangle by face)

is equivalent)

=
∑
F∈Fi

h

∑
T∈TF

∫
F
(∇vh) · nF,Twh

+
∑
F∈Fb

h

∑
T∈TF

∫
F
(∇vh) · nFwh −

∑
T∈Th

∫
T
∆vhwh

=
∑
F∈Fi

h

∫
F
(∇vh) · nFwh +

∫
F
(∇vh) · (−nF )wh

+
∑
F∈Fb

h

∫
F
{{∇hv · nF }}JwhK −

∑
T∈Th

∫
T
∆vhwh (by Fig. 7, Def. 2.1)

=
∑
F∈Fi

h

∫
F
J(∇hvh)whK · nF +

∑
F∈Fb

h

∫
F
{{∇hv · nF }}JwhK

−
∑
T∈Th

∫
T
∆vhwh

=
∑
F∈Fi

h

∫
F
{{∇hvh · nF }}JwhK +

∫
F
J∇hvh · nF K {{wh}}

+
∑
F∈Fb

h

∫
F
{{∇hv · nF }}JwhK −

∑
T∈Th

∫
T
∆vhwh (by identity (5))

=
∑
F∈Fh

∫
F
{{∇hvh · nF }}JwhK +

∑
F∈Fi

h

∫
F
J∇hvh · nF K {{wh}}

−
∑
T∈Th

∫
T
∆vhwh.

where we used the identity
JfgK = {{f}}JgK + JfK {{g}}. (5)

We would then like to evaluate a(0)h ( · , wh) at the solution u ∈ H1
0(Ω)∩Hs(Ω), however a(0)h is defined

only for functions defined locally on each mesh element: in other words u ̸∈ Vh!
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19 1) Symmetric Interior Penalty

We assume a(0)h can be extended to V := H3/2+ε(Ω)∩H1
0(Ω) for ε > 0, and in preparation for the error

analysis u− uh, we consider the enriched space Vh,⋆ := V + Vh. Then for v ∈ Vh,⋆:

a
(0)
h : (v, wh) ∈ Vh,⋆×Vh 7−→

∑
F∈Fh

∫
F
{{∇hv · nF }}JwhK+

∑
F∈Fi

h

∫
F
J∇hv ·nF K {{wh}}−

∑
T∈Th

∫
T
∆vwh. (6)

Definition 2.5: Consistency

Let ah : Vh,⋆ × Vh −→ R be a discrete bilinear form derived from problem (2). The bilinear form
is said to be consistent with the problem if for the solution u ∈ V :

ah(u,wh) =

∫
Ω
fwh, ∀wh ∈ Vh,

i.e., the discrete formulation gives the same equation as the continuous formulation when evaluated
at the solution u of the problem.

We then evaluate at the solution of the Poisson problem u ∈ Vh,⋆ using Remark p.14:

a
(0)
h (u,wh) =

∑
F∈Fh

∫
F
∇u · nF JwhK −

∑
T∈Th

∫
T
∆uwh (7)

=
∑
F∈Fh

∫
F
∇u · nF JwhK −

∫
Ω
∆uwh (8)

=
∑
F∈Fh

∫
F
∇u · nF JwhK +

∫
Ω
fwh. (9)

We notice in (9) that the bilinear form a
(0)
h is not consistent. To make it consistent, we modify it by

removing the excess term:

ac
h(v, wh) =

∫
Ω
∇hv · ∇hwh −

∑
F∈Fh

∫
F
{{∇hv · nF }}JwhK.

The bilinear form ac
h is then consistent, however note that if vh, wh ∈ Vh:

ach(wh, vh) :=

∫
Ω
∇hvh · ∇hwh −

∑
F∈Fh

∫
F
{{∇hwh · nF }}JvhK ̸= ach(vh, wh).

The bilinear form ac
h is not symmetric. Since linear system solvers behave better on symmetric systems,

and for error analysis, we define a new consistent symmetric bilinear form acs
h by adding a consistent

term:
acs
h (v, wh) =

∫
Ω
∇hv · ∇hwh −

∑
F∈Fh

∫
F
({{∇hv · nF }}JwhK + {{∇hwh · nF }}JvK) .

Then for all vh, wh ∈ Vh and for u ∈ V the solution of the problem:

acsh (u,wh) =

∫
Ω
fwh and acsh (vh, wh) = acsh (wh, vh).

Finally, we want discrete coercivity on Vh × Vh for the existence of the discrete solution uh, but:

acsh (vh, vh) = ∥∇hvh∥2L2(Ω) − 2
∑
F∈Fh

∫
F
{{∇hvh · nF }}JvhK < 0 for some vh.

A good approach is first to define a norm on Vh,⋆. Indeed, the semi-norm of the broken gradient is not
a norm as it does not account for the magnitude of the jumps at internal mesh interfaces.
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II - VARIATIONAL FORMULATIONS 20

Definition 2.6: SIP Norm

We define a mesh-dependent norm on Vh,⋆, which will be called the SIP norm:

∥v∥2sip := ∥∇hv∥2L2(Ω) + |v|2J , (10)

with
|v|2J :=

∑
F∈Fh

1

hF
∥JvK∥2L2(F ) . (11)

The semi-norm |v|J is the jump norm and quantifies the size of the function discontinuities.

D: The norm is well-defined

It is easy to show that ∥v∥sip is homogeneous and satisfies the triangle inequality.
The only difficulty lies in definiteness:

• If ∥v∥sip = 0 then ∥∇hv∥L2(Ω) = 0 and |v|J = 0.

• If ∥∇hv∥L2(Ω) = 0 then ∇v = 0 on each element T , so v is piecewise constant.

• |v|J = 0 implies ∥JvhK∥L2(F ) = 0 on all faces F , i.e., v is continuous.

• But v = 0 on ∂Ω, hence v ≡ 0 in Ω.

Thus the norm is definite. We conclude that ∥·∥sip is indeed a norm.

We then add a stabilization bilinear form that remains consistent and symmetric

sh(v, wh) =
∑
F∈Fh

γF
hF

∫
F
JvKJwhK.

The penalty γ is a locally defined function for each F ∈ Fh such that γF = γ|F > 0, a constant
depending on the mesh and user choice [DE12, Lemma 4.12] and [WH03].
We notice that sh(vh, vh) = γ |vh|2J , sh is actually a penalty on interior jumps, since the sought solution
has no internal mesh discontinuities.
We thus define the bilinear form asip

h called Symmetric Interior Penalty, abbreviated SIP:

asip
h (v, wh) =

∫
Ω
∇hv · ∇hwh −

∑
F∈Fh

∫
F

{{∇hv · nF }}JwhK︸ ︷︷ ︸
consistency

+ {{∇hwh · nF }}JvK︸ ︷︷ ︸
symmetry

+ sh(v, wh)︸ ︷︷ ︸
interior penalty

(12)
We then have the following lemma:

Lemma 2.7: Discrete coercivity of SIP

For all γ ≥ γ := C2
trN∂ , we have

∀vh ∈ Vh, asip
h (vh, vh) ≥ Cγ ∥vh∥2sip ,

with Cγ := (γ − C2
trN∂)(1 + γ)−1 and N∂ := max

T∈Th
Card (FT ) = d+ 1 for simplices.
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21 1) Symmetric Interior Penalty

D: Lemma 2.7

[DE12, Lemma 4.12].

We then study the continuity of asip
h for this norm. Using the previous optimal inequalities:

∣∣∣asip
h (v, wh)

∣∣∣ ≤
∥v∥2sip +

∑
T∈Th

hT
∥∥∇v∣∣

T
· nT

∥∥2
L2(∂T )

1/2

∥wh∥sip .

We enrich the SIP norm on Vh,⋆ to a norm ∥ v ∥2sip,⋆ := ∥v∥2sip +
∑

T∈Th
hT ∥∇v|T · nT ∥2L2(∂T ) so as to

make the bilinear form asip
h continuous.

The bilinear form asip
h :

(
Vh,⋆, ∥·∥sip,⋆

)
×
(
Vh, ∥·∥sip

)
7→ R is therefore:

• continuous,

• coercive,

• consistent.

We note that ℓ : wh ∈ Vh 7−→ ⟨f |wh⟩L2(Ω) remains continuous because ∥·∥L2(Ω) ≲ ∥·∥sip ≤ ∥·∥sip,⋆.

Theorem 2.8: Quasi-optimality

If u is the solution of the Poisson problem, uh the discrete solution. If the penalty satisfies γ ≥ γ:

∥u− uh∥sip ≲ inf
vh∈Vh

∥u− vh∥sip,⋆ ≤ ∥u− uh∥sip .

The scheme is quasi-optimal in the sense that the error is equivalent to the optimal error.

D: Theorem 2.8

[DE12, Théorème 4.17].

The following corollary then directly follows:

Corollary 2.9: A priori error estimate

Under the hypotheses of Theorem 2.8 and u ∈ Hk+1(Ω):

∥u− uh∥sip ≲ ∥u∥Hk+1(Ω) h
k.

D: Corollary 2.9

[DE12, Corollaire 4.18].

We notice that the SIP method does not converge if k = 0, so in numerical computations we will
impose k ≥ 1.
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II - VARIATIONAL FORMULATIONS 22

2) Symmetric Weighted Interior Penalty

a) Generalization of the continuous problem

We consider an open set Ω ⊂ Rd with a Lipschitz boundary, data f ∈ L2(Ω) and κ ∈ L∞(Ω), κ ≥ α > 0
a scalar.
We are interested in the generalized diffusion problem:

Find u ∈ H1(Ω) such that

{
−div(κ∇u) = f in Ω,

u = 0 on ∂Ω.
(13)

By integration by parts, (13) is equivalent to:

Find u ∈ H1(Ω),

∫
Ω
(κ∇u) · ∇w =

∫
Ω
fw, ∀w ∈ H1

0 (Ω) . (14)

We can define the bilinear and linear forms associated with the problem:

a(v, w) =

∫
Ω
(κ∇v) · ∇w, ℓ(w) =

∫
Ω
fw = ⟨f |w⟩L2(Ω) .

Then by Cauchy-Schwarz
|a(v, w)| ≤ ∥κ∥L∞ ∥v∥L2(Ω) ∥w∥L2(Ω) .

and by Poincaré
a(v, v) ≥ α ∥∇v∥2L2(Ω) ≳ α ∥v∥2V .

thus by the Lax-Milgram theorem, the problem is well-posed.
In practice, κ will be more than L∞ and we will assume, possibly approximating κ, that it is a piecewise
constant function on a polyhedral partition of Ω:

Γ3

Γ4

Γ1 Γ2

κ1 κ2 κ3

κ4

κ6

κ5

(a) Square domain Ω partitionned in subdo-
mains.

(b) Admissible mesh of Ω.

Figure 14: Example of partitioned domain according to κ and a .possible mesh

We can assume κ is piecewise smooth at the cost of some additional technicalities, but we cannot allow
a mesh without a partition of Ω because the solution u will not be regular at the jumps of κ.
The heterogeneous diffusion problem can also be expressed in a mixed formulation involving fluxes:

Find σ(u) ∈ H(div ; Ω), u ∈ H(Ω) such that

{
−div σ = f in Ω,

σ(u) = κ∇(u) in Ω.
(15)

b) Weighted averages

At the interfaces, it is necessary to weight the averages to handle cases where κi ≫ κj .
The expected behavior is as follows: if κ1 ≫ κ2 then the values from T2 tend to diffuse into T1, so the
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23 2) Symmetric Weighted Interior Penalty

average value should be more weighted towards T2, i.e. ω1 −→
κ1≫κ2

0 and ω2 −→
κ1≫κ2

1.

Thus, we define the weighted averages on a face F ∈ F i
h separating two elements T1 and T2:

{{v}}F,ω(x) = ω1v
∣∣
T1
(x) + ω2v

∣∣
T2
(x),

with
ω1 + ω2 = 1.

If T ∈ Th and F ∈ Fb
h ∩ FT , we will always write {{v}}F,ω(x) = v|T . If there is no confusion about the

face F ∈ Fh, we will write {{v}}ω(x).
To account for the physics and thanks to the error analysis, a good choice is

ω1 :=
κ2

κ1 + κ2
ω2 :=

κ1
κ1 + κ2

.

If κ1 = κ2, we recover the arithmetic mean, which corresponds to using the SIP method.
However, when modifying the averages, we also need to modify the way we penalize to maintain a
coercive method with the ∥·∥dG norm corresponding to the energy norm of the variational formulation,
see [DE12, Section 4.5.3]. We then set

sκh(v, wh) =
∑
F∈Fh

γF
hF

γκ

∫
F
JvKJwhK,

where
γκ :=

2κ1κ2
κ1 + κ2

.

which also recovers the SIP penalization if κ1 = κ2. For F ⊂ ∂Ω, we set γκ = κT .
The jumps must be controlled relative to γκ, so we introduce a new jump norm:

|v|2J,κ :=
∑
F∈Fh

1

hF
γκ ∥v∥2L2(F ) .

This notably implies modifying the SIP norm into a SWIP norm

∥v∥2swip :=
∥∥∥κ1/2∇hv

∥∥∥2
L2(Ω)

+ |v|2J,κ . (16)

We then define the bilinear form Symmetric Weighted Interior Penalty abbreviated SWIP

aswip
h (v, wh) =

∫
Ω
κ∇hv · ∇hwh −

∑
F∈Fh

∫
F
({{∇hv · nF }}ωJwhK + {{∇hwh · nF }}ωJvK) + sκh(v, wh)

(17)

Theorem 2.10: A priori error

If u ∈ Hk+1(Ω) is the solution of the heterogeneous diffusion problem then

∥u− uh∥swip ≲ ∥κ∥1/2L∞(Ω) ∥u∥Hk+1(Ω) h
k. (18)

D: Theorem 2.10

[DE12, Theorem 4.53].
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[DE12, Remark 4.19] gives the equivalence between the SWIP norm and the broken gradient norm, i.e.
for a sufficiently large penalization coefficient γ > 0, there exists C > 0 such that if vh ∈ H1

0(Th) then∑
T∈Th

∥∥∥κ1/2∇v∥∥∥2
L2(T )

≤ ∥v∥2swip ≤ C
∑
T∈Th

∥∥∥κ1/2∇v∥∥∥2
L2(T )

and
|vh|2J,κ −→

h→0
0.

It is therefore sufficient to estimate
∑

T∈Th

∥∥κ1/2∇v∥∥2
L2(T )

to obtain an error estimate for a discontinuous

Galerkin method, up to data oscillation (which is zero for vh ∈ H1
0(Th)).

Remark :
[DE12, Section 4.5.1.2] indicates that a regularity of the solution u ∈ H1+s(Ω), s > 0, is
expected and sufficient for the SWIP method.

Theorem 2.11: A priori error estimate for low-regularity solutions

If the solution u ∈ H1+α(Ω) with α < 1 and uh ∈ P1
1(Th) then there exists Cu > 0 such that:

∥u− uh∥sip ≤ Cuh
min(α,1).

D

[DE12, Section 4.5.4], [PE11, Theorem 3.6] and [CYZ11].
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Part 3

Posteriori Error Estimators
We consider Ω ⊂ R2 in the following, but the results can also be adapted to Rd.

We define the broken flux σh(v)|T := σ (v|T ) = κ∇ (v|T ) and σh(eh) the broken flux of the total
error eh := u− uh.
Since the error eh does not belong to the solution space V as explained for equation (6), we want to
split the error into two parts:

• The non-conformity error ϵh,non conform which is due to the fact that the error does not belong to
V , the space in which the solution exists.

• The conformity error ϵh,conform which corresponds to the numerical precision between the discrete
solution projected into the space of continuous polynomials and the exact solution.

As specified in equation (18), we then want to estimate ∥σh(eh)∥L2(T ) for T ∈ Th a mesh element.
Suppose there exists an L2-orthogonal projection from the solution space V into the space of broken
polynomials Vh = Pk

2(Th), then by noting:

• u ∈ V the exact solution.

• uh ∈ Vh the discrete solution.

• uh,conform ∈ Vh the L2-orthogonal projection of u from V into Vh.

• uh,non conform := uh − uh,conform ∈ Vh\V the non-conforming part of u.

We write in the case of a flux:

ϵT := ∥σ(eh)∥2L2(T ) = ∥σ(u− uh,conform) + σ(uh,conform − uh)∥2L2(T )

= ∥σ(u− uh,conform)∥2L2(T ) + ∥σ(uh,conform − uh)∥2L2(T ) .

We would then have obtained:∥∥∥κ1/2∇eh∥∥∥2
L2(T )

= ϵ2h,conform + ϵ2h,non conform.

This would allow us to estimate ϵh,conform and ϵh,non conform independently, i.e., to find ηconform > 0 and
ηnon conform > 0 such that

ϵT,conform ≤ ηconform,

ϵT,non conform ≤ ηnon conform.

with η a quantity depending only on the mesh geometry, the data, and the discrete solution.

For better readability in the equations, we will use the following notation:

• ηconform = ηCF,

• ηnon conform = ηNC.

For a fixed element T ∈ Th, we will use:

ηCF
∣∣
T
:= ηCF,T ,

ηNC
∣∣
T
:= ηNC,T .
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I - Posteriori Estimation

We first consider a posteriori error estimator proposed by Mark AINSWORTH in 2007 [AIN07], who
introduced the idea of the numerical flux equilibrium method.

1) Problem and Definition of the Estimator

Let ΓN ,ΓD be such that ∂Ω = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅.
We consider data f ∈ L2(Ω), gD ∈ H1/2(ΓD) and gN ∈ L2(ΓN ). We start from the mixed formulation
(15):

Find σ(u) ∈ H(div ; Ω), u ∈ H1(Ω) such that


−div σ = f in Ω,

σ(u) = κ∇u in Ω,

u = gD on ΓD,

σ · n = gN on ΓN .

Let the Dirichlet solution space be H1
gD

:=
{
u ∈ H1(Ω)

/
u = gD on ΓD

}
.

We can write the continuous variational formulation of this problem:

Find u ∈ H1
gD

(Ω), ⟨κ∇u|∇v⟩L2(Ω) = ⟨f |v⟩L2(Ω) +

∫
ΓN

gv , ∀v ∈ H1
gD

(Ω). (19)

We then use a discrete variational formulation based on the bilinear form amixed
h defined in Equation

(51):
Find u ∈ H1

ghD
(Th), amixed

h = ℓmixed
h (v), ∀v ∈ H1

gD
(Th).

where ghD = Π1
H(gD) is the projection onto the space of piecewise linear continuous functions

on the set of boundary faces of the domain denoted P1
c(Fb

h).

Remark :
If the problem is solved with gD ̸∈ P1

c(Fb
h), then equation (27) is not exactly satisfied.

[AIN07, Theorem 2] then shows the following a posteriori error result:

Theorem 3.1: Decomposed Posteriori Estimation

For every element T ∈ Th there exist ηCF,T > 0 and ηNC,T > 0 depending only on the mesh
geometry, the data, and the discrete solution such that∑

T∈Th

∥∥∥κ1/2∇eh∥∥∥2
T
≤

∑
T∈Th

η2CF,T︸ ︷︷ ︸
Conforming Error

+ η2NC,T︸ ︷︷ ︸
Non-conformity Error

=:
∑
T∈Th

η2T , (20)

where
∑

T∈Th

∥∥κ1/2∇eh∥∥2T is the broken flux norm and

∥eh∥2swip ≤
∑
T∈Th

(η2CF,T + η2NC,T ) +
∑
F∈Fh

γF
hF

∥JuhK∥2L2(Ω) .
a (21)

Moreover, for every T ∈ Th there exist c1(T ), c2(T ) > 0 such that:

c1(T )ηCF,T + c2(T )ηNC,T ≤
∥∥∥κ1/2∇eh∥∥∥

T
≤ ηCF,T + ηNC,T.

a∥·∥swip is defined in equation (16).
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The proof of [E D+96, Theorem 3.1] separates the flux into two orthogonal parts:

σh(eh) = σ(χ) + curl(ψ), (22)

where χ ∈ VD =
{
v ∈ H1(Ω)

/
v = 0 on ΓD

}
satisfies

⟨κ∇χ|∇v⟩L2(Ω) = ⟨κ∇heh|∇v⟩L2(Ω) , ∀v ∈ VD

and ψ ∈ VN :=
{
v ∈ H1(Ω)

/
∂nv = 0 on ΓN

}
satisfies〈

κ−1curl(ψ)
∣∣curl(w)

〉
L2(Ω)

=
〈
κ−1σ(eh)

∣∣curl(w)
〉
L2(Ω)

= ⟨∇h eh|curl(w)⟩L2(Ω) , ∀w ∈ VN .

This decomposition is orthogonal in the sense that:

∑
T∈Th

∥∥∥κ1/2∇eh∥∥∥2
L2(T )

=
〈
κ−1σh(eh)

∣∣σh(eh)
〉
L2(Ω)

=
〈
κ−1σ(χ)

∣∣σ(χ)〉
L2(Ω)

+
〈
κ−1curl(ψ)

∣∣curl(ψ)
〉
L2(Ω)

.

The article [AIN07] then shows that we can construct

ηNC,T =
∥∥∥κ1/2∇(u⋆h − uh)

∥∥∥
L2(T )

, (23)

ηCF,T = κ
−1/2
T

√
∥ρT ∥2L2(T ) − C⋆

T
2 |T | ∥curl(ρT )∥2L2(T ) (24)

+CP(T )κ
−1/2
T

∥∥f − f
∥∥

L2(T )
+ κ

−1/2
T

∑
F∈FT∩Fb

h

Ct(T, F )
∥∥gN − gN,F

∥∥
L2(F )

, (25)

where u⋆h is defined in equation (26), ρT is defined in (36) and

(C⋆
T )

2 :=
κT

20Tr(ST )
, where ST is the local stiffness matrix of T.

CP(T ) :=
1

π
max
x,y∈T

∥x− y∥R2 =
1

π
hT where hT is the diameter of T.

fT :=
1

|T |

∫
T
f.

gN,F :=
1

|F |

∫
F
gN .

LF := max
x∈F

∥x− xF ∥R2 = max{|F1| , |F2|}, where Fi are the other two faces.

lF := min
x∈F

∥x− xF ∥R2 = hT,F , where hT,F is the height from the vertex opposite to F.

Ct(T, F ) :=
2

lF
CP(CP + LF ).

Proposition 3.2: Estimation of the Two Components

〈
κ−1curl(ψ)

∣∣curl(ψ)
〉
L2(Ω)

=
∥∥∥κ−1/2curl(ψ)

∥∥∥2
L2(Ω)

≤
∑
T∈Th

η2NC,T

and 〈
κ−1σ(χ)

∣∣σ(χ)〉
L2(Ω)

=
∥∥∥κ1/2∇χ∥∥∥2

L2(Ω)
≤

∑
T∈Th

η2CF,T .
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2) Non-conforming Estimator

This section corresponds to [AIN07, Section 6]. According to [AIN05, Lemma 3.1],〈
κ−1curl(ψ)

∣∣curl(ψ)
〉
L2(Ω))

= min
u⋆∈H1

gD

⟨κ∇(u⋆ − uh)|∇(u⋆ − uh)⟩L2(Ω) .

The goal is then to construct a u⋆h ∈ H1
gD

that can be computed from uh and is sufficiently accurate.
Let T ∈ Th be an element, (x1,x2,x3) ∈ R2 its vertices, and xG the barycenter of T .
We define u⋆h ∈ P1

2(Th) by the so-called Oswald interpolation [OSW94] of uh at the mesh vertices in
the Lagrange basis P1

2(Th) with Dirichlet conditions such that

u⋆h(xi) :=


1

Card(Ωi)

∑
T∈Ωi

uh
∣∣
T
(xi) if xi ̸∈ ΓD,

gD(xi) if xi ∈ ΓD.

(26)

where the set of elements sharing xi denoted Ωi is defined in Fig. 5.
We then have a representative u⋆h ∈ H1

gD
(Ω) in the space of broken polynomials, hence

⟨κ∇(u⋆h − uh)|∇(u⋆h − uh)⟩L2(Ω) =
∑
T∈Th

⟨κ∇(u⋆h − uh)|∇(u⋆h − uh)⟩L2(T )

=
∑
T∈Th

∥∥∥κ1/2∇(u⋆h − uh)
∥∥∥2

L2(T )

≥
〈
κ−1curl(ψ)

∣∣curl(ψ)
〉
L2(Ω)

.

We can then define
η2NC,T :=

∥∥∥κ1/2∇(u⋆h − uh)
∥∥∥2
L2(Ω)

.

3) Conforming Estimator

This section corresponds to [AIN07, Section 5]. The section on equilibrated numerical fluxes corre-
sponds to the main result of the article, as it presents only well-determined constants [ESV10], whereas
they are underdetermined in [BHL03; KP03; CGJ09].

a) Equilibrated Numerical Fluxes

Let T ∈ Th, we seek to define a piecewise linear function ΦT : ∂T → R such that∫
T
f +

∫
∂T

ΦT = 0. (27)

i.e., we want to reconstruct an approximation of the flux associated with the numerical scheme from
the discrete solution data.
Following [AIN07, Lemma 5], we note that

∫
T f =

∫
Ω f1T = aswip(uh,1T ).

We then seek ΦT such that∫
T
f +

∫
∂T

ΦT = aswip(u, χT ) +
∑
F∈Fh

∫
F
ΦT1T = aswip(u,1T )− ℓh(1T ) = 0. (28)

For T ∈ Th and F ∈ FT , we define µT,F := nT,F · nF ∈ {−1, 1} and the piecewise affine function on
the faces ΦT : ∂T → R ∈ P1

2(FT ) by

ΦT :=


µT,F

(
{{σh(uh) · nF }}−

γF
|F |

JuhK
)

if F ∈ F i
h,

σ(uh) · nT,F − γF
|F |

(uh − gD) if F ∈ Fb
h.

(29)
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Using the fact that J1T KF = µT,F1T and that ∇h(1T ) · nF = {{σh(1T )}}· nF = 0, we obtain (28).
We also note, by observing that gT1 + gT2 = 0, that for all v ∈ VN :∑

Th

∫
∂T

ΦT v =

∫
ΓN

gNv −
∑

F∈Fh∩ΓN

∫
F
(gN − gN,F )v , (30)

where gN,F =
1

|F |

∫
F
gN

∣∣
F
.

b) Local Representative

We then want to estimate the part on ∇χ of the estimator, recalling the equation:

⟨κ∇χ|∇v⟩L2(Ω) = ⟨κ∇heh|∇v⟩L2(Ω) , ∀v ∈ VD.

We choose v ∈ VD:

⟨κ∇χ|∇v⟩L2(Ω) = ⟨κ∇heh|∇v⟩L2(Ω)

⇐⇒ ⟨κ∇χ|∇v⟩L2(Ω) + ⟨κ∇uh|∇v⟩L2(Ω) = ⟨κ∇u|∇v⟩L2(Ω)

We then have, thanks to the continuous variational formulation of the problem (19):

⟨κ∇χ|∇v⟩L2(Ω) = ⟨f |v⟩L2(Ω) +

∫
ΓN

gNv − ⟨κ∇uh|∇v⟩L2(Ω) . (31)

Then, by injecting (30) into the above equation, we obtain

⟨κ∇χ|∇v⟩L2(Ω) =
∑
T∈Th

{〈
fT

∣∣v〉L2(T )
+

∫
∂T

ΦT v − ⟨κ∇uh|∇v⟩L2(T )

}
+

∑
T∈Th

〈
f − fT

∣∣v〉L2(T )
+

∑
F∈Fh∩ΓN

∫
F
(gN − gN,F )v , ∀v ∈ VD,

where fT =
1

|T |

∫
T
f .

The part involving f , f , gN , g depends only on the data and the mesh geometry. It can be easily
bounded.
The objective is then to estimate the part in braces. We then seek a local representative ρT in P1(T )
such that

⟨ρT |∇v⟩L2(Ω) =
〈
fT

∣∣v〉L2(T )
+

∫
∂T

ΦT v − ⟨κ∇uh|∇v⟩L2(T ) , ∀v ∈ VN . (32)

But for v ∈ VD:

⟨ρT |∇v⟩L2(Ω) =

∫
T
ρT · ∇v

=

∫
∂T

ρT · nT v −
∫
∂T

div(ρT ) (by IPP)

and on the other hand, by performing an IPP on the last term on the right of (32)

−⟨σ(uh)|∇v⟩L2(Ω) = −
∫
∂T

σ(uh) · n∂T v +

∫
T

div(σ(uh))v,

hence, by combining the two equations∫
∂T

ρT · n∂T v −
∫
T

div(ρT )v =

∫
∂T

(ΦT − σ(uh) · n∂T )v +

∫
T

(
fT + div(σ(uh))

)
v.
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We can then identify ρT · n∂T and div(ρT ):

ρT · n∂T = ΦT − σ(uh) · n∂T , (33)
div(ρT ) = fT + div(σ(uh)). (34)

In the following, we denote by λj the local barycentric function of T ∈ Th such that if xi is the
coordinate of vertex ai of T , then λj(xi) = δij .
The proof [AIN07, Lemma 6] then shows that by defining

ρ
(T )
1 = |F3|∆(T )

3 (x1)τ2 − |F2|∆(T )
2 (x1)τ3,

ρ
(T )
2 = |F1|∆(T )

1 (x2)τ3 − |F3|∆(T )
3 (x2)τ1,

ρ
(T )
3 = |F2|∆(T )

2 (x3)τ1 − |F1|∆(T )
1 (x3)τ2.

(35)

where for a face Fn and a vertex Sj , j ̸= n such that the coordinate of vertex xj is on Fn (see Figure
8):

∆(T )
n = ΦT − σ(uh) · nT

∣∣
Fn

∈ P1(Fn),

the function P1(T ) defined by

ρT =
1

2 |T |

3∑
n=1

ρ(T )
n λn (36)

then satisfies (33) and (34). By retracing the calculations, we finally show that ρT satisfies (32).
The function ∆

(T )
n then corresponds to the barycentric coordinate of ρT · n∂T on the face Fn, i.e., for

n ∈ {1, 2, 3}, i, j ∈ {1, 2, 3}\{n} with always i ̸= j

ρT · n∂T

∣∣
Fn

= ∆(T )
n (xi)λi +∆(T )

n (xj)λj , (37)

or again, if xi is the coordinate of a vertex on the face Fn

(ρT · nT,Fn) (xi) = ∆(T )
n (xi).

We then want to calculate the norm of ρT on a triangle, but∫
T
λiλj =

1

12
|T | (1 + δij).

We therefore have

∥ρT ∥2L2(T ) =
1

48 |T |

3∑
i=1

3∑
j=1

(1 + δij)ρ
(T )
i · ρ(T )

j . (38)

And finally, for v ∈ VD, by applying Cauchy-Schwarz

⟨κ∇χ|∇χ⟩L2(Ω) =
∑
T∈Th

{〈
fT

∣∣χ〉L2(T )
+

∫
∂T

ΦTχ − ⟨κ∇uh|∇χ⟩L2(T )

}
+

∑
T∈Th

〈
f − fT

∣∣χ〉L2(T )
+

∑
F∈Fh∩ΓN

∫
F
(gN − gN,F )χ

=
∑
T∈Th

⟨ρT |∇χ⟩L2(T ) +
∑
T∈Th

〈
f − fT

∣∣χ〉L2(T )
+

∑
T∈Th

∑
F∈FT∩ΓN

∫
F
(gN − gN,F )χ .

=⇒
∥∥∥κ1/2∇χ∥∥∥2

L2(Ω)
≤

∑
T∈Th

κ
−1/2
T ∥ρT ∥L2(T )

∥∥∥κ1/2T ∇χ
∥∥∥
L2(T )

+
∑
T∈Th

κ
−1/2
T

∥∥f − fT
∥∥

L2(T )

∥∥∥κ−1/2
T χ

∥∥∥
L2(T)

+
∑
T∈Th

∑
F∈Fh∩ΓN

κ
−1/2
T

∥∥gN − gN,F

∥∥
L2(F )

∥∥∥κ1/2T χ
∥∥∥

L2(F )
.
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where we take advantage of the constant nature of κT = κ|T to make it appear in the norms.

To obtain an estimate of
∥∥κ1/2∇χ∥∥

L2(Ω)
, we will transform the terms

∥∥∥κ−1/2
T χ

∥∥∥
L2(T )

and
∥∥∥κ1/2T χ

∥∥∥
L2(F )

by C
∥∥κ1/2∇χ∥∥

L2(Ω)
.

The optimal Poincaré inequality given in [PW60, Equation (1.9)] allows us to state

∥χ∥L2(T ) ≤ CP ∥∇χ∥L2(T ) ,

where
CP =

1

π
max
x,y∈T

∥x− y∥R2 .

Then, the proof [AIN07, Lemma 10] (based on Stokes’ formula) proves that by defining

LF = max
x∈F

∥x− xF ∥R2 , (39)

lF = min
x∈F

∥x− xF ∥R2 , (40)

we can write:
∥χ∥L2(F ) =

2

lF
∥χ∥L2(T )

(
∥χ∥L2(T ) + LF ∥∇χ∥L2(T )

)
.

By reapplying the Poincaré inequality, we can factor out the ∥∇χ∥L2(T ) by the trace constant

Ct(T, F ) =
2

lF
CP(CP + LF ),

and we deduce the estimate
∥χ∥L2(F ) ≤ C

∥∥∥κ1/2∇χ∥∥∥
L2(T )

.

Hence, finally ∥∥∥κ1/2∇χ∥∥∥
L2(Ω)

≤
∑
T∈Th

κ
−1/2
T ∥ρT ∥L2(T ) +

∑
T∈Th

κ
−1/2
T CP

∥∥f − fT
∥∥

L2(T )

+
∑
T∈Th

κ
−1/2
T

∑
F∈FT

Ct(T, F )
∥∥gN − gN,F

∥∥
L2(F )

.

We can then set for T ∈ Th:

ηCF,T := κ
−1/2
T

∥ρT ∥L2(T ) + CP
∥∥f − fT

∥∥
L2(T )

+
∑

F∈FT

Ct(T, F )
∥∥gN − gN,F

∥∥
L2(F )

 . (41)

The article then shows that it is possible to improve the accuracy of this estimate using bubble functions
β solutions of: {

−∆β = 1 in T,
β = 0 on ∂T. (42)

Following [AIN07, Eq (20) and paragraph 3.2], we approximate this function by a third-order polyno-
mial such that by noting

(C⋆
T )

2 =
κT

20Tr(ST ))

with ST the local stiffness matrix of the triangle, we then obtain by [AIN07, Lemma 7]

ρ⋆
T =ρT − C⋆

T curl(ρT ),

∥ρ⋆∥2L2(T ) = ∥ρ∥2L2(T ) − (C⋆
T )

2 |T | ∥curl(ρT )∥2L2(T ) .

and by replacing ρT with ρ⋆
T we have the estimate:

⟨κ∇χ|χ⟩L2(Ω) ≤
∑
T∈Th

(η⋆CF,T )
2 ≤

∑
T∈Th

η2CF,T . (43)
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4) Local Equivalence between Error and Estimator

We consider T ∈ Th and F = ∂T ∩ ΓN a face of T on the Neumann boundary if it exists.
Let T̃ := {T ′ / FT ∩ FT ′ ̸= ∅} be the set of elements neighboring T .
Let T ⋆ = {T ′ / Ah(T ) ∩ Ah(T

′) ̸= ∅} be the set of elements T ′ ∈ Th that share a vertex with T .

We define the data oscillations as: Osc(f, T )2 = |T |
∥∥f − f

∥∥2
L2(T )

,

Osc(gN , F )2 = |F | ∥gN − gN∥2L2(F ) .

[AIN07, Section 4, Lemma 2, Lemma 3, Lemma 8] proves the following inequality:

Proposition 3.3: Norm Equivalence

If T ∈ Th, there exists c = c(T ) > 0 independent of hT such that

cηCF,T ≤
∥∥∥κ1/2∇ξ∥∥∥

L2(T̃ )
+
∥∥∥κ−1/2curl ψ

∥∥∥
L2(T̃ )

+ Osc(gN ; {F ∈ FN
h ∩ T}) + Osc(f, T̃ ).

Similarly, there exists C = C(T ) > 0 independent of hT such that

CηNC,T ≤
∥∥∥κ1/2∇ξ∥∥∥

L2(T ⋆)
+
∥∥∥κ−1/2curl ψ

∥∥∥
L2(T ⋆)

+ Osc(gN ; {F ∈ FN
h ∩ T}) + Osc(f, T ⋆).

We then deduce the equivalence between ηT and the norm ∥κ∇uh∥L2(T ) up to the data oscillation.

5) Modification for SWIP

To adapt this article in the context of the SWIP method, it is appropriate to modify the estimator so
that

{{vh}}ω = ω1v1 + ω2v2.

We theoretically and numerically verify that the numerical flux is indeed conservative.
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II - Numerical Results

1) Homogeneous diffusion problem

a) Homogeneous Dirichlet in the unit square

We consider the square Ω =]0; 1[2.
Let λ ∈ N∗. We consider the following test case:

Find σ(u) ∈ H(div ; Ω), u ∈ H1(Ω) such that


−div σ = 2(λπ)2 sin(λπx) sin(λπy) in Ω,

σ(u) = ∇u in Ω,

u = 0 on ∂Ω.
(44)

i.e. 
f(x, y) = 2(λπ)2 sin(λπx) sin(λπy) ∈ C∞(Ω),

ΓD = ∂Ω,

gD = 0 ∈ C∞(∂Ω),

κ ≡ 1.

This test case corresponds to the spectral problem of the Laplacian on the unit square. The solution
of this problem is known:

uλ : (x, y) ∈ R2 7−→ sin(λπx) sin(λπy) ∈ C∞(Ω).
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Figure 15: Solution of the spectral problem on [0; 1]2 for λ = 1, 2.

The broken flux restricted to an element T ∈ Th is thus

σ(uλ)
∣∣
T
= ∇uλ,

and we can easily compute
ϵT := ∥σ(uλ)− σ(uh)∥L2(T ) ,

ϵh :=
√ ∑

T∈Th
ϵ2T ,

for each simulation. We will next compare the results of ϵh with those of ηT , where ηT is the a posteriori
error estimator defined in Theorem 3.1.
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The local error map is obtained in Figure 2 for λ = 1.
We focus on the case λ = 2 because the solution variations are more significant. We will denote the
solution by u without specifying the dependence on λ = 2.

(a) A posteriori error estimator (left) and broken flux error (right) on their relative value scales.

(b) A posteriori error estimator (left) and broken flux error (right) on the same value scale, showing only values
above the mean < η >Th

(left) and < ϵ >Th
(right).9

Figure 16: Local map of a posteriori error estimator ηT (left) and broken flux error ϵT (right) for λ = 2,
h = 0.05 and vh ∈ P1.

Figure 16 shows that the error estimator is locally faithful to the true error in the sense that their
maxima and minima coincide; it slightly overestimates but the relative values are of the same order as
the true error.

9< X >Th :=
1

Card(Th)

∑
T∈Th

XT
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Figure 17: Left: nonconformity error estimator ηNC,T , right: conforming error estimator ηCF,T for
λ = 2, h = 0.05 and vh ∈ P1.

Figure 17 shows that the nonconformity error is small in magnitude and localized at the gradient
variations. This is the expected behavior since the jump penalization is optimized in our numerical
implementation.
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(a) Left axis: a posteriori error estimator and
broken flux error in log-log scale. Right axis:
effectivity in log-linear scale.
Abscissa: number of degrees of freedom. λ = 2,
vh ∈ P1.

101.5 102 102.5

10−1

100

1

-1

√
ndof ∼ h−1

E
rr

or

Corrected estimator
Estimator without correction

(b) Log-log comparison between the corrected
and uncorrected error estimators.
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Figure 18: Comparison of the global estimated error and true broken flux error (left), comparison of
the error estimation with and without bubble function correction (right).

From Figure 19, it is observed that the nonconforming error estimate is several orders of magnitude
smaller than the conforming error, which agrees with Figure 17.
The data oscillation decreases as h−2 as shown in [AIN07].
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Figure 19: Comparison of the different components of the error estimator and the error in log-log scale
for λ = 2 and vh ∈ P1. Abscissa: number of degrees of freedom.

In the following, the local error estimator map is used to refine the mesh in regions where the lo-
cal estimator is largest. The goal is to refine only critical areas and keep a coarse mesh in regions
where the error is already small.
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Refined a posteriori error
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Figure 20: A posteriori error and broken flux error in the case of global refinement (all cells have equal
size) and in the case of local refinement (mesh refined in regions where the error is large).
Log-log scale. Abscissa: number of degrees of freedom.

It can be seen that the error for the locally refined mesh is smaller for the same number of degrees of
freedom, but no superconvergence or significantly smaller error is obtained.
This is not surprising since the solution is smooth and the domain convex, thus there is no regularity
issue. Nevertheless, the error remains smaller when refining locally in regions where the error estimate
is largest.

One can also study the behavior of the error when varying γ to highlight the effect of jump pe-
nalization on the conforming and nonconforming errors.

Raphaël LECOQ Part 3 | Summary



37 1) Homogeneous diffusion problem

101.5 102 102.5
10−3

10−2

10−1

100

√
ndof ∼ h−1

E
rr

or
γ = 5

101.5 102 102.5
10−3

10−2

10−1

100

√
ndof ∼ h−1

E
rr

or

γ = 10

Broken flux error A posteriori estimate Conforming error estimate Nonconforming error estimate

101.5 102 102.5
10−3

10−2

10−1

100

√
ndof ∼ h−1

E
rr

or

γ = 50

101.5 102 102.5
10−3

10−2

10−1

100

√
ndof ∼ h−1

E
rr

or

γ = 100

Figure 21: Comparison of the different components of the error estimator and the actual error when γF
varies in [5, 10, 50, 100] for λ = 2 and vh ∈ P1, log-log scale. Abscissa: number of degrees of freedom.

The discrete solution obtained by the discontinuous Galerkin method becomes increasingly conforming,
in the sense that the amplitude of its nonconforming part decreases as the jump penalization increases.
This is the expected behavior since a higher penalization enforces continuity more strongly.

In conclusion, the estimator is correctly implemented for homogeneous Dirichlet conditions and its
estimates reflect the local and global behavior of the error. The next step is to verify its behavior for
non-homogeneous boundary conditions and less regular solutions in a nonconvex domain.

b) Non-homogeneous Neumann condition in the unit square

We consider the square Ω =]0; 1[2.
Let λ ∈ N∗. We consider the following test case:
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Find σ(u) ∈ H(div ; Ω), u ∈ H1(Ω) such that


−div σ = 2(λπ)2 sin(λπx) sin(λπy) in Ω,

σ(u) = ∇u in Ω,

σ(u) · n = λπ

[
cos(λπx) sin(λπy)
sin(λπx) cos(λπy)

]
· n on ∂Ω.

(45)
i.e. 

f(x, y) = 2(λπ)2 sin(λπx) sin(λπy) ∈ C∞(Ω),

ΓN = ∂Ω,

gN = λπ

[
cos(λπx) sin(λπy)
sin(λπx) cos(λπy)

]
· n∂Ω

10 ∈ L2(∂Ω),

κ ≡ 1.

101.5 102 102.5

10−1

100

1 -1

√
ndof ∼ h−1

E
rr

or

A posteriori error ηh
Broken flux error ϵh

1.3

1.35

1.4

1.45

1.5

E
ffe

ct
iv

it
y

Effectivity

Figure 22: A posteriori error estimator and broken flux error in log-log scale.
Abscissa: number of degrees of freedom. λ = 2 and vh ∈ P1.
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Figure 23: Comparison of the different components of the error estimator and the error in log-log scale
for λ = 2 and vh ∈ P1. Abscissa: number of degrees of freedom.

10Outward unit normal vector on the boundary of Ω.
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c) Dirichlet in a nonconvex L-shaped bend

Ω

θ

r

(x, y)

(0, 0)

(0.5, 0.5)

Figure 24: Nonconvex L-shaped domain Ω and its associated polar coordinates.

We consider the polar coordinates (r, θ) ∈ R∗
+× [0;

3

2
π] centered at (0.5, 0.5) which describe the domain

and its boundary in a bijective manner:

Ω = Ω ⊔ ∂Ω =

{
(x, y) ∈ R2

/
x ∈ [0;

1

2
], y ∈ [0; 1]

}
∪
{
(x, y) ∈ R2

/
x ∈ [

1

2
; 1], y ∈ [

1

2
; 1]

}
.

We want to solve the following harmonic problem:

Find u ∈ H1(Ω),

{
−∆xu = 0 in Ω,

u(r, θ) = rαsin(23θ) on ∂Ω. (46)

where ∆x is the Laplacian in Cartesian coordinates.
The solution is the function u(x, y) = f ◦ ϕ(x, y), where f(r, θ) = r2/3sin(23θ) ∈ H1+2/3(Ω).
ϕ(x, y) = (r(x, y), θ(x, y)) is the diffeomorphism transforming Cartesian coordinates into polar coordi-
nates with θ ∈ [0; 2π[.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

u(x, y)

Figure 25: Solution f(r, θ) = r2/3 sin(23θ).

Remark :
Following Remark p.26, the Dirichlet boundary data should be continuous and piecewise
affine on the boundary (ghD ∈ P1

c(Fb
h)). Therefore, the Dirichlet data gD ∈ H1/2(∂Ω) must

be projected onto P1(Fb
h) to compute the estimator, taking into account the error between

the solution computed with gD and that computed with ghD.
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According to Appendix C, a loss of regularity is expected near the reentrant corner due to the blow-up
of the gradient norm at the point (0, 0). This results in a concentration of the error at this point, as
well as a reduction in the convergence rate of the error.

(a) A posteriori error estimation (left) and broken flux error (right) on their respective relative value scales.

(b) A posteriori error estimation (left) and broken flux error (right) on their respective relative value scales,
showing only values smaller than 2 < η >Th

(left) and 2 < ϵ >Th
(right).11

Figure 26: Local map of the a posteriori error estimation ηT (left) and broken flux error ϵT (right) for
h = 0.05 and vh ∈ P1.

The error is clearly concentrated around the reentrant corner, and the error estimation outside this
point remains consistent when considering the regions where the error is dominated by the singularity
at (0, 0).
In the error estimation, some artifacts can be observed at the domain corners; these disappear when
the problem is solved using boundary data ghD ∈ P1

c(Fb
h) instead of the exact data gD ∈ L2(ΓD).

11< X >Th :=
1

Card(Th)

∑
T∈Th

XT .
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Figure 27: Comparison of the different components of the error estimator and the true error in log-log
scale for the L-shaped domain and vh ∈ P1. Abscissa: number of degrees of freedom.

The error decay is at h−2/3, which is predicted by the a priori error estimate in Appendix C.
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Figure 28: A posteriori error and broken flux error in the case of global refinement (all cells are of
equivalent size) and in the case of local refinement (mesh refined in zones where the error is large).
Log-log scale. Abscissa: number of degrees of freedom.

During refinement, we observe super-convergence of order r ≃ 0.85 > 2/3.
Since the domain is convex and the solution less regular, we can then numerically obtain faster con-
vergence without paying more in terms of degrees of freedom, provided that we refine locally (here in
the reentrant corner).

d) Neumann in an L-shaped bend

We still consider Ω as in Fig.24 and the problem whose solution is given in Fig. 25:

Find u ∈ H1(Ω),


−∆xu = 0 in Ω,

σ(u) · n = 2
3r

−α−1

[
sin(23θ)
cos(23θ)

]
· n on ∂Ω. (47)
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The continuous problem is well-posed but numerically ill-posed at r = 0 because ∥σ(u)∥ℓ2 −→
r→0

+∞12.
However, the quadrature points for numerical integration at the boundary always evaluate gN at
(x, y) = (0, 0), at the point where the values are infinite.
We then approximate the value at (x, y) = (0, 0) by the average over a circle around this point:

g̃N (0, 0) =

∫ ε

r=0

∫ 2π

θ=0
gN ,

where ε ≲ h . This choice being arbitrary, the data oscillation and convergence results are degraded
in Fig.29.
We nevertheless observe a convergence order similar to the pure Dirichlet case, which shows the ro-
bustness of the method despite the numerical approximations.
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Figure 29: Comparison of the different components of the error estimator and the error in log-log scale
for vh ∈ P1. Abscissa: number of degrees of freedom.
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Figure 30: A posteriori error and broken flux error for global and local refinement.
Log-log scale. Abscissa: number of degrees of freedom.

We can nevertheless note that it is still possible to obtain super-convergence of the simulation, and
that we have reached the optimal case which is convergence of order 1 according to the appendix.

12ℓ2 is the matrix norm subordinate to the 2-norm in R2
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2) Heterogeneous diffusion problem

We consider the problem on Ω =]0; 1[2 partitioned into four subdomains
Ω1 =]1/2; 1[2,

Ω2 =]0; 1/2[×]1/2; 1[,

Ω3 =]0; 1/2[2,

Ω4 =]1/2; 1[×]0; 1/2[.

We equip Ω with polar coordinates defined as in Fig.31.
We define the interfaces Γij := Ωi ∩ Ωj .

x

y

θ

M(x, y)
r

κ = D

κ = Dκ = 1

κ = 1 Ω

Ω1

Ω4

Ω2

Ω3

Γ12

Γ23

Γ34

Γ41

Figure 31: Domain Ω considered and its polar coordinates.

On Ωi we denote κi the diffusion in the domain, and in the following we will always have κ1 = κ3 = 1.
We seek the solution to the harmonic problem:

Find u ∈ H1(Ω),

divx ·
(
κ∇xu

)
= 0 in Ω,

u = rα
(
a cos(αθ) + b sin(αθ)

)
on ∂Ω.

where a = a(D,α) ∈ L∞(Ω) and b = b(D,α) ∈ L∞(Ω) are piecewise constant functions on the Ωi.
The calculation method to obtain the value of α and a, b as a function of D or to obtain D and a, b as a
function of α is detailed in Appendix D. We fix here α = 1/4 and we find numerically D = 0.0395661.
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Figure 32: Solution f(r, θ) = r1/4(a cos(θ/4) + b sin(θ/4)) for α = 1/4 and D = 0.0395661.

a) SIP method

We propose here the analysis of results in the case of heterogeneous diffusion without weighting of
averages.
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Figure 33: Comparison of the different components of the error estimator and the error in log-log scale
for the L-shaped domain and vh ∈ P1. Abscissa: number of degrees of freedom.

We note that the error is indeed at h1/4 which is the convergence order predicted by the estimate in
Theorem 2.11. The effectivity very close to 1 is an indicator of very good quality of the error estimation!
We notice a change in behavior at the level of the nonconformity error. The nonconformity error
estimation has large amplitude compared to the homogeneous case. This is probably explained by the
sudden changes in variations at the interfaces.
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Figure 34: Comparison of the different components of the error estimator and the error in log-log scale
for vh ∈ P1. Abscissa: number of degrees of freedom.

b) SWIP method

Here, the estimations are made with the weightings presented in the SWIP section.
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Figure 35: Comparison of the different components of the error estimator and the error in log-log scale
for the L-shaped domain and vh ∈ P1. Abscissa: number of degrees of freedom.

Once again, the error is indeed at h1/4 which is the convergence order predicted by the estimate in
Theorem 2.11. The effectivity very close to 1 is again an indicator of very good quality of the error
estimation!
We observe the same behavior at the level of the nonconformity error as in Fig. 34, which confirms
the good behavior in both the SIP case and the SWIP case of the estimator.
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Figure 36: Comparison of the different components of the error estimator and the error in log-log scale
for vh ∈ P1. Abscissa: number of degrees of freedom.

c) Comparison of the two methods
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Figure 37: Comparison of the different components of the error estimator and the error in log-log scale
for the L-shaped domain and vh ∈ P1. Abscissa: number of degrees of freedom.

We compare here the error in the SIP case and in the SWIP case. It is interesting to note that the
SWIP error is slightly higher than the SIP error. No test case has been implemented to verify that
SWIP allows a better approximation than SIP.
However, the difference is negligible and the behavior of the estimator in the SWIP case is of better
quality than in the SIP case as evidenced by the effectivity.
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Conclusion

During this internship, an a posteriori error estimator for Discontinuous Galerkin Methods pro-
posed by Mark AINSWORTH in 2007 [AIN07] was implemented in the Matlab prototype of TrioCFD.
Many test cases were considered, but only those that allowed for a complete analysis are presented here.

The estimator allows the evaluation of the error for isotropic heterogeneous diffusion problems on
various domains: L-shape, square, and perforated domain (not shown in this report).
It has demonstrated good performance for polynomial spaces P1

1(Th).
The estimation led to superconvergence in irregular cases, which will eventually reduce computational
costs.

However, the current estimator is not suitable for higher-order polynomials.
Moreover, it is only applicable to the isotropic diffusion operator, and the computations are imple-
mented on simplicial meshes.

Several improvements can therefore be considered:

• Build the estimation on general meshes [EV09; CYZ11].

• Extend the estimation to higher-order polynomials [EV09; ESV10].

• Develop an estimator with continuous Dirichlet data.

• Design an estimator for Diffusion–Advection–Reaction problems [DE12, Section 4.6, 5.6] and
[ESV10].

These references, among others, also provide opportunities to construct estimators with a priori esti-
mates on their effectivity and thus on the quality of the estimation.

In parallel, Discontinuous Galerkin methods for diffusion with mixed boundary conditions on gen-
eral affine domains were implemented.
The next step will be to implement Discontinuous Galerkin methods for systems such as Stokes [DE12,
Section 6.1] and then Navier–Stokes [DE12, Section 6.2].
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Part 4

Appendix

A SWIP formulation for nonhomogeneous conditions

We present here the variational formulations for pure Dirichlet problems, pure Neumann problems and
a formulation with mixed conditions.

Remark :
Unlike the case where ω1 = ω2 = 1/2, we cannot express the jump of a product by a
symmetric quantity. We have indeed

JabK = {{a}}ωJbK + JaK {{b}}ω,

where {{·}}ω is the antisymmetric average

{{X}}ω = ω2X1 + ω1X2.

1) Pure Dirichlet

Let f ∈ L2(Ω), gD ∈ H1/2(∂Ω) and κ ∈ L∞(Ω), κ ≥ α > 0 piecewise constant.

Find u ∈ H1(Ω) such that

{
−div(κ∇u) = f in Ω,

u = gD on ∂Ω.
(48)

We define H1
gD

(Ω) :=
{
v ∈ H1(Ω)

/
v = gD on ΓD

}
.

We set V := H1
gD

(Ω) ∩ H3/2(Ω) and recall that Vh,⋆ := V + Vh.
To derive the discrete variational problem, we will verify consistency at all steps of the heuristic deriva-
tion of the SWIP method.
Let v ∈ Vh,⋆, wh ∈ Vh:

a(0)(u,wh) =

∫
Ω
κ∇hv · ∇hwh

=
∑
T∈Th

∫
T
κ∇v · ∇wh

=
∑
T∈Th

∑
F∈FT

∫
F
κ∇v · nF,Twh −

∫
T

div(κ∇hv)wh

=
∑
F∈Fh

∫
F
Jκ∇hv · nFwhK −

∫
Ω

div(κ∇v)wh

=
∑
F∈Fi

h

∫
F
Jκ∇hv · nF K {{wh}}ω + {{κ∇hv · nF }}ωJwhK +

∑
F∈Fb

h

κ∇v · nw −
∫
Ω

div(κ∇hv)wh

=
∑
F∈Fi

h

∫
F
Jκ∇hv · nF K {{wh}}ω +

∑
F∈Fh

{{κ∇hv · nF }}ωJwhK −
∫
Ω

div(κ∇hv)wh.

By evaluating for the solution u ∈ V we notice the same consistency problem appears, we make the
formula consistent by subtracting ∑

F∈Fh

∫
F
{{κ∇hv · nF }}ωJwhK.
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Then we wish to symmetrize by subtracting the following sum:∑
F∈Fh

∫
F
{{κ∇hwh · nF }}ωJvK =

∑
F∈Fi

h

∫
F
{{κ∇hwh · nF }}ωJvK +

∑
F∈Fb

h

∫
F
κ∇wh · nF JvK

=
∑
F∈Fi

h

∫
F
{{κ∇hwh · nF }}ωJvK

︸ ︷︷ ︸
bilinear part

+
∑
F∈Fb

h

∫
F
κ∇wh · nF gD

︸ ︷︷ ︸
linear part

.

We notice that by applying the Dirichlet conditions at the boundary, we lose symmetry on the bilinear
part because we make J∇hwh · nF KωJvhK appear only for interior faces. We then rather subtract∑

F∈Fh

∫
F
{{κ∇hwh · nF }}ωJvK +

∑
F∈Fb

h

∫
F
κ∇wh · nF gD.

We then penalize to make the formulation coercive with sκ(v, wh) which is not consistent for the
solution u:

sκ(u,wh) =
∑
F∈Fb

h

γFγκ
|F |

∫
F
gDwh.

It is therefore necessary to subtract this part to finally obtain the exact variational formulation:

aswip
h (u,wh)−

−
∑
F∈Fb

h

∫
F
κ∇wh · nF gD +

∑
F∈Fb

h

γFγκ
|F |

∫
F
gDwh

 =

∫
Ω
fwh,

where aswip
h is the bilinear form defined in Equation (17).

However, since the part in parentheses is not bilinear in (vh, wh) but rather linear in wh, we define a
new linear form

ℓh(wh ; gD) :=

∫
Ω
fwh −

∫
∂Ω
κ∇hwh · nF gD +

∑
F∈Fb

h

γF
hF

γκ

∫
F
gDwh.

And the discrete problem is equivalent to finding a solution vh ∈ Vh of

aswip
h (vh, wh) = ℓh(wh ; gD).

2) Pure Neumann

Let f ∈ L2(Ω), gN ∈ H1/2(∂Ω), and κ ∈ L∞(Ω), κ ≥ α > 0 piecewise constant.

Find u ∈ H1(Ω) such that

{
−div(κ∇u) = f in Ω,

κ∇u · n = gN on ∂Ω.
(49)

Remark :
For the problem to be well-posed, the data f and gN must satisfy a compatibility con-
dition obtained with Stokes’ formula:∫

Ω
f +

∫
∂Ω
g = 0.

and the solution is defined up to an additive constant [DE12, Section 4.2 p.127-128].

We define VN :=
{
v ∈ H1(Ω)

/
∇ = gD on ΓN

}
.

We set V := VN ∩ H3/2(Ω) and recall that Vh,⋆ := V + Vh.
In the same way as before, we will start from the non-consistent formula and modify the variational
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formulation to ensure consistency.
Let v ∈ Vh,⋆, wh ∈ Vh.

a
(0)
h (v, wh) =

∑
T∈Th

∫
T
κ∇v · ∇wh

=
∑
T∈Th

∑
F∈FT

∫
F
κ∇v · nF,Twh −

∫
T

div(κ∇hv)wh

=
∑
F∈Fi

h

∫
F
Jκ∇hv · nF K {{wh}}ω + {{κ∇hv · nF }}ωJwhK +

∑
F∈Fb

h

∫
F
κ∇v · nFwh −

∫
Ω

div(κ∇hv)wh

=
∑
F∈Fi

h

∫
F
Jκ∇hv · nF K {{wh}}ω + {{κ∇hv · nF }}ωJwhK +

∫
∂Ω
gN JwhK −

∫
Ω

div(κ∇hv)wh.

By evaluating at the solution u ∈ V we obtain the following consistency formula:∑
F∈Fi

h

∫
F
{{κ∇hv · nF }}ωJwhK +

∑
F∈Fb

h

∫
F
gNwh +

∫
Ω
fwh

︸ ︷︷ ︸
linear form ℓRh (wh ;gN )

.

We make it consistent and symmetric by subtracting∑
F∈Fi

h

∫
F
{{κ∇hv · nF }}ωJwhK +

∑
F∈Fi

h

∫
F
{{κ∇hwh · nF }}ωJvK.

The numerical analysis of coercivity shows that it suffices to penalize only inside the mesh, we therefore
add the consistent penalization

sκ(v, wh) =
∑
F∈Fi

h

γFγκ
|F |

∫
F
JvKJwhK.

To finally obtain the following Neumann variational formulation:

aNh (v, wh) :=
∑
T∈Th

∫
T
κ∇v·∇wh+

∑
F∈Fi

h

∫
F
{{κ∇hv · n}}ωJwhK+{{κ∇hwh · n}}ωJvK+

∑
F∈Fi

h

γFγκ
|F |

∫
F
JvKJwhK,

so that the variational problem becomes

Find u ∈ V, aNh (u,wh) = ℓNh (wh ; gN ), ∀wh ∈ Vh.

Finally, to impose a constant to the problem, we perform a lifting so that∫
Ω
u = 0.

3) Mixed boundary conditions

Let ΓN ,ΓD such that ∂Ω = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅.
Let f ∈ L2(Ω), gN ∈ L2(ΓN ), gD ∈ H1/2(ΓD) and κ ∈ L∞(Ω), κ ≥ α > 0 piecewise constant.

Find u ∈ H1(Ω) such that


−div(κ∇u) = f in Ω,

u = gD on ΓD,

κ∇u · n = gN on ΓN .

(50)
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51 3) Mixed boundary conditions

Once again, the idea is to start from the formulation a(0)(v, wh) =
∫
Ω κ∇v · ∇wh.

We denote in what follows FD
h := Fh ∩ ΓD and FN

h := Fh ∩ ΓN .
We can notice that it suffices to separate the Neumann part and the Dirichlet part at the boundary
as follows:

a
(0)
h (v, wh) =

∑
F∈Fi

h

∫
F
Jκ∇hv · nF K {{wh}}ω +

∑
F∈Fi

h⊔F
D
h

∫
F
{{κ∇hv · nF }}ωJwhK

+
∑

F∈FN
h

∫
F
gNwh −

∫
Ω

div(κ∇hv)wh.

To obtain consistency of the bilinear part, we must then subtract∑
F∈Fi

h⊔F
D
h

∫
F
{{κ∇hv · nF }}ωJwhK.

Then we symmetrize by subtracting∑
F∈Fi

h⊔F
D
h

∫
F
{{κ∇hv · nF }}ωJwhK =

∑
F∈Fi

h

∫
F
{{κ∇hv · nF }}ωJwhK +

∑
F∈FD

h

∫
F
κ∇wh · nF gD.

As we noticed in the study of pure Dirichlet, we must still subtract by∑
F∈FD

h

∫
F
κ∇wh · nF v,

to maintain the symmetry of the bilinear part.
We then verify that the consistent penalization that makes the formulation coercive is of the form

s̃κ(u,wh) =
∑

F∈Fi
h⊔F

D
h

γFγκ
|F |

∫
F
JvKJwhK

︸ ︷︷ ︸
consistent and bilinear

+
∑

F∈FD
h

γFγκ
|F |

∫
F
whgD

︸ ︷︷ ︸
linear

.

We must then still subtract ∑
F∈FD

h

γFγκ
|F |

∫
F
whgD,

so that the penalization becomes

sκh(v, wh) =
∑

F∈Fi
h⊔F

D
h

γFγκ
|F |

∫
F
JvKJwhK.

We finally obtain the continuous and coercive bilinear form

amixed
h (v, wh) :=

∑
T∈Th

∫
T
κ∇v ·∇wh−

∑
F∈Fi

h⊔F
D
h

∫
F
{{κ∇hv · nF }}ωJwhK+{{κ∇hwh · nF }}ωJvK+sκh(v, wh)

and the linear form

ℓmixed
h (wh) :=

∫
Ω
fwh +

∑
F∈FD

h

γFγκ
|F |

∫
F
whgD −

∫
ΓD

κ∇wh · nF gD +

∫
ΓN

gNwh,

so that the problem is then

Find u ∈ V, amixed
h (u,wh) = ℓmixed

h (wh), ∀wh ∈ Vh. (51)

Remark :
These formulations amount to weakly imposing the Dirichlet condition by penalizing the
jump between uh and gD at the domain boundary, which are generally imposed in a strong
manner in continuous Finite Elements.
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B Equivalent formulation

In this part, we rewrite the formulation (51) with an equivalent bilinear form that was used for test
cases without weights (SIP). On one hand, by performing integration by parts on wh:

amixed
h (vh, wh) =

∑
T∈Th

∫
T
κ∇vh · ∇wh −

∑
F∈Fi

h⊔F
D
h

∫
F
{{κ∇hvh · nF }}ωJwhK + {{κ∇hwh · nF }}ωJvhK + sκ(vh, wh)

=
∑
T∈Th

∫
T
−div(κ∇vh)wh +

∫
∂T
κ∇vh · n∂Twh

−
∑

F∈Fi
h⊔F

D
h

∫
F
{{κ∇hvh · nF }}ωJwhK + {{κ∇hwh · nF }}ωJvhK + sκ(vh, wh)

=
∑
T∈Th

∫
T
−div(κ∇vh)wh +

∑
T∈Th

∑
F∈FT

∫
F
κ∇vh · nT,Fwh

−
∑

F∈Fi
h⊔F

D
h

∫
F
{{κ∇hvh · nF }}ωJwhK + {{κ∇hwh · nF }}ωJvhK +

∑
F∈Fi

h⊔F
D
h

γFγκ
|F |

∫
F
JvhKJwhK

=
∑
T∈Th

∫
T
−div(κ∇vh)wh +

∑
F∈Fi

h

∫
F
Jκ∇hvh · nF whK +

∑
F∈Fb

h

κ∇vh · nwh

−
∑

F∈Fi
h⊔F

D
h

∫
F
{{κ∇hvh · nF }}ωJwhK + {{κ∇hwh · nF }}ωJvhK + sκ(vh, wh)

=
∑
T∈Th

∫
T
−div(κ∇vh)wh +

∑
F∈Fi

h

∫
F
{{κ∇hvh · nF }}ωJwhK + Jκ∇hvh · nF K {{wh}}ω

+
∑
F∈Fb

h

κ∇vh · nwh −
∑

F∈Fi
h⊔F

D
h

∫
F
{{κ∇hvh · nF }}ωJwhK + {{κ∇hwh · nF }}ωJvhK + sκ(vh, wh)

=
∑
T∈Th

∫
T
−div(κT∇vh)wh +

∑
F∈FN

h

∫
F
{{κ∇hvh · nF }}ωJwhK

−
∑

F∈Fi
h⊔F

D
h

∫
F
{{κ∇hwh · nF }}ωJvhK +

∑
F∈Fi

h

Jκ∇hvh · nF K {{wh}}ω + sκh(vh, wh).

By performing integration by parts on vh on the other hand:

amixed
h (vh, wh) =

∑
T∈Th

∫
T
−div(κT∇wh)vh +

∑
F∈FN

h

∫
F
{{κ∇hwh · nF }}ωJvhK −

∑
F∈Fi

h⊔F
D
h

∫
F
{{κ∇hvh · nF }}ωJwhK

+
∑
F∈Fi

h

Jκ∇hwh · nF K {{vh}}ω + sκh(wh, vh).

To maintain symmetry, we take the average of the two expressions and obtain:

amixed
h (vh, wh) =− 1

2

∑
T∈Th

∫
T
κT (∆whvh + wh∆vh) +

1

2

∑
F∈FN

h

∫
F
{{κ∇hwh · nF }}ωJvhK + {{κ∇hvh · nF }}ωJwhK

− 1

2

∑
F∈Fi

h⊔F
D
h

∫
F
{{κ∇hvh · nF }}ωJwhK + {{κ∇hwh · nF }}ωJvhK

+
1

2

∑
F∈Fi

h

Jκ∇hwh · nF K {{vh}}ω + Jκ∇hvh · nF K {{wh}}ω

+ sκh(wh, vh).
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To reduce to a linear system, we will consider Ti ∈ Th and Tj ∈ Th two neighboring elements with
common face F .
For a polynomial approximation in Pk

d(Th) and T ∈ Th, we denote K := dim(Pk
d(T )) =

(
k+d
k

)
.

We denote (φm)m∈J1;KK the elements of the local basis of Ti and (ψm)m∈J1;KK those of Tj .
If F is not on the boundary and if Ti ̸= Tj :

amixed
h (φi, ψj) =− 1

2

∫
F
κ1ω1∇φi · nTi,F (−ψj) + κ2ω2∇ψj · nTi,Fφi

+
1

2

∫
F
−κ2ω2∇ψj · nTi,Fφi + κ1ω1∇φi · nTi,Fψj +

γFγκ
|F |

∫
F
φiψj

=

∫
F
ω1κ1∇φi · nTi,Fψj − ω2κ2∇ψj · nTi,Fφi +

γFγκ
|F |

∫
F
φiψj .

If F is not on the boundary and Ti = Tj = T then ω1 = ω2 = 1/2 and:

amixed
h (φi, φj) = −1

2

∫
T
κT∆φiφj −∆φjφi −

1

2

∫
F
κT∇(φiφj) · nTi,F +

γFγκ
|F |

∫
F
φiφj .

If F is on the Dirichlet boundary then Ti = Tj = T then ω1 = ω2 = 1/2 and:

amixed
h (φi, φj) =− 1

2

∫
Ti

κT (∆φiφj −∆φjφi) +
1

2

γFκT
|F |

∫
F
φiφj

− 1

2

∫
F
κT (∇φi · nFφj +∇φj · nFφi) +

1

2

∫
F
κT (∇φj · nFφi +∇φinFφj)

=− 1

2

∫
Ti

−κT (∆φiφj −∆φjφi) +
γFκT
|F |

∫
F
φiφj −

1

2

∫
F
κT∇(φiφj) · nF .

If F is on the Neumann boundary then Ti = Tj = T and:

amixed
h (φi, φj) =− 1

2

∫
Ti

−κT (∆φiφj −∆φjφi) +
1

2

γFκT
|F |

∫
F
φiφj +

1

2

∫
F
κT∇(φiφj) · nF .
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C Gradients and regularity of test cases

1) Spectral problem on the square domain

We recall that in the case of the spectral problem in the square domain, for λ ∈ N∗ fixed, we seek to
solve the following problem:

Find σ(u) ∈ H(div ; Ω), u ∈ H1(Ω) such that


−div σ = 2(λπ)2 sin(λπx) sin(λπy) in Ω,

σ(u) = ∇u in Ω,

u = 0 on ∂Ω.
(44)

with solution
uλ : (x, y) ∈ R2 7−→ sin(λπx) sin(λπy).

Its gradient is then:

∇uλ = λπ

[
cos(λπx) sin(λπy)
sin(λπx)cos(λπy)

]
.

And u is C∞(Ω) because sin is a C∞(R2) function therefore C∞(Ω).
According to Corollary 2.9, we therefore expect convergence at h1 for polynomials vh ∈ P1

1(Th).Réessayer

2) Harmonic problem

We recall that in the case of the harmonic problem we solve:

Find u ∈ H1(Ω),

{
−∆xu = 0 in Ω,

u(r, θ) = rαsin(αθ) on ∂Ω.

The gradient of the function is calculated as follows:

∇xf(r, θ) =
∂f

∂r
ur +

1

r

∂f

∂θ
uθ

=
∂f

∂r
(cos(θ)ux + sin(θ)uy) +

1

r

∂f

∂θ
(− sin(θ)ux + cos(θ)uy)

=

(
cos(θ)

∂f

∂r
− sin(θ)

1

r

∂f

∂θ

)
ux +

(
sin(θ)

∂f

∂r
+ cos(θ)

1

r

∂f

∂θ

)
uy.

However, we have

∂f

∂r
=αrα−1 sin(αθ),

1

r

∂f

∂θ
=αrα−1 cos(αθ).

We note that ∥∇xf∥ℓ2 = Crα−1 is indeed integrable at 0 therefore f ∈ H1(Ω).
However

∆xf ∼
r→0

Crα−2,

which is not square integrable at 0 if α < 1. In other words, f ̸∈ H2(Ω).
The task is then to find s ∈]0; 1[ such that f ∈ H1+s(Ω) ⇐⇒ ∇xf ∈ Hs(Ω).
Suppose f ∈ Hs(Ω) for s > 0. We denote:

fλ(x) = f(λx) = λαf(x).

However
∥fλ∥Hs(Ω) = ∥λαf∥Hs(Ω) = λα ∥f∥Hs(Ω) .
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By extending f by 0 on R2\Ω:

∥fλ∥2Hs(Ω) =

∫
R2

|fλ(x1)− fλ(x2)|
∥x1 − x2∥2+2s

ℓ2

=

∫
R2

|f(λx1)− f(λx2)|
∥x1 − x2∥2+2s

ℓ2

=

∫
R2

|f(X1)− f(X2)|
λ−2−2s ∥X1 −X2∥2+2s

ℓ2

λ−4

=λ2(s−1)

∫
R2

|f(X1)− f(X2)|
∥X1 −X2∥2+2s

ℓ2

Finally
∥fλ∥Hs(Ω) = λs−1 ∥f∥Hs(Ω) = λα ∥fλ∥Hs(Ω) .

We deduce that the regularity s satisfies:

s = α+ 1 > 1.

And f ∈ Hα+1(Ω). According to the error analysis stated in Thm. 2.11, we expect convergence of the
broken flux norm at order min(α, 1) for a first-order approximation (vh ∈ P1

1(Th)).

D SWIP solution

This part mainly corresponds to the calculations by Erell JAMELOT which have not been published.

We consider the problem on Ω =]0; 1[2 separated into 4 domains


Ω1 =]1/2; 1[2,

Ω2 =]0; 1/2[×]1/2; 1[,

Ω3 =]0; 1/2[2,

Ω4 =]1/2; 1[×]0; 1/2[.

.

We equip Ω with polar coordinates defined as in Fig.31.
We define the boundaries Γij := Ωi ∩ Ωj .
On Ωi we denote by κi the diffusion in the domain, and in the following we will always have κ1 =

x

y

θ

M(x, y)
r

κ = D

κ = Dκ = 1

κ = 1 Ω

Ω1

Ω4

Ω2

Ω3

Γ12

Γ23

Γ34

Γ41

Figure 38: Domain Ω and its polar coordinates.

κ3 = 1.
We seek the solution to the harmonic problem:

Find divx
(
κ∇xu

)
= 0. (52)
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D SWIP SOLUTION 56

where a = a(D,α) ∈ L∞(Ω) and b = b(D,α) ∈ L∞(Ω) are piecewise constant functions on the Ωi.
We seek u in the form:

u = rα
(
a cos(αθ) + b sin(αθ)

)
.

To ensure u ∈ H1(Ω), Neumann and Dirichlet transmission conditions must be satisfied at the inter-
faces:

u
∣∣
Ωi

= u
∣∣
Ωj

on Ωi ∩ Ωj ,

κ
∣∣
Ωi
∇(u

∣∣
Ωi
) · nij = κ

∣∣
Ωj
∇(u

∣∣
Ωj
) · nij on Ωi ∩ Ωj .

(53)

where nij is the unit normal directed from Ωi to Ωj .
In the following, we define xk = cos(αθk) where θk = k π

2 .
Similarly, we define yk = sin(αθk).
The condition (53) then translates to:

c4 = c1, s4 = Ds1,
c1 x1 + s1 y1 = c2 x1 + s2 y1 D c1 y1 −D s1 x1 = c2 y1 − s2 x1,
c2 x2 + s2 y2 = c3 x2 − s3 y2, c2 y2 − s2 x2 = −D c3 y2 −D s3 x2,
c3 x1 − s3 y1 = c4 x1 − s4 y1, D c3 y1 +D s3 x1 = c4 y1 + s4 x1.

(54)

We can then express these conditions as a linear system:

For k = 0, 1, 2 and k′ = k + 1 :(
xk′ yk′

−Dk yk′ Dk xk′

) (
ck
sk

)
−
(

xk′ yk′

−Dk′ yk′ Dk′ xk′

) (
ck′

sk′

)
= 0.

On Γ41 :(
x4 y4

−Dy4 Dx4

) (
c3
s3

)
−
(

1 0
0 1

) (
c0
s0

)
= 0.

(55)

Let us set An :=

(
xn yn
−yn xn

)
and Bn := −

(
xn yn

−Dyn Dxn

)
, so that |An| = 1 and |Bn| = D.

Equation (55) can be rewritten as: Mx = 0, where x := (c0, s0, c1, s1, c2, s2, c3, s3)
T , and M ∈ R8×8

is the square matrix:

M =


A1 B1 0 0
0 B2 A2 0
0 0 A3 B3

A0 0 0 B4

 .

To solve Mx = 0, we seek the pairs (D, ν) that cancel the determinant of M.
By expanding |M| with respect to the first column:

|M| = x1

∣∣∣∣∣∣∣∣∣∣
x1 (B1)2,: 0 0
0 B2 A2 0
0 0 A3 B3(
0
1

)
0 0 B4

∣∣∣∣∣∣∣∣∣∣
+ y1

∣∣∣∣∣∣∣∣∣∣
y1 (B1)1,: 0 0
0 B2 A2 0
0 0 A3 B3(
0
1

)
0 0 B4

∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
(A1):,2 B1 0 0

0 B2 A2 0
0 0 A3 B3

1 0 0 (B4)2,:

∣∣∣∣∣∣∣∣
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By further expanding with respect to the first column:

|M| = x21

∣∣∣∣∣∣
B2 A2 0
0 A3 B3

0 0 B4

∣∣∣∣∣∣+ x1

∣∣∣∣∣∣∣∣
(B1)2,: 0 0
B2 A2 0
0 A3 B3

0 0 (B4)1,:

∣∣∣∣∣∣∣∣
+ y21

∣∣∣∣∣∣
B2 A2 0
0 A3 B3

0 0 B4

∣∣∣∣∣∣+ y1

∣∣∣∣∣∣∣∣
(B1)1,: 0 0
B2 A2 0
0 A3 B3

0 0 (B4)1,:

∣∣∣∣∣∣∣∣
+ y1

∣∣∣∣∣∣∣∣
(B1)2,: 0 0
B2 A2 0
0 A3 B3

0 0 (B4)2,:

∣∣∣∣∣∣∣∣− x1

∣∣∣∣∣∣∣∣
(B1)1,: 0 0
B2 A2 0
0 A3 B3

0 0 (B4)2,:

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣
B1 0 0
B2 A2 0
0 A3 B3

∣∣∣∣∣∣
By defining:

Mij :=


(B1)i,: 0 0
B2 A2 0
0 A3 B3

0 0 (B4)j,:


We deduce: |M| = y1 (|M11|+ |M22|) + x1 (|M21| − |M12|) + 2D2.
By expanding |Mij | with respect to the first row, we deduce:

|Mij | = (B1)i,1|L2j | − (B1)i,2|L1j |,

where for i, j ∈ {1, 2}:

Lij :=

 (B2):,i A2 0
0 A3 B3

0 0 (B4)j,:

 .

We then obtain:
|M| = (Dx21 + y21 ) |L11|+ (x21 +Dy21 ) |L22|

+x1 y1(D − 1 ) (|L12|+ |L21| ) + 2D2.
(56)

We can expand with respect to the first column:

|Lij | = (B2)1,i |K2j | − (B2)2,i |K1j |,

where i, j ∈ {1, 2}:

Kij :=

 (A2)i,: 0
A3 B3

0 (B4)j,:

 .

We expand |Kij | with respect to the first row:

|Kij | = (A2)i,1 |J2j | − (A2)i,2 |J1j |,

where i, j ∈ {1, 2}:

Jij :=

(
(A3):,i B3

0 (B4)j,:

)
.
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To compute |Jij | and |Kij |, we recall:

yi+1 xi − yi+1 xi = y1,
xi+1 xi + yi+1 yi = x1.

We obtain:

|J11| = −Dx1 x3 + y1 y3,

|J12| = D2 y1 x3 +Dx1 y3,

|J21| = −Dx1 y3 − y1 x3,

|J22| = D2 y1 y3 −Dx1 x3,

and

|K11| = −(D + 1 )x1 y1,

|K12| = D2 y21 −Dx21,

|K21| = Dx21 − y21,

|K22| = −D (D + 1 )x1 y1.

To compute |Lij |, we recall:
y2 x1 + y1 x2 = y3,
x2 x1 − y2 y1 = x3.

We then obtain the following values for |Lij |:

|L11| = D2 x1 y1 y2 −Dx1 x3 + x2 y
2
1,

|L12| = −D3 y21 y2 +D2 x1 y3 +Dx2 x1 y1,

|L21| = −D2 x1 x2 y1 −Dx1 y3 + y2 y
2
1,

|L22| = D3 y21 x2 −D2 x1 x3 +Dy2 x1 y1.

Using Equation (56), we obtain:

|M| = −D4 y41 +D3 ( 2x1 y1 )
2

+2D2 y21 ( y
2
1 + 4x21 )

+D( 2x1 y1 )
2 − y41.

We note that −1 is an obvious root.
Moreover, if Dr is a root, then 1/Dr is also a root. We deduce that −1 is a double root. By defining
z1 :=

x1
y1

. The two other roots are:

D± = ( 2 z21 + 1 ) ± 2z1

√
z21 + 1,

Finally: |M| = −y21 (D + 1 )2 (D −D+ ) (D −D− ).
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Pk
d (Th) Set of broken polynomials on Th.

CP Poincaré constant.

F Face of an element.

H,V Hilbert spaces.

H ′ Topological dual space of H.

T Mesh element.

Vh Space of discretized functions on Th.

Capp Constant of L2-orthogonal projection approximation.

Cinv Inverse inequality constant.

Ctr Discrete trace inequality constant.

Ω Open subset of Rd.

{{v}}F Component-wise average of v at face F .

Hs (div; Th) Broken divergence-conforming Sobolev space.

nF Unit normal vector of the face.

nT,F Unit normal vector of the face, directed from the interior to the exterior of the element.

n∂Ω Unit outward normal vector of the surface, directed outward from the domain.

ℓ(·) Linear form.

ℓh(·) Discrete linear form.

Trγu Trace of u on the boundary γ.

ϵh Error between the real solution and the discrete solution.

γ Interior penalty parameter.

JvK Component-wise jump of v at face F .

Pk
d (Ω) Polynomials of total degree k in Ω ⊂ Rd.

H(div; Ω) Vector-valued Sobolev space.

L2(Ω) Set of square-integrable vector-valued functions from Ω to Rd.

tF Tangent at a point of F .

FT Set of faces of T .

Fh Set of faces of the mesh.

Fb
h Set of mesh faces included in ∂Ω.

F i
h Set of mesh faces included in Ω.

TF Set of triangles that admit F as a face.
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Th Set of elements of the triangulation.

∇hv Broken gradient of v.

∇u Gradient (Cartesian) of u.

ω Weighting for the average in the SWIP method.

Ω Closure of Ω.

∂Ω Boundary of Ω.

∂ku If u : Ω → Rd, k = (k1, ..., kd), then ∂kxu = ∂k1x1
...∂kdxd

u.

σ Mesh regularity index.

H1
gD

(Ω) u ∈ H1(Ω) such that Tr∂Ω(u) ≡ gD.

Hp
0(Ω) u ∈ Hp(Ω) such that Tr∂Ω(∂kxu) ≡ 0 for all 0 ≤ |k| ≤ p− 1.

Hs(Ω) Sobolev space.

Hs (Th) Broken Sobolev space.

L2(Ω) Set of square-integrable functions from Ω to R.

L∞(Ω) Set of essentially bounded functions from Ω to R.

div Divergence of u.

divhv Broken divergence of v.

ϱ Regularity of the mesh.

a(·, ·) Bilinear form.

ah(·, ·) Discrete bilinear form.

ai Vertex i of an element.

f Function, often the source term of the problem.

h Diameter of the mesh.

hF Diameter of F .

hT Diameter of T .

hT,F Height of a triangle from the vertex opposite to face F .

rT Radius of the inscribed circle in T .

uh Discrete solution.

(C⋆
T )

2 (C⋆
T )

2 :=
κT

20Tr(ST )
, where ST is the local stiffness matrix of T .

T ⋆ T ⋆ = {T ′ / Ah(T ) ∩ Ah(T
′) ̸= ∅} is the set of elements T ′ ∈ Th that share a vertex with T .

∆u (Cartesian) Laplacian of u.

ΓN ,ΓD Neumann and Dirichlet boundaries.

Ωi Set of elements T that share a common vertex xi.
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|u|J Norm of the jumps of u.

xG Barycenter of an element.

σ(u) Flux of u, σ(u) = κ∇u.

σh(u) Broken flux of u, σh(u) = κh∇u.

ϵT,conforming Conforming error on T .

ϵT,non-conforming Non-conforming error on T .

ϵT Error in T .

ηT η2T = η2NC,T + η2CF,T is the a posteriori error estimator on T .

ηh ηh is the a posteriori error estimator.

ηCF,T Conforming error estimator.

ηNC,T Non-conforming error estimator.

κ Diffusion coefficient.

λi Barycentric coordinate in an element.

P1
c(Fh) Piecewise continuous affine functions on Fh.

SF Non-normalized normal vector of face F .

Ck(Ω) Functions k-times differentiable with continuous k-th derivative on Ω.

FN
h ,FD

h Set of Neumann and Dirichlet faces.

fT Average of f on an element, fT := 1
|T |

∫
T f .

gF Average of g on a face, gF := 1
|F |

∫
F g.

ϕT Equilibrated numerical flux.

LF LF := max
x∈F

∥x− xF ∥R2 .

Osc(f, T ) Osc(f, T )2 = |T |
∥∥f − f

∥∥2
L2(T )

is the oscillation of the data f on T .

Osc(g, F ) Osc(g, F )2 = |F | ∥gN − gN∥2L2(F ) is the oscillation of the data g on F .

lF lF := min
x∈F

∥x− xF ∥R2 .

curl(u) Curl of u.

T̃ T̃ := {T ′ / FT ∩ FT ′ ̸= ∅} is the set of neighboring elements of T .

eh eh := u− uh is the error in Vh.

g = (gN , gD) Dirichlet or Neumann boundary data.

u⋆h Ostwald projection of uh.
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