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Abstract
This study focuses on a posteriori error estimation for the isotropic heterogeneous diffusion
operator within the framework of discontinuous Galerkin methods.

The study is divided into three main parts and one appendix:

Part 1 places the research project in the context of industrial applications. The first concepts
of a posteriori error estimation are introduced to build intuition about the mathematical objects
and their purpose.

Part 2 presents the numerical method used, called the Discontinuous Galerkin Method, correspond-
ing to discontinuous finite elements. The considered mesh is defined, and the method is constructed.
Finally, a priori error analysis is given for both homogeneous and heterogeneous diffusion cases.

Part 3 summarizes an article by Mark Ainsworth, 2007 [AINO07], which constructs an a posteri-
ori error estimate. A modification of the article is added to fit the heterogeneous diffusion case. A
second section presents numerical results of the estimator to verify its behavior, serving as a basis

for benchmarking another estimator.

In Appendix 4, auxiliary computations for reproducing test cases and justifying numerical results
are provided.

For any question, error, or typo:

raphael.lecoq@ens-rennes.fr
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I- THE CEA 6

Part 1
Industrial Context

I- The CEA

The CEA (French Alternative Energies and Atomic Energy Commission) is a major player in French
research, active in many fields related to energy, health, defense, and advanced technologies.

1) The Paris-Saclay Center

The Paris-Saclay site is one of the nine CEA centers. It brings together about 7,000 people, including
CEA employees and scientific partners. The center focuses on a large share of CEA’s civil activities,
particularly in low-carbon energy, environment, life sciences, materials, and information technologies.

Located mainly in Saclay, Fontenay-aux-Roses, and Evry, it also has facilities in Orsay, Jouy-en-Josas,
Paris, and Caen. It is a strategic partner of the University of Paris-Saclay, which alone accounts for
more than 13% of French research.

2) The STMF and the LDEL

The Thermo-Hydraulics and Fluid Mechanics Service (STMF) is an applied research unit within the
Department of Modeling for Systems and Structures (DM2S), part of the ISAS Institute (Applied
Sciences and Simulation for Low-Carbon Energy), under the Energy Division (DES) of the CEA. Its
director is Nicolas DORVILLE.

The STMF specializes in the development and validation of simulation software for fluid mechanics
and thermo-hydraulics. These tools are used mainly in nuclear applications but also in other energy
fields. The service’s scientific approach relies on multi-scale modeling, from detailed multiphase flow
simulations to large-scale representation of circuits and energy systems.

STMF also contributes to safety studies, particularly related to hydrogen, both in the nuclear sector
and in emerging energy technologies (such as transport).

The Local Scale Development Laboratory (LDEL) is part of STMF, with 25 permanent researchers
and 25 non-permanent members (PhD students, postdocs, apprentices, interns) under the direction of
Julie DARONA.

A key focus of the laboratory is the development and sustainability of its industrial simulation plat-
form TRUST®, which supports the open-source code TrioCFD7, dedicated to numerical simulation of
multiphase flows.

Shttps://cea-trust-platform.github.io/
"https://triocfd.cea.fr/
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IT - Theoretical and Industrial Motivation

In the analysis of numerical methods, a crucial step is establishing the convergence of the scheme. This
is done via a priori error estimates such as Corollary 2.9 or Theorem 2.10.

The goal of a posteriori error estimation is to accurately estimate the numerical error using the data
and the computed solution when the exact solution is unknown.

During this internship, we studied and implemented an a posteriori error estimator to integrate it into
TrioCFD within the framework of Discontinuous Galerkin Methods (DGM).

The LDEL is interested in DGM {for several reasons:

e Mesh flexibility:
DGM allows complex meshes and supports cells of different shapes within the same mesh.

Figure 1: Mesh presented by ANSYS®showing several cell shapes within the same grid.

o GPU suitability:
New, faster GPU architectures are increasingly used in simulation research. DGM benefits greatly
from GPU computation.

e Parallelization:
DGM is easy to parallelize, enabling efficient use of supercomputers and multi-processor simula-
tions.

Applications of a posteriori estimation include:
e Determining convergence order without over-refined meshes.
e hp-adaptive mesh refinement [D11].
e Model coupling [FAD22].

The study was conducted using the MATLAB prototype of TrioCFD, as well as C++ with FreeFEM-++,
and the method will later be integrated into the official TrioCFD version in C++.

Shttps://www.ansys.com
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IT- THEORETICAL AND INDUSTRIAL MOTIVATION 8

We denote by €}, the exact simulation error in an energy norm, which may correspond to the broken
flux norm (Theorem 3.1), the SIP norm (Definition 2.6), the SWIP norm (Equation (16)), or any other
norm defined for a Discontinuous Galerkin method.

We consider a variational formulation obtained by a DGM with a source term represented by f and
g = (9p,gn), on a mesh T and for a solution uy,.

An a posteriori error estimator Sy (up, f, g, Tn) is defined by an analogy to a norm equivalence:
3C > 0,Yh > 0,VT € Tp, CSh|p < en|p < Shlyp-

Sy, is asymptotically correct if

ep — S S
AN = & = 2h_ 1,
€,  h—0 €p, h—0
where &, > 1 is the effectivity of the estimator. This means S, tends toward ey, faster than ey

tends to 0.

We then use this estimator to construct local error maps, allowing visualization of mesh regions where
the discretization is less accurate:

Carte locale de Iestimation d'erreur totale Err grad avec la sol exacte

Figure 2: Local map of the a posteriori error estimate S, (left) and the exact local error €, (right) for
the problem —Awu = 72 sin(7z) sin(7y) with homogeneous Dirichlet conditions, h = 0.1, v, € PL.

The error estimate can then be used to locally refine (see Fig.3) the mesh only in regions where the
estimate has high amplitude.

This allows obtaining superconvergence results, as observed in Fig. 28.

This superconvergence—recovering optimal convergence for problems with low-regularity solutions—helps
reduce computation times.

Raphaél LECOQ Part 1 | Summary



It enables higher simulation accuracy or faster numerical results.
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Figure 3: Example of an L-shaped mesh locally refined near the re-entrant corner.
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Part 2
Discontinuous Galerkin Methods

This part is mainly based on the book Mathematical Aspects of Discontinuous Galerkin Methods |[DE12,
Section 1.2, Section 1.4, Section 4.1, Section 4.2, Section 4.5].

I - Domain, mesh, and broken spaces

1) Homogeneous diffusion problem

We first consider the Poisson problem. This problem is an elementary building block for Stokes and
Navier-Stokes equations.

It also naturally introduces all necessary concepts for properly defining discontinuous Galerkin meth-
ods, including the descriptive elements of the mesh.

Let Q € R? be a bounded open set with Lipschitz boundary, 9Q = Tp U Ty, with data f € L%(Q),
gp € HY?(I'p), and gy € L2(T'y).
We are interested in the following problem:

—Au=f in Q,
Find u € H'(Q) such that u=gp onlp, (1)

Vu-n=gy only.

To simplify the study, we assume gp = 0 and I'y = (), the rest of the analysis being reproducible in
the case of non-homogeneous data; see Appendix A.
By integration by parts, (1) is equivalent to

Find u € H} (Q), /Vu-Vw:/fw, Yw € H} (). (2)
Q Q

The well-posedness of the problem follows from the Lax-Milgram theorem [BRE11, Corollary 5.8].
Indeed, defining the bilinear form

a(v,w) = | Vo Vo= (o,

a(-,-) is a continuous bilinear form on H{(Q) x H}(Q) by Cauchy-Schwarz [BRE11, Definition p.131]
and coercive by Poincaré [BRE11, Proposition 8.13|.
We define the linear form

) = [ = (Sl
which is continuous on H3(€2) by Cauchy-Schwarz and Poincaré.
The diffusion problem can also be expressed in a mixed formulation involving fluxes:

—dive =f inQ,

Find o (u) € H(div ;Q),u € H}(Q) such that .
o(u) =Vu in Q.

with appropriate boundary conditions.

Raphaél LECOQ Part 2 | Summary



11 2) Domain discretization

2) Domain discretization

Remark :

To ensure that V1" € Tp,, Vu € H* (T'), s > 1/2, which will later allow us to define its trace
by Sobolev embedding [TAR07, Lemma 16.1], we must assume that € is a sufficiently
smooth manifold [HIR12, Chapter 1] so that u € H¥2%¢ (Q). According to [GRI11; DAUSS]:

e If Q is of class C? or convex, then u € H*(Q).

e If Q is a non-convex polyhedron, there exists e €]0;1/2[such thatu € () H2+5(Q).
0<s<e

These assumptions therefore ensure sufficient regularity of the solution wu.

DGM allow the use of very general meshes; see [DE12, Section 1.2, Section 1.4]:

Ej} b) Non-conforming mesh of . '

(¢) Conforming but non-
simplicial discretization of the
domain 2.

) Non-convex polyhedral do-
main Q C R2.

Figure 4: Example of a polyhedral domain and its mesh.

For our study, we restrict the domain discretization to a mesh made of simplices, whose definition is
recalled in [DE12, Section 1.2.2|, and whose properties are studied in [BMRO04].

We assume the mesh is conforming in the following sense: a face F is shared by a single pair (11, T5)
if FF' C , or by a single T if F' C 09).

AN

Figure 5: Simplicial discretization of a pentagon in 2D (triangulation).

We denote 7, = {T" / T is a mesh element}.
We denote Fp the set of faces of T', F}; the set of all mesh faces, and define .7-',? = U FrnQ,
TETh

fb = |J FrnoQ as the sets of interior and boundary faces, respectively. We have Fj, = .7:,2’ L .7-7;.
TeTh
We denote Ay (T) := {a / ais a vertex of T} the set of vertices. We sometimes write a; € Ay, if a; is

the i-th vertex of an element and we are interested in elements sharing that vertex.
Finally, we define Tp := {T / F C 0T} the elements having F' as a face and Q; := {T' / a; € T} the

Raphaél LECOQ Part 2 | Summary



I- DOMAIN, MESH, AND BROKEN SPACES 12

set of elements sharing the vertex a;.

For an interior face F' € .7-",2 and its two elements in T, we fix a unique numbering 7} and 75 such
that the unit normal ng is directed from 73 to T», and ty the unit tangent vector directed to form a
direct basis.

The unnormalized normal vector is denoted Sp = |F|np and the tangential vector 7p = |F|tp.

Figure 6: In blue, a face F' shared by two elements 77 and T5, ng its unit normal vector and tp its
tangential vector.

When focusing on a particular element 7', the unit normal is oriented outward from 7', and the unit
tangent is oriented counterclockwise.

We denote nyr and tspr when considering only an element T' € 7, and nr r, t7 r when considering
them on F' € Fr.

(a) Normal and tangent unit vector of facet (b) Normal and tangent unit vector of facet
F seen from Tj. F seen from T5.

Figure 7: Orientation of normal and tangent unit vectors depending on the chosen element.

We will sometimes need to define quantities with respect to a given vertex. The convention is as
follows: on the vertex a; of a triangle T, the face F; considered will be the opposite face.
The numbering of the faces is fixed arbitrarily in the counterclockwise direction.

a9 i
as \
Nry
F3
ai

Figure 8: In blue, the face F3 opposite to vertex as (also in blue), nF3 its unit normal vector, and tF3
its unit tangential vector, with 77 and T5 being the elements sharing F3.

In the following, some properties will depend on the mesh regularity. In our framework, this notion is

much simpler than for a more general mesh; see [DE12, Section 1.4.1].

We define 71 as the radius of the inscribed circle (ball) in T, hy := max, |z — y|| as the diameter of
7y€

the simplex T, and hp := |F| as the length of a face for d > 2, with hp = min(hr,, hp,) for d =1. We

denote by hr r the height of the vertex opposite to F'. We define h = ¥1a7>_< hr as the mesh diameter,
€/n

and we denote by (73);,+( the formal sequence of meshes as the refinement tends to 0. We define the

Raphaél LECOQ Part 2 | Summary



13 3) Space of discontinuous finite elements

hr
hg
(a) Inscribed circle in a triangle and its ra- (b) Diameter of a triangle T' and one of its
dius. faces, height associated with a facet F.

Figure 9: Geometric quantities for simplices of dimension d = 2.

mesh regqularity o €]0;4o00] as the largest 6 independent of h > 0 such that for all A > 0:

VT €Ty, USZ—T. (4)
T

In what follows, we assume o < 400, meaning that the diameters of the simplices are comparable to
the radii of their inscribed balls.

3) Space of discontinuous finite elements
a) Broken polynomials

We denote by P¥ (Q) the space of polynomials of total degree k € N:
Pk (Q) := P:Q%R/Hngk, P(z) = Z aax®, Ya,a, €R 3,

where o is a multi-index and = = z{* ... z;%. We then define the space of broken polynomials:
Pk (73) = {v e L2(Q) / VT € Th, v, € P’;(T)} .

A standard method for the discrete solution of a variational formulation of PDEs is the finite element
method. For example, Lagrange finite elements seek the discrete solution uy in

Vi := PR (Th) nCO(Q).

o) = X o) o 1:aT1 Z9 T 3 7 4 T4x5:
Th 15 T3 T,

2

(b) Approximation in Lagrange’s basis of the

(a) Some functions of Lagrange’s basis function u(z) = (z — a)(x — b).

P} (7n) NCY%(R) en 1D.
Figure 10: Basis and approximation of the continuous finite elements P}(7,) N C°(9).
In the discontinuous finite element method, discontinuities of the discrete solution are allowed within

the mesh itself. This notably reduces the stencil size and thus yields sparser matrices. The discrete

solution uy, is then sought in
Vi = Pi(Th).

Raphaél LECOQ Part 2 | Summary



I- DOMAIN, MESH, AND BROKEN SPACES 14

Figure 11: Some basis functions of P}(7) en 1D.

b) Jumps and averages inside the mesh

Discontinuities within the mesh are characterized by the jump and the average at interfaces:

Consider two elements 77 and 75, and let F' € Fr, N Fp, be their common face.
The termwise average of v on F' is defined by

-@}F@ﬂ:z%(ﬁp<dﬂ)(m4fﬁp(wn>¢w>,

and the termwise jump of v on F' is defined by

[v]p(z) == Trp (’U|Tl> () — Trp (U|T2) ().

In the following, we will write {-} and [-] when there is no ambiguity about the considered face.

{vhe

Ve x

Figure 12: Jump and average of a discontinuous function.

If F € Fb, ie Fis aboundary face on 95, there is no element 75 to define v} or [v]; we then set
by convention:

{o} = [v] :=Trr(v).
Remark :
If v € H¥(T) with s < 1/2, it is not always possible to define a trace L%, which motivates

the assumption v € H*(T') with s > 1/2 for all considered functionals, see [DE12, Remark
2.16).

If w € H*(Q), s > 3/2, then u and Vu satisfy [u] = 0 and [Vju] = Oga, see [DE12, Lemma
1.23).

Raphaél LECOQ Part 2 | Summary



15 3) Space of discontinuous finite elements

c) Broken Sobolev spaces

Allowing discontinuous discrete solutions makes the variational formulation (2) invalid!

Indeed, if uy, is a discontinuous function, its gradient satisfies Vuy, = 8, ¢ L? at the discontinuities.
To overcome this issue, it is necessary to redefine Sobolev spaces on the mesh to give meaning to the
functions we manipulate and to define a new gradient: the broken gradient.

We define the broken Sobolev spaces
H* (Ty) == {v € L*(Q) / VT € Th, v|, € H* (1)},
which then allows us to define the broken gradient for v € H® (7,) such that for any 7" € 7Tj,
(Vo) }T =V (v])-

In the following, when there is no ambiguity, we will write inside T: Vyv = V.

— —q
(a) Fonction v avec discontinuité (b) Gradient Vv de la fonction (¢) Gradient brisé Vv de la fonc-
en 0. admettant un dirac en 0. tion.

Figure 13: Comparison between the gradient and the broken gradient.

We define analogously the broken space of H(div ;):
H (div;7,) = {r € L%(Q) / VT €Ty, div (T’T) € L2(T)},

which will be useful later for defining fluxes.
The algebraic properties and the strong relationships between these spaces and H*(€2) and " (div; Q) =
H (div; ) N H* (2) are well studied in [DE12, Sections 1.2.5, 1.2.6 and 5.1].

d) Inequalities

We recall here the inequalities essential for the analysis of discretization errors.

Remark :
When the constants in inequalities are independent of h,o and are not required for the
method analysis, they will be omitted using the symbol <:

3C >0, X<CY <= X<Y.

Raphaél LECOQ Part 2 | Summary



I- DOMAIN, MESH, AND BROKEN SPACES 16

— Lemma 2.2: Discrete trace inequality

Let k € N. There exists Cyy = Ci,(d, k) > 0 such that for all h > 0, for all v € Pk (73), and for all
T € Ty, we have

1/2 _
ha* lonll2 ) < Ceeo™ 2 lonllpzer

The proof in [WHO03, Theorems 4 and 5| shows the existence of C' = C(d, k) > 0 such that

T\ 1/2
lonlhary <€ () Bonlhorn.
T
Using [CR73, Inequality (3.17)], we obtain
lvall2 ey < Crr) ™2 [lonll2ry
Then, using the definition of o from Equation (4), we have
vnll2 ey < Clohr) ™ onllzery »

which gives the result. O

— Lemma 2.3: Inverse inequality

Let k € N. There exists Ciyy = Ciny(d, k) > 0 such that for all A > 0, for all vy, € Pfl (Tw), and for
all T € Tp, we have

IVonllLairy < Cavo ™ Az llonllLzery -

We prove it in the case v € PY(T) following [ABJ25, Proposition 3|:

HVUH%,Q(T) = /T IVo|? =|T||Vo|? (since Vo is constant)

—rl| 17 [ v
T
/ v Nt
oT
/ Ixwv
oT

(

<|TI7H 10T v liE2(om (by CauchySchwarz)
(
(

2
(since Vv is constant)

2

=|7" (by integration by parts)

2
<7

since ||nr| <1)

<|T|7HoT| o ht o) by Lemma 2.2)
<C2.072h;% || by [CR73, Inequality (3.17)]).

mv

Raphaél LECOQ Part 2 | Summary



17 3) Space of discontinuous finite elements

— Lemma 2.4: Approximation by L?-orthogonal projection

Let m;, be the L?-orthogonal projection of v € H*™(T;) onto P% (7;). There exists a constant
Capp > 0 independent of 7" and h such that

[0 = Tl gy < Capphiy ™0™ [0lyren oy

where [v|yk gy Is the H*(Q) semi-norm.

We rely on [EG21, Lemma 11.9], known as the P* Bramble-Hilbert/Deny-Lions lemma, which
states that for S a Lipschitz domain in R, k € N, there exists ¢ > 0 such that

inf ||v — q|lgre1,oy < ¢ |v|ggret
4€Pk(3) | ”H t1(S) | ’H+ (S)

and on the property of affine transformations from the reference element T.
Let o7 : T'— T be the affine function transforming the reference element 7" into 7" in an invertible
manner, so that a functional operator can be written as

¢(v) = Ar(vor),

where A7 is an invertible matrix. We define J = Dty as the Jacobian matrix of ¥. According to
[EG21, Lemma 11]:

3l 374 o S 0.
Note that the L? projection on T, denoted 7y, satisfies
T = Y7t o ms 0 Y.
The proof of [EG21, Theorem 11.13] then shows that for v € H*F1(T)
o — ol ey < 37| v - 70 (0) | e gy S B 37 [olgs oy S 0B ol gy

O

“||-|l2 is the norm subordinate to the 2-norm in R

Raphaél LECOQ Part 2 | Summary



IT- VARIATIONAL FORMULATIONS 18

IT - Variational Formulations

1) Symmetric Interior Penalty

We start here from the variational formulation (2) by replacing the gradients with broken gradients:
for vy, wyp, € Vj, = IF’S (Tn),

ago) (Uh, wh) = /thvh . Vhwh.

The idea is then to check whether this formulation is consistent with (2). We have:

aELO)(vhvwh) = /thvh'vhwh

== Z Vvh . VU)h

Te7, ' T

= Z/ (Vvh)-naTwh— Z/A’thh (by IBP)
TeT;, 7 OT TeT;, T

= > > /(Vvh)'nF,Twh > /Avhwh
TeT, FeFr F TeTh T

(looking at each face by triangle

= Z Z /(Vvh) "METWh — Z /Avhwh or each triangle by face)
F T

=5 i is equivalent)
— ng T;F /F (Vup) - nprwy,
- Fg:}i/F(Vvh)'anh+/F(vvh) (—mp)wp
+F§Z/F{{WCWMWH_T;,I/TAW}I (by Fig. 7, Def. 2.1)
_ F;ﬁ J1sonyn] - np +F§£ [ A0 me b
_TEZTh /; Avyw
_ F;ﬁ [ A% nr bl + [ [V, nr] g
+F§Z /F {{th-nF}}[[wh]]—T; /T Avpwp, (by identity (5))
- > / {vhvh-np}}uwmgi [ 190n el un
_T;rh /T Avpwp,.

where we used the identity

[£9] = /3ol + [/T £93- (5)

We would then like to evaluate aglo)( -, wp) at the solution u € H{(Q) N H* (), however aéo) is defined
only for functions defined locally on each mesh element: in other words u & Vj!

Raphaél LECOQ Part 2 | Summary



19 1) Symmetric Interior Penalty

We assume aELO) can be extended to V := H>2*5(Q) NH}(Q) for € > 0, and in preparation for the error
analysis u — up,, we consider the enriched space Vj, , := V 4 V},. Then for v € V}, ,:

aglo) (v, wp) € Vi xVp — Z /F{th-nF}[[wh]]jL Z /F[[th'np]] {wp }— Z /TAUwh. (6)

FeF, FeF} TeTh

Let ap, : Vi » X Vi, — R be a discrete bilinear form derived from problem (2). The bilinear form
is said to be consistent with the problem if for the solution u € V:

ap(u, wp) = / fwp, Vwp, € Vp,
Q

i.e., the discrete formulation gives the same equation as the continuous formulation when evaluated
at the solution u of the problem.

We then evaluate at the solution of the Poisson problem u € V}, , using Remark p.14:

ago)(u,wh): Z /FVu-np[[wh]]— Z /TAuwh (7)

FeFy, TeTh
- : [ A
F;h/FVu nrws] /Q uwy, (8)
:F;FhLVU'nFﬂwhﬂ+/g)fwh- (9)

We notice in (9) that the bilinear form ago) is not consistent. To make it consistent, we modify it by
removing the excess term:

aj (v, wp) = /thv - Vywy, — Z /F{{th -np Hwp].
FeF,

The bilinear form aj, is then consistent, however note that if vy, wy, € Vj:

afl(wh,vh) = /th’l)h . Vhwh - Z /F{Vhwh . ’I’LF}}HU}LH 75 aﬁ(vh,wh).

FeFy,

The bilinear form af, is not symmetric. Since linear system solvers behave better on symmetric systems,
and for error analysis, we define a new consistent symmetric bilinear form a§® by adding a consistent
term:

azs(v,fwh) = /thv . vhwh — Z /F ({th . nF}[[wh]] + {{Vhwh . nF}}[[v]]) .

FeF,
Then for all vy, wy, € V}, and for u € V' the solution of the problem:

af’(u, wp) = /wah and aj’(vp, wp) = af’ (wp, vp).

Finally, we want discrete coercivity on V}, x V}, for the existence of the discrete solution uy, but:

af’(vp, vp) = ||thh||i2(ﬂ) -2 Z /F{{thh -np}Hor] <0 for some vy,.
FeFy

A good approach is first to define a norm on V}, ,. Indeed, the semi-norm of the broken gradient is not
a norm as it does not account for the magnitude of the jumps at internal mesh interfaces.
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We define a mesh-dependent norm on Vj, ., which will be called the SIP norm:

)12 = IVaollEai + 1017, (10)
with )
o7 := > EH[[U]]H%P(F)' (11)

FeFy

The semi-norm |v|; is the jump norm and quantifies the size of the function discontinuities.

It is easy to show that [|v[|g, is homogeneous and satisfies the triangle inequality.
The only difficulty lies in definiteness:

o If lufly, = O then [[Vav[|g2q) = 0 and [v[, = 0.

sip
o If [Vhvllyz(q) = 0 then Vo = 0 on each element T', so v is piecewise constant.
e |v[; = 0 implies |[[vn] [l 2y = 0 on all faces F', i.e., v is continuous.

e But v =0 on 91, hence v =0 in Q.

Thus the norm is definite. We conclude that |-||,;, is indeed a norm. O

sip
We then add a stabilization bilinear form that remains consistent and symmetric

(o) = Y0 2 [ pllunl

FeFy,

The penalty v is a locally defined function for each F' € Fj, such that yp = |z > 0, a constant
depending on the mesh and user choice [DE12, Lemma 4.12| and [WHO3].

We notice that sp(vp, vp) = 7 |vh|3, sp, is actually a penalty on interior jumps, since the sought solution
has no internal mesh discontinuities.

We thus define the bilinear form azlp called Symmetric Interior Penalty, abbreviated SIP:

aijp(v,wh) = / Vv - Vywy, — Z / {Vip- nF}}[[wh]l—i- {Viwn -np}v] | + su(v,wp)
Q Fer, ' F ~ - ———

consistency symmetry interior penalty

(12)

We then have the following lemma:

— Lemma 2.7: Discrete coercivity of SIP

For all v > v := C2 Nj, we have

2
sip ?

Yor € Vi, a3 (vn,v1) > Cs |un]|

with Cy := (v — CENy)(1 + )71 and Ny := Imax Card (Fr) = d+ 1 for simplices.
€n
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21 1) Symmetric Interior Penalty

[DE12, Lemma 4.12]. O

We then study the continuity of azip for this norm. Using the previous optimal inequalities:

1/2
. ) 9
a )| < (1ol + 3 b [ Vel nrlar | Tunly
TeTh
We enrich the SIP norm on V. to a norm || v ||§ip7* = ||U||§ip + > hr||Voulp- nT||i2(aT) so as to
TeTh

p

. si .
make the bilinear form a," continuous.

The bilinear form as,fp : (Vh,*, ||'Hsip’*> X (Vh, -] ) — R is therefore:

sip
e continuous,
e coercive,

e consistent.

We note that £ : wy, € Vi — (f|wp);2(q) remains continuous because ||-[|;zq) < |-l

If w is the solution of the Poisson problem, uj, the discrete solution. If the penalty satisfies v > 7:

sip < “'Hsip,*'

||u - uh”sip 5 U}fg‘f/h HU - Uh”sip,* < ||u - uh”sip :

The scheme is quasi-optimal in the sense that the error is equivalent to the optimal error.

[DE12, Théoréme 4.17]. O

The following corollary then directly follows:

Corollary 2.9: A priori error estimate

Under the hypotheses of Theorem 2.8 and u € H¥*1(Q):

k
||U - uh”sip S ||u||Hk+1(Q) h*.

[DE12, Corollaire 4.18|. O

We notice that the SIP method does not converge if £k = 0, so in numerical computations we will
impose k > 1.
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2) Symmetric Weighted Interior Penalty
a) Generalization of the continuous problem

We consider an open set  C R with a Lipschitz boundary, data f € L?(2) and x € L*(Q), s > a > 0
a scalar.
We are interested in the generalized diffusion problem:

—div(kVu) = in Q,
Find u € H'(Q) such that irVe) = in (13)
u=0 on 0.
By integration by parts, (13) is equivalent to:
Find u € H'(Q), / (kVu) - Vw = / fw, Yw e H}(Q). (14)
Q Q

We can define the bilinear and linear forms associated with the problem:

a(v,w) = /Q (kVv) - Vw, l(w)= /wa = (flw)rz(g) -

Then by Cauchy-Schwarz
la(v, w)| < [kl vllpzq) llwllLz g -
and by Poincaré

2 2
a(v,0) > o [ VolZaggy 2 alloll?

thus by the Lax-Milgram theorem, the problem is well-posed.
In practice, k will be more than L* and we will assume, possibly approximating «, that it is a piecewise
constant function on a polyhedral partition of §2:

'y

K5

Ke

K1 K2 K3

I's
(b) Admissible mesh of Q.
(a) Square domain 2 partitionned in subdo-

mains.
Figure 14: Example of partitioned domain according to k and a .possible mesh
We can assume & is piecewise smooth at the cost of some additional technicalities, but we cannot allow

a mesh without a partition of 2 because the solution u will not be regular at the jumps of .
The heterogeneous diffusion problem can also be expressed in a mixed formulation involving fluxes:

—dive=f in €,

o(u) =kV(u) in Q. (15)

Find o(u) € H(div ;Q),u € H(Q2) such that {

b) Weighted averages

At the interfaces, it is necessary to weight the averages to handle cases where k; > k.
The expected behavior is as follows: if k1 > k9 then the values from 75 tend to diffuse into 77, so the
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23 2) Symmetric Weighted Interior Penalty

average value should be more weighted towards 75, i.e. w; — 0 and we —> 1.
K12>K2 K12>K2

Thus, we define the weighted averages on a face F' € .7-"2 separating two elements 77 and T5:

{v}rw(z) —wlv|T +w2v‘T

with
w1 +wo = 1.

If T €T, and F € F? N Fr, we will always write {v}r(x) = v|p. If there is no confusion about the
face F' € Fp, we will write {v},(x).
To account for the physics and thanks to the error analysis, a good choice is

K2 K1

W1 ‘= wo = .
K1+ Ko K1+ K9

If k1 = kg, we recover the arithmetic mean, which corresponds to using the SIP method.

However, when modifying the averages, we also need to modify the way we penalize to maintain a
coercive method with the ||-||4 norm corresponding to the energy norm of the variational formulation,
see [DE12, Section 4.5.3]. We then set

i) = 3 T, [ [l
FeFy
where
L 2/11/12
e K1+ Ko
which also recovers the SIP penalization if k1 = ko. For F' C 02, we set v, = k7.
The jumps must be controlled relative to 7., so we introduce a new jump norm:

1
2 2
V][5 = Z E’YRHUHLQ(F)

FeF,

This notably implies modifying the SIP norm into a SWIP norm

2
o]l + ol (16)

sw1p

=[]

L2(Q)

We then define the bilinear form Symmetric Weighted Interior Penalty abbreviated SWIP

aZWlp(v,wh) - /QHth Viwp — Z / Vv - npholwn] + {Vawn - np}o[v]) + i (v, wn)

FeFy,
(17)
If u € H*1(Q) is the solution of the heterogeneous diffusion problem then
1/2
It = gy < 15115 g Il o B (18)
(@)
[DE12, Theorem 4.53|. O
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[DE12, Remark 4.19] gives the equivalence between the SWIP norm and the broken gradient norm, i.e.
for a sufficiently large penalization coefficient v > 0, there exists C' > 0 such that if v, € H(1)(77L) then

Z HK1/2V’U‘

TeT,

2 2
2 1/2
< b<C Y H \V ‘
LX(T) ~ ellswsp < i Yy
and
2
|Uh|J,l{ h_>_>0 0.

It is therefore sufficient to estimate > ||f€1/ 2Vv||L2 ) to obtain an error estimate for a discontinuous
TETh

Calerkin method, up to data oscillation (which is zero for vy, € H}(Th)).

Remark :
[DE12, Section 4.5.1.2] indicates that a regularity of the solution v € H*$(Q), s > 0, is
expected and sufficient for the SWIP method.

If the solution u € H'T*(Q) with o < 1 and wuy, € P}(73) then there exists C,, > 0 such that:

| —up|,, < Cphmm@d),

sip —

[DE12, Section 4.5.4], [PE11, Theorem 3.6] and [CYZ11]. O
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Part 3
Posterior: Error Estimators

We consider  C R? in the following, but the results can also be adapted to R¢.

We define the broken flux o,(v)|; = o (v|p) = £V (v];) and op(ep) the broken flux of the total
eITor €p i= U — Up.

Since the error ej, does not belong to the solution space V as explained for equation (6), we want to
split the error into two parts:

e The non-conformity error € non conform Which is due to the fact that the error does not belong to
V', the space in which the solution exists.

e The conformity error €, conform Which corresponds to the numerical precision between the discrete
solution projected into the space of continuous polynomials and the exact solution.

As specified in equation (18), we then want to estimate [|os(ep)l|g2(r) for T € 75 a mesh element.

Suppose there exists an L2-orthogonal projection from the solution space V into the space of broken
polynomials V}, = P5(73), then by noting:

e u € V the exact solution.
e uy € V), the discrete solution.
® Up conform € V3 the L2—orthogonal projection of u from V into V.

® Up non conform ‘= Uh — U conform € V4 \V the non-conforming part of u.

We write in the case of a flux:

€T = Ho'(eh) H%ﬂ(T) = HU(U - Uh,conform) + U(uh,conform - uh)HiQ(T)

= Ha(u - uh,conform)||i2(T) + ||0'(uh,conform - uh) H]2'_‘2(T) .

We would then have obtained:

2

1/2 _ 2
HH / \Y = €h,conform + €h,non conform-

“h ‘ L2(T)

This would allow us to estimate €, conform and €p non conform independently, i.e., to find Neonform > 0 and
Tnon conform > 0 such that

<

€T conform = Tlconform

<

€T non conform =  "hon conform-

with 1 a quantity depending only on the mesh geometry, the data, and the discrete solution.

For better readability in the equations, we will use the following notation:
® 7Tconform = 7JCF,

® 7non conform = TINC-

For a fixed element 1" € T}, we will use:

770F|T ‘= 1CF, T,

77NC|T ‘= TINC,T-
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I - Posteriori Estimation

We first consider a posteriori error estimator proposed by Mark AINSWORTH in 2007 [AIN07], who
introduced the idea of the numerical flux equilibrium method.

1) Problem and Definition of the Estimator

Let ', I'p be such that 90 =Ty UTp and Ty NT'p = 0.
We consider data f € L2(Q), gp € H/?(I'p) and gy € L?(T'y). We start from the mixed formulation
(15):
—dive = f in €,
o(u) =krV in €2,
Find o(u) € H(div ;Q),u € H(Q) such that (W) =#Vu in
u=gp onlp,
o-n=gyN on I'y.

Let the Dirichlet solution space be H;D = {u € HI(Q) / U = gp on FD}.
We can write the continuous variational formulation of this problem:

Find u € H;D(Q), (EVU[VO)12(q) = (fl0)r2(0 —l—/F guv, Yve H;D(Q). (19)
N

We then use a discrete variational formulation based on the bilinear form ag‘ixe‘i defined in Equation
(51): . ‘
Find v € H;% (Tn), ap™ed = grxed(v), Vv e Hy (Th).

where gg = H}I(gp) is the projection onto the space of piecewise linear continuous functions
on the set of boundary faces of the domain denoted PL(F?).

Remark :
If the problem is solved with gp & PL(F?), then equation (27) is not exactly satisfied.

[AINO7, Theorem 2| then shows the following a posteriori error result:

For every element T' € 7T}, there exist norpr > 0 and nycor > 0 depending only on the mesh
geometry, the data, and the discrete solution such that

2
Z H"él/Qveh ’T < Z nerr  + nXer =: Z 7, (20)
~—— ~——
TeTn T€Tn Conforming Error ~ Non-conformity Error TeTn
where > e ||/£1/2VehH2T is the broken flux norm and
2 TF 2
lenlup < 3 Oy + ko) + 3 1 Nunllfage (21)

TeT, FeF,

Moreover, for every T € Ty, there exist ¢1(T'), co(T) > 0 such that:

ci(T)ncrr + c2(T)nner < HHI/QV% ‘T < ncF,T + INC,T-

is defined in equation (16).

“II-l
swip
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27 1) Problem and Definition of the Estimator

The proof of [E D-+96, Theorem 3.1| separates the flux into two orthogonal parts:
on(en) = o(x) +curl(y), (22)
where y € Vp = {v € HY(Q) /v=0 onTp} satisfies
(EVX|VV)12(q) = (Vher| V)2 ), Vv € VD
and ¢ € Vi := {v € HI(Q) / Opv =0 on FN} satisfies
</§_lcurl(¢)|curl(w)>L2(Q) = <m_10(eh)’cur1(w)>L2(Q) = (Vi eplcurl(w)) 2y, Vw € Vn.

This decomposition is orthogonal in the sense that:

5~ [seal

TeTy

) - <Iﬂ7_10'h<€h)‘0'h(€h)>L2(Q) = <m_1a(x)!U(X)>L2(Q)+</1_lcurl(¢)‘curl(¢)>L2(Q) .

2
L2(T

The article [AINO7| then shows that we can construct

nNer = HWV(uz — up) 2 (23)
nerw = np P\ lerliee — G5 Tl lewrl(pr) |2 ) (24)
+Cp(T)ig P |1F = Tl + 52 D G F) lon =Gwrl o (29)

FE]‘-TQJ:,IZ

where uj is defined in equation (26), pr is defined in (36) and

(Cx)? = 2OTK7(TS), where St is the local stiffness matrix of 7.
(St

1 1
Cp(T) := — max || — y||gz = —hy where hr is the diameter of T
T

cT
— 1
hrméﬁ

_ 1
gNF = ‘F’/FQN-

Lp = max |z — xp|ge = max{|F1|,|F2|}, where F; are the other two faces.
e

lp = milrwl lx — xp|/ge = hr r, where hy p is the height from the vertex opposite to F.
xe

2
C(T,F) := GCP(CP +Lp).

— Proposition 3.2: Estimation of the Two Components

(v eurl () [eurl(¥))y, ) = ||~/ 2eurl(y)

2
2
L@ < Z NNe,T
TeTh

and

(571 (0|0 () )y = ||5/ V] ;(Q) <Y nénr

TeT,
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2) Non-conforming Estimator

This section corresponds to [AIN07, Section 6]. According to [AINO5, Lemma 3.1],

</<;_1curl(w)}curl(d))>L2(Q)) = min (kKV(u* — up)|V(u* — uh)>L2(Q) )

1
u*EHgD

The goal is then to construct a uj € H;D that can be computed from u;, and is sufficiently accurate.
Let T € Tj, be an element, (1, T2, z3) € R? its vertices, and &g the barycenter of T

We define u} € P(7,) by the so-called Oswald interpolation [OSW94| of uy, at the mesh vertices in
the Lagrange basis P1(7,) with Dirichlet conditions such that

1 .
(hui((zi)T%uh’T(m") e # o, (26)

9p(@;) if ¢; € T'p.

up (x4) =

where the set of elements sharing x; denoted €; is defined in Fig. 5.
We then have a representative uy € H;D (Q) in the space of broken polynomials, hence

(kY (uhy = un) [V (uf, = un)) 2y = D (KV(uf, — un) |V (uf = un))p2ep)
TeTh,

= Z HK1/2V(’LLZ - uh)‘

TeT,
> (k' curl(y) ‘curl(w)>L2(Q) .

2

L2(T)

We can then define )

2 2o, x ‘ .
INe,T - HH V(uj, — up) L2(Q)

3) Conforming Estimator

This section corresponds to [AINO7, Section 5]. The section on equilibrated numerical fluxes corre-
sponds to the main result of the article, as it presents only well-determined constants [ESV10], whereas
they are underdetermined in [BHLO03; KP03; CGJ09|.

a) Equilibrated Numerical Fluxes

Let T € Ty, we seek to define a piecewise linear function ®7 : 9T — R such that

/Tf+/BT<1>T:o. (27)

i.e., we want to reconstruct an approximation of the flux associated with the numerical scheme from
the discrete solution data.

Following [AIN07, Lemma 5], we note that [, f = [, f1r = a®P(u, 17).

We then seek &7 such that

/Tf - /(9’]“ O = aswip(u’ XT) + Z /F(DT]-T = aswip(u’ 1T) - Eh(lT) =0. (28)

FeF,

For T € Ty, and F' € Fr, we define pur p := nyp-np € {—1,1} and the piecewise affine function on
the faces &7 : 9T — R € PY(Fr) by

wrr ({{ahwh) np) o ﬁ;‘[{uhﬂ) it P e 7,

CI)T =
Up, — gD) if e fg

(29)

o (up) - nrp — %(
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29 3) Conforming Estimator

Using the fact that [17]r = pr rplr and that Vi, (17) - np = {o,(11)}- nrp = 0, we obtain (28).
We also note, by observing that g, + g, = 0, that for all v € Vi:

FeF,N'ny
_ 1
where gy p = W FgN‘F.

b) Local Representative

We then want to estimate the part on Vy of the estimator, recalling the equation:
(KVXIVV)1200) = (KVhen|VV)12(q), Vv € Vp.
We choose v € Vp:
(KVX|VU)2(0) = (£VRen| V)12 (q)
= (EVX|VU)r210) + (VUp|VU) 12 ) = (VU[ V)20

We then have, thanks to the continuous variational formulation of the problem (19):

<KZVX‘V'U>L2(Q) = <f"l)>L2(Q) +A gNv U — <I€VUh’V’U>L2(Q) . (31)
N

Then, by injecting (30) into the above equation, we obtain

(EVX|VV)12(0) = Z {<fT‘U>L2(T) + /6T drv — </$Vuh]Vv>L2(T)}

TeTh
+ Z <f _?T|’U>L2(T) + Z /(gN _§N7F)/U ) Vv € VDa
TETh FeF,ny *

— 1
where fp = |T|/Tf

The part involving f, f, gy, g depends only on the data and the mesh geometry. It can be easily
bounded.
The objective is then to estimate the part in braces. We then seek a local representative p in P1(T')
such that

<pT|V’U>L2(Q) = <7T}’U>L2(T) + [;T @TU - <HVU}L|VU>L2(T) y Yv S VN (32)
But for v € Vp:
(P2l Vozoy = [ pr- Vo

:/ pT-nTv—/ div(pr) (by IPP)
oT orT

and on the other hand, by performing an IPP on the last term on the right of (32)

~ (o) Vo) = - |

- o(up) - ngrv + /Tdiv(cr(uh))v,

hence, by combining the two equations

/aT PT - NHTV — /Tdiv(PT)v = /aT(be — o(up) - nar)v +/ (Fr + div(a(up))) v.

T
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We can then identify pr - ngr and div(pr):

pr -nor = P7 —o(up) - nar, (33)
div(pr) = fr +div(e(ua)). (34)

In the following, we denote by A; the local barycentric function of T € 7j, such that if x; is the
coordinate of vertex a; of T', then \j(x;) = d;;.
The proof [AIN07, Lemma 6| then shows that by defining

p\" = B AT (@) — Bl A ()7,
P = 1R AT (@) — | By A (@), (35)
o) = 1B A (@y)m — 71| A (z3) 7

where for a face F;, and a vertex Sj, j # n such that the coordinate of vertex x; is on F), (see Figure
8):
A%T) =& — U(uh) . ’I’I,T‘Fn S Pl(Fn),

the function P!(T) defined by
3
1
- E ' (T)
2|T|

then satisfies (33) and (34). By retracing the calculations, we finally show that pp satisfies (32).

The function A;T) then corresponds to the barycentric coordinate of pp - ngr on the face F,, i.e., for
ne€{1,2,3}, 4,5 € {1,2,3}\{n} with always ¢ # j

pr-mor|, = AT @)\ + AL ()N, (37)
or again, if x; is the coordinate of a vertex on the face F),
(pr - mr k) (1) = A ().
We then want to calculate the norm of pr on a triangle, but
[ 2= g5 a6y,
T 12
We therefore have

3
lorl2e = 48‘T’ ZZ 1+ 600, - P, (38)

And finally, for v € Vp, by applying Cauchy—Schwarz

EVXIVX) L2 = {(fT\x>Lz(T) +/8T Orx — <WUh|VX>L2(T)}

TET,
+ Y =Tl D /gN IN.F)X
TeTh FeF,Nl'n
= > (prIVeery + D (= FrlOem + Do Dl /gN IN.FIX
TET, TET, TeT, FeFrNl'y
= H“ < Z ”T HPTHL2(T H’% + Z “TI/Q ’f fTHL2 H 1/2X L2(1)
TeTh

+> D fi%l/zHgN—?N,FHLQ(F) H 1T/2X

TeT, FEF,NT N

L(F)
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where we take advantage of the constant nature of k7 = k|, to make it appear in the norms.

To obtain an estimate of Hﬁl/QvXHL%Q)’ we will transform the terms HK;UZXHLQ(T) and H 1/2

by € H“l/?VXHLZ(Q)'
The optimal Poincaré inequality given in [PW60, Equation (1.9)] allows us to state

IXIlL2ry < Cp IVXlIL2(r)

where

1
Cp=— ~Ylze -
p=_ max [z -yl

Then, the proof [AIN07, Lemma 10| (based on Stokes’ formula) proves that by defining

LF = rarjlea%(H:c—wFHRz, (39)
lp= min|z— 4
F vy |z — zp|g:, (40)

we can write: 5
Illcey = 1 dluzery (Idlzgry + L I9xgeqry )
By reapplying the Poincaré inequality, we can factor out the HVX||L2(T) by the trace constant

2
Ct(T, F) = ECP(CP + LF),

and we deduce the estimate
Il < € [[61/2vx]

L2(T)
Hence, finally

by < X i + 3 w20 1 ~Tal
L2(Q) TET
+ Z /{1/2 Z Ci(T, F) ||gn —§N,FHL2(F)
TET rerr
We can then set for T' € Ty,:
norr = | lerleer) + Co | = Trllizgy + 32 Cl@ B lloy = aw el |- (41
FeFr

The article then shows that it is possible to improve the accuracy of this estimate using bubble functions
[ solutions of:
A =1 in T,
{ 3 =0 ondl (42)

Following [AINO7, Eq (20) and paragraph 3.2|, we approximate this function by a third-order polyno-
mial such that by noting

*\2 RT
(1) = 20Tr(St))

with S7 the local stiffness matrix of the triangle, we then obtain by [AIN07, Lemma 7|
pt =pr — Crcurl(pr),
16120y = 1Pl — (€2 1T] eurl(pr) 2,

and by replacing pr with p}. we have the estimate:

(EVXIX)12(0) < Z nerr)’ < Z nerr- (43)
T€ETh TeTh
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4) Local Equivalence between Error and Estimator

We consider T' € T, and F' = 9T NI'y a face of T on the Neumann boundary if it exists.
Let T :={T" /| Fr N Fp» # 0} be the set of elements neighboring T
Let T* = {T" | Ap(T) N Ar(T") # 0} be the set of elements T € T, that share a vertex with 7.

We define the data oscillations as:

=12
OSC(f, T)Q = ‘T| Hf - fHL2(T) )
Osc(gn, F)* = |F| lgn — gnll2 (-

[AINO7, Section 4, Lemma 2, Lemma 3, Lemma 8| proves the following inequality:

— Proposition 3.3: Norm Equivalence

If T € Ty, there exists ¢ = ¢(T") > 0 independent of hy such that
encrr < H/‘JI/QVEH + er_lﬂcurl z/JH + Osc(gn ;{F € FN nTY) + Osc(f, T).
T L2(T) L2(T) ’
Similarly, there exists C'= C(T') > 0 independent of hp such that

+ Osc(gn ;{F € FY nT}) + Osc(f, T*).

) + H/ﬁ_l/zcurl zb‘

L2(T*

We then deduce the equivalence between ny and the norm |[kVup||y2 (1) up to the data oscillation.

5) Modification for SWIP

To adapt this article in the context of the SWIP method, it is appropriate to modify the estimator so
that
{onfw = wiv1 + wave.

We theoretically and numerically verify that the numerical flux is indeed conservative.
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IT - Numerical Results

1) Homogeneous diffusion problem

a) Homogeneous Dirichlet in the unit square

We consider the square  =]0;1[2.
Let A € N*. We consider the following test case:

—div o = 2(Am)?sin(Arz) sin(Ary)  in Q,

Find o(u) € H(div ; Q),u € H(Q) such that o(u) =Vu inQ, (44)
u=0 on 0.
le.
f(z,y) = 2(An)?sin(Arz) sin(Amy) € C2(Q),
I'p =09,
gp =0 € C>(09),
k=1

This test case corresponds to the spectral problem of the Laplacian on the unit square. The solution
of this problem is known:

uy : (z,y) € R? — sin(Arzx) sin(Ary) € C°(Q).

sin(mz) sin(mry) for A = 1. sin(27z) sin(2my) for A = 2.
1 1
0.8 0.8 '
0.6 0.6 |
> >
0.4 0.4
0.2 0.2 '
0 0
0 02 04 06 08 1 02 04 06 08 1
x x

Figure 15: Solution of the spectral problem on [0; 1]? for A = 1,2.

The broken flux restricted to an element T € T, is thus
a’(uA)‘T = Vuy,

and we can easily compute

er = [lo(ux) — o (un)||2 ()
€ 1= > 62T,
TETh

for each simulation. We will next compare the results of €;, with those of 7, where np is the a posteriori
error estimator defined in Theorem 3.1.
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The local error map is obtained in Figure 2 for A = 1.
We focus on the case A = 2 because the solution variations are more significant. We will denote the

solution by u without specifying the dependence on A = 2.
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Figure 16: Local map of a posteriori error estimator ny (left) and broken flux error er (right) for A = 2,
h =0.05 and v;, € P'.

Figure 16 shows that the error estimator is locally faithful to the true error in the sense that their
maxima and minima coincide; it slightly overestimates but the relative values are of the same order as

the true error.

9 o 1
<X >Th’_ Card(T7}) T;_h XT
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Carte locale de I'estimateur d'erreur non conforme Carte locale de I'estimation d'erreur conforme
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Figure 17: Left: nonconformity error estimator nycr, right: conforming error estimator nogr for
A =2, h=0.05and v, € PL.

Figure 17 shows that the nonconformity error is small in magnitude and localized at the gradient
variations. This is the expected behavior since the jump penalization is optimized in our numerical

implementation.

—e— A posteriori error 7y, ‘ ‘
1001 —u— Broken flux error €, || | Corrected estimator
i E 1.45 —e— Estimator without correction
| i = 100 - g
- [~ 1 > [ -
2 I 114 & _ I ]
S | & 2 | |
£3 €3
10_1 = ; 135 [ i
|- - - Effectivity | 10— F .
L I | | I ]
101‘5 102 102‘5 L } } I ]
m N h_l 101.5 102 102.5
vndof ~ h~!

(a) Left axis: a posteriori error estimator and
broken flux error in log-log scale. Right axis:
effectivity in log-linear scale.

Abscissa: number of degrees of freedom. A = 2,
Vp € Pl

(b) Log-log comparison between the corrected
and uncorrected error estimators.

A =2, vy € P'. Abscissa: number of degrees
of freedom.

Figure 18: Comparison of the global estimated error and true broken flux error (left), comparison of
the error estimation with and without bubble function correction (right).

From Figure 19, it is observed that the nonconforming error estimate is several orders of magnitude
smaller than the conforming error, which agrees with Figure 17.
The data oscillation decreases as h~2 as shown in [AINO7].
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10°

T T T TTTTTT
—

101 . Broken flux error €,

—— A posteriori estimate 7y,

——  Conforming error estimate ncrp

—— Nonconforming error estimate nyc
Data oscillation Osc(f)

f

1072

1073

| | | | | | |
101.4 101.6 101.8 102 102.2 102.4 102.6
vndof ~ h~1

Figure 19: Comparison of the different components of the error estimator and the error in log-log scale
for A\ = 2 and vy, € P'. Abscissa: number of degrees of freedom.

In the following, the local error estimator map is used to refine the mesh in regions where the lo-
cal estimator is largest. The goal is to refine only critical areas and keep a coarse mesh in regions
where the error is already small.

10°
T
—o— A posteriori error
| | |—= Broken flux error
—e— Refined a posteriori error
i 1 |—=— Refined broken flux error
10—1 -

| |
10t? 10? 10%?
v'ndof

Figure 20: A posteriori error and broken flux error in the case of global refinement (all cells have equal
size) and in the case of local refinement (mesh refined in regions where the error is large).
Log-log scale. Abscissa: number of degrees of freedom.

Error

T T TT7

It can be seen that the error for the locally refined mesh is smaller for the same number of degrees of
freedom, but no superconvergence or significantly smaller error is obtained.

This is not surprising since the solution is smooth and the domain convex, thus there is no regularity
issue. Nevertheless, the error remains smaller when refining locally in regions where the error estimate
is largest.

One can also study the behavior of the error when varying -+ to highlight the effect of jump pe-
nalization on the conforming and nonconforming errors.
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[ I ] [ I ]
10° ¢ E 10 E
— _ — _
A E |
1072 5 1072 5
1073 ‘ 1073 |

| | | |
101.5 102 102.5 101.5 102 102.5
vndof ~ b1 vndof ~ b1

—m— Broken flux error —e— A posteriori estimate —— Conforming error estimate —— Nonconforming error estimate

v =50 v =100
10° £ 1 10° - 1
;é 10_1 | \ = é 10—1 g e
— . — [ = |
s e |
1072 \ E 1072 \ E
10—3 | | | 10—3 | | |
1015 102 1025 101 102 10>

vndof ~ b1 vndof ~ b1

Figure 21: Comparison of the different components of the error estimator and the actual error when vp
varies in [5,10,50,100] for A = 2 and vj, € P!, log-log scale. Abscissa: number of degrees of freedom.

The discrete solution obtained by the discontinuous Galerkin method becomes increasingly conforming,
in the sense that the amplitude of its nonconforming part decreases as the jump penalization increases.
This is the expected behavior since a higher penalization enforces continuity more strongly.

In conclusion, the estimator is correctly implemented for homogeneous Dirichlet conditions and its

estimates reflect the local and global behavior of the error. The next step is to verify its behavior for
non-homogeneous boundary conditions and less regular solutions in a nonconvex domain.

b) Non-homogeneous Neumann condition in the unit square

We consider the square Q =]0;1[2.
Let A € N*. We consider the following test case:
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—div o = 2(>\7r)2 sin(Arz) sin(Amy) in Q,
Find () € H(@iv 1), 0 € ') such s { )= 7 o,
o(u)-n =)\ cos(Amx) sin(A7y) n on 90
" - sin(Arx) cos(Amy) © :
(45)
i.e.
flx,y) = 2()\7r)2 sin(Arx) sin(Ary) € C*(Q),
'y = 09,
_ cos(Amx) sin(Amy) 10 9
IN = AT sin(Amz) cos(Amy) noo € L7(09),
L k=1
+A posteriori err‘or nn H 1.5
100 —=— Broken flux error €, |
: 1145
| &
2 {14 E
11135
1071 ¢ |
i — 113
1015 102 1025
Vvndof ~ A1

Figure 22: A posteriori error estimator and broken flux error in log-log scale.
Abscissa: number of degrees of freedom. A\ = 2 and v, € PL.

100 E g
: =
1 | | [= Broken flux error ¢,
107 F \ E S .
P E 1 |—e— A posteriori estimation 7y,
é I 1 |~ Conforming error estimation ncrp
= F 1 |—— Nonconformity estimation nyc
10-2 | 4 Data oscillation Osc(f) + Osc(gn)
10791 1 g
C i i i i i |

i i
101.4 1016 10148 102 102.2 102.4 1026
v/ndof ~ ™!

Figure 23: Comparison of the different components of the error estimator and the error in log-log scale
for A = 2 and v, € P!. Abscissa: number of degrees of freedom.

00Qutward unit normal vector on the boundary of Q.
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c) Dirichlet in a nonconvex L-shaped bend

0
fzf?o.a 0.5)

-

(z,9)

(0,0)

Figure 24: Nonconvex L-shaped domain €2 and its associated polar coordinates.

3
We consider the polar coordinates (r,60) € R* x [0; §7T] centered at (0.5,0.5) which describe the domain

and its boundary in a bijective manner:

Q_Quaﬁ_{(x,y)eRz/xe[O;;], ye[0;1]}U{(m,y)eRz/xe[;;l], ye[;;l]}.

We want to solve the following harmonic problem:

—Azu=0 in £,

(r,0) = rsin(36) on 9. (46)

Find u € H'(Q), {u
where A, is the Laplacian in Cartesian coordinates.
The solution is the function u(z,y) = f o ¢(x,y), where f(r,0) = r2/3sin(§0) e H'23(q).
o(x,y) = (r(z,y),0(x,y)) is the diffcomorphism transforming Cartesian coordinates into polar coordi-
nates with 6 € [0; 27|

0.8

0.6

0.4

0.2

0

0 02 04 06 08 1

Figure 25: Solution f(r,8) = r?/?sin(26).
Remark :
Following Remark p.26, the Dirichlet boundary data should be continuous and piecewise
affine on the boundary (g}, € PL(F?)). Therefore, the Dirichlet data gp € HY/2(92) must
be projected onto P! (.7-"};) to compute the estimator, taking into account the error between
the solution computed with gp and that computed with g%.
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According to Appendix C, a loss of regularity is expected near the reentrant corner due to the blow-up
of the gradient norm at the point (0,0). This results in a concentration of the error at this point, as
well as a reduction in the convergence rate of the error.

005

(a) A posteriori error estimation (left) and broken flux error (right) on their respective relative value scales.

s s
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(b) A posteriori error estimation (left) and broken flux error (right) on their respective relative value scales,
showing only values smaller than 2 < n >, (left) and 2 < € >7; (right).!!

Figure 26: Local map of the a posteriori error estimation 7y (left) and broken flux error er (right) for
h = 0.05 and vy, € PL.

The error is clearly concentrated around the reentrant corner, and the error estimation outside this
point remains consistent when considering the regions where the error is dominated by the singularity
at (0,0).

In the error estimation, some artifacts can be observed at the domain corners; these disappear when
the problem is solved using boundary data g, € PL(F?) instead of the exact data gp € L2(T'p).

11 1
< X>1 = s E Xr.
h Card(T}) T,
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—e— A posteriori error 7y,
—a— Broken flux error ¢,
1071 1.8
ey
g =
2 i\\\\\]-2/3 2
9] 11.75 &
109 ' &
- - - Bffectivity | 117
|

| |
1015 102 1025
vndof ~ A1

Figure 27: Comparison of the different components of the error estimator and the true error in log-log
scale for the L-shaped domain and vj, € P'. Abscissa: number of degrees of freedom.

The error decay is at h~2/3, which is predicted by the a priori error estimate in Appendix C.

—o— A posteriori error
—— Broken flux error
—e— Refined a posteriori error
—m— Refined broken flux error

Error

1072 -

T T T 17

| |
1015 102 1025

v ndof

Figure 28: A posteriori error and broken flux error in the case of global refinement (all cells are of
equivalent size) and in the case of local refinement (mesh refined in zones where the error is large).
Log-log scale. Abscissa: number of degrees of freedom.

During refinement, we observe super-convergence of order r ~ 0.85 > 2/3.
Since the domain is convex and the solution less regular, we can then numerically obtain faster con-
vergence without paying more in terms of degrees of freedom, provided that we refine locally (here in

the reentrant corner).

d) Neumann in an L-shaped bend

We still consider §2 as in Fig.24 and the problem whose solution is given in Fig. 25:

—Ayu=0 in €,
Find u € Hl(Q), o(u) -n= 2,—a-1 sin(%@) -m on Of) )
3 cos(50) '
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The continuous problem is well-posed but numerically ill-posed at r = 0 because ||o(u)]| 2 2 +o00l2.
r—
However, the quadrature points for numerical integration at the boundary always evaluate gy at

(z,y) = (0,0), at the point where the values are infinite.
We then approximate the value at (z,y) = (0,0) by the average over a circle around this point:

5 21
G (0,0) = / / v,
r=0J0=0

where € < h . This choice being arbitrary, the data oscillation and convergence results are degraded
in Fig.29.

We nevertheless observe a convergence order similar to the pure Dirichlet case, which shows the ro-
bustness of the method despite the numerical approximations.

1071

- Broken flux error ¢,

—2 L .
1077 ¢ 1 |—e— A posteriori estimation 7y,
r 1 | —— Conforming error estimation ncry,
r 1 |~ Nonconformity estimation nyc,p

Data oscillation Osc(gy)
1073 &

Error

| | | | | | |
1014 101A6 1018 102 1022 1024 1026

vndof ~ bt

Figure 29: Comparison of the different components of the error estimator and the error in log-log scale
for v, € P'. Abscissa: number of degrees of freedom.

107 | .
e A posteriori error
§ —a Broken flux error
&) —eo— Refined a posteriori error
10-2 1 | |—=— Refined broken flux error

| | |
100 102 1020

vndof

Figure 30: A posteriori error and broken flux error for global and local refinement.
Log-log scale. Abscissa: number of degrees of freedom.

We can nevertheless note that it is still possible to obtain super-convergence of the simulation, and
that we have reached the optimal case which is convergence of order 1 according to the appendix.

1292 is the matrix norm subordinate to the 2-norm in R?
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2) Heterogeneous diffusion problem

We consider the problem on 2 =]0; 1[? partitioned into four subdomains

J1/2;1%,
10;1/2[x]1/2;1],
[
[

=]1/2;1[x]0;1/2].

0
Qs
Q3
Qy

We equip €2 with polar coordinates defined as in Fig.31.
We define the interfaces I';; := QN STJ

Y
kK = D kK =1 0
Lia|  / M(z.y)
QQ - 9 Ql
Qs Tas o N TR ON
I'34
kK =1 kK = D
T

Figure 31: Domain €2 considered and its polar coordinates.

On 2; we denote k; the diffusion in the domain, and in the following we will always have k1 = k3 = 1.
We seek the solution to the harmonic problem:

div, - (vau) =0 in €,
Find u € H'(Q),
u =r*(acos(afd) + bsin(ad)) on .

where a = a(D,«) € L*(2) and b = b(D, ) € L*°(Q2) are piecewise constant functions on the €2;.

The calculation method to obtain the value of « and a, b as a function of D or to obtain D and a,b as a
function of « is detailed in Appendix D. We fix here v = 1/4 and we find numerically D = 0.0395661.
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0.8

0.6

0.4

0.2

00 02 04 06 0.8 1

Figure 32: Solution f(r,0) = r'/*(acos(/4) 4+ bsin(f/4)) for a = 1/4 and D = 0.0395661.

a) SIP method

We propose here the analysis of results in the case of heterogeneous diffusion without weighting of

averages.
I I I
10798 - —e— A posteriori error ny, [
—=— Broken flux error ¢, || 1.25
&
- 10 | S
é 10 1.2 e
@ o)
-1/4 =
11.15
10—12 [ N
- - - Effectivity ‘
| | |
101.5 102 10245

vndof ~ b1

Figure 33: Comparison of the different components of the error estimator and the error in log-log scale
for the L-shaped domain and v;, € P'. Abscissa: number of degrees of freedom.

We note that the error is indeed at h'/4 which is the convergence order predicted by the estimate in
Theorem 2.11. The effectivity very close to 1 is an indicator of very good quality of the error estimation!
We notice a change in behavior at the level of the nonconformity error. The nonconformity error
estimation has large amplitude compared to the homogeneous case. This is probably explained by the
sudden changes in variations at the interfaces.
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10—0.8 L .
1
-1/4
1071 .
- Broken flux error €,
. S .
S —o— A posteriori estimation 7y,
s —— Conforming error estimation ncrp,
10712 | |+ Nonconformity estimation nyc,
10714 L .

| | | | | | |
101.4 10146 101.8 102 102.2 10244 102.6
vndof ~ A1
Figure 34: Comparison of the different components of the error estimator and the error in log-log scale

for vy, € P!, Abscissa: number of degrees of freedom.

b) SWIP method

Here, the estimations are made with the weightings presented in the SWIP section.

1070.8 - T I I
—e— A posteriori error 0y |{1.18
—m— Broken flux error ¢y,
-11.16
1.14 g
= - 1. =
= 1112 €
=
11.1
-11.08
| | |

101.5 102 102.5

vndof ~ 1

Figure 35: Comparison of the different components of the error estimator and the error in log-log scale
for the L-shaped domain and v;, € P'. Abscissa: number of degrees of freedom.

Once again, the error is indeed at kY4 which is the convergence order predicted by the estimate in
Theorem 2.11. The effectivity very close to 1 is again an indicator of very good quality of the error
estimation!

We observe the same behavior at the level of the nonconformity error as in Fig. 34, which confirms
the good behavior in both the SIP case and the SWIP case of the estimator.
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10—0.8 L .
1
107" e
- Broken flux error ¢,
g e A posteriori estimation 1y,
i 19 —— Conforming error estimation ncrp,
10721 | |—— Nonconformity estimation nyc,p
10—1.4 L .

| | | | | | |
101.4 10146 101.8 102 102.2 10244 1026
vndof ~ b1

Figure 36: Comparison of the different components of the error estimator and the error in log-log scale
for vy, € PL. Abscissa: number of degrees of freedom.

c) Comparison of the two methods

10799 |- —a— SWIP error H
—a SIP error ||1-29

71 | |
10 “11.2 I
B qa-1.1 &E%

10 - |
1.15 5

10712 |- -~ SWIP effectivity 1.1
SIP effectivity | ~~-------

|
1012 102 10%?
vndof ~ ™!

Figure 37: Comparison of the different components of the error estimator and the error in log-log scale
for the L-shaped domain and v, € P'. Abscissa: number of degrees of freedom.

We compare here the error in the SIP case and in the SWIP case. It is interesting to note that the
SWIP error is slightly higher than the SIP error. No test case has been implemented to verify that

SWIP allows a better approximation than SIP.
However, the difference is negligible and the behavior of the estimator in the SWIP case is of better

quality than in the SIP case as evidenced by the effectivity.
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Conclusion

During this internship, an a posteriori error estimator for Discontinuous Galerkin Methods pro-
posed by Mark AINSWORTH in 2007 [AINO7] was implemented in the Matlab prototype of TrioCFD.
Many test cases were considered, but only those that allowed for a complete analysis are presented here.

The estimator allows the evaluation of the error for isotropic heterogeneous diffusion problems on
various domains: L-shape, square, and perforated domain (not shown in this report).

It has demonstrated good performance for polynomial spaces P{ (7).

The estimation led to superconvergence in irregular cases, which will eventually reduce computational
costs.

However, the current estimator is not suitable for higher-order polynomials.
Moreover, it is only applicable to the isotropic diffusion operator, and the computations are imple-
mented on simplicial meshes.

Several improvements can therefore be considered:
e Build the estimation on general meshes [EV09; CYZ11].
e Extend the estimation to higher-order polynomials [EV09; ESV10].
e Develop an estimator with continuous Dirichlet data.

e Design an estimator for Diffusion-Advection-Reaction problems [DE12, Section 4.6, 5.6] and
[ESV10].

These references, among others, also provide opportunities to construct estimators with a priori esti-
mates on their effectivity and thus on the quality of the estimation.

In parallel, Discontinuous Galerkin methods for diffusion with mixed boundary conditions on gen-
eral affine domains were implemented.

The next step will be to implement Discontinuous Galerkin methods for systems such as Stokes [DE12,
Section 6.1] and then Navier-Stokes [DE12, Section 6.2].
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Part 4
Appendix

A SWIP formulation for nonhomogeneous conditions

We present here the variational formulations for pure Dirichlet problems, pure Neumann problems and
a formulation with mixed conditions.

Remark :
Unlike the case where wi = wy = 1/2, we cannot express the jump of a product by a
symmetric quantity. We have indeed

[ab] = {a}o[0] + [a] {0},

where {-} is the antisymmetric average

{X e = we Xy + w1 Xo.

1) Pure Dirichlet

Let f € L2(Q), gp € H/2(Q) and r € L®(Q), k > a > 0 piecewise constant.

—div(kVu) = f in Q,

(48)
u=gp on Jf.

Find v € H'(Q) such that {
We define H;D(Q) ={veH Q) /v=gponTp}.
We set V := H;D (Q) NH*2(Q) and recall that Vi, , ==V + V.
To derive the discrete variational problem, we will verify consistency at all steps of the heuristic deriva-

tion of the SWIP method.
Let v € Vi, wp, € Vi

a(o)(u,wh) :/ kVpv - Vywy,

Q
= / kVv - Vwy,
T

TeTh
= Z Z /nVU~nF7Twh—/div(/<;th)wh
TeT, Ferr T T
= Z /[ﬁvhv-npwh]] —/div(ﬁVu)wh
Fer, ' F @
= Z / (Vv - np] {wn s + {cViv - npfofw,] + Z kVv - nw — / div(kVv)wy,
Feri ' F FeFp @
= Z /[[nvhv~nF]] {wn}s + Z {xViv - np}own] —/div(nvhv)wh.
rer’F FeFy, .

By evaluating for the solution uw € V we notice the same consistency problem appears, we make the
formula consistent by subtracting

Z /F{{/ﬁvh%np}}w[[whﬂ.

Fery,
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49 2) Pure Neumann

Then we wish to symmetrize by subtracting the following sum:

Z /F{{nvhwh-nF}w[[vﬂ = Z /F{{thwh-np}}w[[v]]-i- Z /F/wah-nF[[v]]

FeFp FeF} FeF?h
= E / {{/«;Vhwh . ’I'LF}}UJHU]] + E / kVwp - nEgp.
rer; ' F Fery
bilinear part linear part

We notice that by applying the Dirichlet conditions at the boundary, we lose symmetry on the bilinear
part because we make [Vywy, - np]o[vn] appear only for interior faces. We then rather subtract

S [ tnViwnnebadel + 3 [ wVun nran.

FeFy, FE]—'};

We then penalize to make the formulation coercive with s®(v,wp) which is not consistent for the

solution wu:
F
s"(u, wp) = Z 7|};Y|K/Qth-
FeF} F

It is therefore necessary to subtract this part to finally obtain the exact variational formulation:

aZWip(u,wh) I Z /FHth mEgD Z V‘FF,Y‘K /Fngh - /wah,

FeF} FeF}

where a5""" is the bilinear form defined in Equation (17).
However, since the part in parentheses is not bilinear in (vp, wp) but rather linear in wy,, we define a
new linear form

F
Ch(wn 59D) ?I/fwh—/ KWWk - MEgD + Y h%/ gDWh.
Q o0 pe PE T JE
h

And the discrete problem is equivalent to finding a solution v € V}, of

GZWip@h,wh) = {p(wh 5 9D).

2) Pure Neumann

Let f € L2(Q), gy € HY2(89Q), and k € L=(Q), k > o > 0 piecewise constant.

—div(kVu) = f in Q,

Find u € H'(Q) such that
kVu-n =gy on 0.

Remark :
For the problem to be well-posed, the data f and gy must satisfy a compatibility con-
dition obtained with Stokes’ formula:

/Qf+/mg=o.

and the solution is defined up to an additive constant [DE12, Section 4.2 p.127-128|.

We define Vi := {v € Hl(Q) / V =gp on FN} )
We set V :=Vy N H3/2(Q) and recall that Vj, , :=V +V},.
In the same way as before, we will start from the non-consistent formula and modify the variational
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A SWIP FORMULATION FOR NONHOMOGENEOUS CONDITIONS 50

formulation to ensure consistency.
Let v € Vi i, wp, € V.

(v, wp) Z /I{VU Vwp

TeT,

-y ¥ / KV - T — / div (kY pv)w)

TeT, FEFT

Z /[[thv nr] {wn o + {cViv - nplo[ws] + Z //@Vv npwh—/dw(nvhv)

FG}—l FEJ:b

Z /[[thv nr] {wn}s + {kViv - np}}w[[wh]]+/8 gn [wn] — /div(mvhv)wh

FeF]

By evaluating at the solution u € V' we obtain the following consistency formula:

> [V neefod+ Y [ avent [ fun

FeF} Fer?

linear form ¢£(wp, ;9n)

We make it consistent and symmetric by subtracting

> / £V npholwa] + ) / LV rwy - e Yov].

FeFj FeF}

The numerical analysis of coercivity shows that it suffices to penalize only inside the mesh, we therefore
add the consistent penalization

o) = 3 I / [o][wn].

FeFi

To finally obtain the following Neumann variational formulation:

ap (v, wp) Z/K;Vv th+z /{{/@th nio[wp]+{cVywp, - n}w[[v]]+z ’Y|1;7‘n /F[[v]][[wh]],

TeT FeF} FeF;,
so that the variational problem becomes
. N _ 4N )
Find uw € V, ay, (u,wp) =6 (wy, 59n8), Ywp € V.

Finally, to impose a constant to the problem, we perform a lifting so that

/uzO.
Q

3) Mixed boundary conditions

Let I'y,I'p such that 90 =Ty UTp and Ty NT'p = 0.
Let f € L2(Q), gnv € L2(x), gp € HY?(T'p) and k € L®(Q), k > a > 0 piecewise constant.

—div(kVu) = f in Q,
Find v € H'(Q) such that u=gp onlp, (50)
kVu-n =gy ony.
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51 3) Mixed boundary conditions

Once again, the idea is to start from the formulation a(®) (v,wp) = fQ kVv - Vwy,.

We denote in what follows ]-"hD = FpNI'p and }",]LV =FpNIy.

We can notice that it suffices to separate the Neumann part and the Dirichlet part at the boundary
as follows:

azo)(v,wh) = Z /F[[/fvhv-np]] {wn}s + Z /F{{thv -np Folws]

FeF} FeFjuFp
+ Z /gNwh—/diV(/thv)wh.
FeF) E @

To obtain consistency of the bilinear part, we must then subtract
Z / {{livhv . ’I?,F}}w[[wh]].
FeFiuFp F
Then we symmetrize by subtracting
Z / {{Iivhv . np}}wﬂwh]] = Z / {{thv : np}}w[[wh]] + Z / vah ‘Nnrgp.
FeriuFp’F FeFi 't Ferp 't
As we noticed in the study of pure Dirichlet, we must still subtract by
Z / kY wy, - npv,
FeFp r

to maintain the symmetry of the bilinear part.
We then verify that the consistent penalization that makes the formulation coercive is of the form

S = 3 M [P+ 3 22 [,

FeFiUFP FeFp

~
consistent and bilinear linear

Z VF%/wth
[Fl Jr ’

FeFp

We must then still subtract

so that the penalization becomes

) = Y ’m“ /F [o][wn].

FeFiuFp

We finally obtain the continuous and coercive bilinear form

aixed(y ) = Z / kVv-Vwp — Z / Vo - np}olwn] +{cViwy - ne ov]+si(v, wy)
TeT, ' T reFiuFp ’F

and the linear form

s TF
gmixed (g, ) ::/fwh+ Z %/wth—/ vah'anD+/ INWh;
Q |F| F I'p rw

FeFp

so that the problem is then
Find u € V, a™d(u,wy) = £ (wy,), Ywy, € Vj,. (51)

Remark :
These formulations amount to weakly imposing the Dirichlet condition by penalizing the
jump between uj, and gp at the domain boundary, which are generally imposed in a strong
manner in continuous Finite Elements.
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B EQUIVALENT FORMULATION 52

B Equivalent formulation

In this part, we rewrite the formulation (51) with an equivalent bilinear form that was used for test
cases without weights (SIP). On one hand, by performing integration by parts on wy:

ayed (yy,, wy) = Z / kVuy, - Vwy, — Z / {xVihoy - nrlown] + {£Vawn - npfolvn] + s"(vn, wp)
Te7;, /T reriuFp ' F

= Z / —div(ﬁVvh)wh+/ &V - ngrwy,
T oT

TeTh

- > /F{{”thh -nr Jolwn] + {6V hwn - npo[on] + 8" (v, wp)

FeFiuFpP

= Z/—div(,«;Vvh)wh—i— Z Z /F&V’Uh'nT,th
T F

TETh TeT, FEFr

— Z /F{{thvh -np}owp] + {&Vrwn - np}ofon] + Z Ik /F[[’Uh]] [wn]

, - F
FeFiuFp FeFiuFp | |

= Z / —div(kVup)wp, + Z /[[mvhvh~np wp] + Z kVuy, - nwy,
T F

TeTn FeF} FeF}

- > /F {xVror - npbolwn] + {£Vawn - npholon] 4+ s"(on, wn)

FeFiuFpP

— Z /T_div(/inh)wh + Z /F{{/ivhvh - folwn] + [£Vhon - np] {wn e

TeTn FeF]

+ Z kVuy, - nwy, — Z / {K;thh . np}}w[[wh]] + {{thwh . nF}}w[[vh]] + Sn(vh, wh)
FeF! FeriuFp ¥

= Z /T—div(/%TVUh)wh—i- Z /F{{/‘fvhvh‘”F}}w[[wh]]

TeT, FeFly

_ /F {5Vwn - nedolon] + 3 [5Vn0n - ] Lonke + 55 (on, wn).

FeFiuFpP FeF]

By performing integration by parts on v, on the other hand:

A (g, ) = 3 /T—diV(l‘ivah)vh_'_ > /F{{thwh-nF}}w[[Uh]]— > /F{mvhvh.nF}}wﬂwh]]

TeTn FeFN FeFiUFP
+ Z [V rwy - np] {on}e + sh(wn, vp).
FeF]

To maintain symmetry, we take the average of the two expressions and obtain:

. 1 1
ap™ (o, wy) = — 5 > / rr(Awyvn + wpAvn) + 5 > / {xVirwn - nr}olon] + {£Vhon - nefo[wa]
TeT, * T rery 7 F

_% 3 /F {15Vhon - e Yolwn] + {5Vawn - ne o [vn]

FeFiuFp

+ % > [6Vhwn - nel {onks + [5Vaon - ne] fwn e
FeF}

+ sj, (wp, vp).
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To reduce to a linear system, we will consider T; € 75 and T; € T two neighboring elements with
common face F.

For a polynomial approximation in P%(7;) and T’ € Ty, we denote K := dim(PX(T)) = (kzd).

We denote (m)mepi; k] the elements of the local basis of T; and (¥ )meq;x] those of Tj.

If F'is not on the boundary and if T; # Tj:

2

1 o
+ - / —kowo VY -, po; + K1w1 Vo - gy pipj + 7| Fv‘” / i
F F

o 1
am ed(%,%) =— /FmaqV(pi iy p(=5) + kewa Vb - ng,

2

YEY
K wj

:/ wi1k1V @i - Y — wako Vs -y poi + === | @i
F F| Jr

If F'is not on the boundary and T; = Tj = T then w; = wy = 1/2 and:

. 1 1 F
ap™ed(p;, ) = —/ /‘GTA‘Pi‘Pj_ASDjSOi_/ RTV(SDZ'@j)'nTi,F‘f‘W/ Pip;j.
2 Jr 2 Jr \F| Jr

If F'is on the Dirichlet boundary then T; = T; = T then wy; = wp = 1/2 and:

N 1 Lypkr
al (o) = — 2/T kT (Apip; — Apjp;) + 27|F] /F%@J’

1 1
— 2/ kr(Vei-npp; + Vi npe;) + 2/ kr (Vo -npe; + Voingp;)
P P

YFKT 1
= - / —rr(Apip; —A%%)Jr/ %‘Pj_/ krV(0ip;) - mp.
2 Jr, \Fl Jr 2JF

7

If ' is on the Neumann boundary then T; = T = T and:

. 1 1vpkr 1
apixed (o i) = — / —kr(Apip; — Apjpi) + & / wipj + / KTV (pip;) -nF.
T 2 |F| Jg 2 Jp

2
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C GRADIENTS AND REGULARITY OF TEST CASES 54

C Gradients and regularity of test cases

1) Spectral problem on the square domain

We recall that in the case of the spectral problem in the square domain, for A € N* fixed, we seek to
solve the following problem:

—div o = 2(Am)?sin(Arz) sin(Ary)  in Q,
Find o(u) € H(div ; Q),u € H(Q) such that o(u) =Vu inQ, (44)
u=20 on 0f).

with solution
uy : (z,y) € R? — sin(Arx) sin(Ary).
Its gradient is then:
cos(Amx) sin(Ary)
sin(Amx)cos(Ary)
And u is C*°(€2) because sin is a C*°(R?) function therefore C>(2).
According to Corollary 2.9, we therefore expect convergence at h! for polynomials v, € P1(7,).Réessayer

Vuy = At

2) Harmonic problem

We recall that in the case of the harmonic problem we solve:

—Ayu=0 in Q,

. 1
Find u € H (), {u(r,ﬂ) = r%in(af) on 0.

The gradient of the function is calculated as follows:

8f 1 Gf
vxf(rv 9) u, + —
or rog
g—f(cos(e)ux + sin(0)u,) + %%(— sin(6)u, + cos(0)uy)
( sin(f)— ! a‘g) Uy + <sin(0)gf + cos(G)i%) Uy

However, we have

af =1 s

5y —Or sin(af)
]-af _ a—1
~5g = cos(ab)

We note that ||V, f||,z = Cr®~! is indeed integrable at 0 therefore f € H(Q).
However

Ayf ~ Cro 2,
r—0

which is not square integrable at 0 if a < 1. In other words, f ¢ H2(Q).
The task is then to find s €]0; 1[ such that f € HIT$(Q) <= V.f € H(Q).
Suppose f € H*(Q2) for s > 0. We denote:

fa(z) = f(Az) = A f(x).

However

[ 3 lks ) = A" fllas ) = A% 1 s o
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By extending f by 0 on R?\Q:

Hf)\HQHS(Q) :/]R2 |f>\(ﬂ31) - f)\(.’.lfg)|

le o $2||2+2S
:/ |f(Az1) — f(Azg)|
R2 ||QZ']_ _ m2||2-i-2s

70 S
R2 A— 2-9g HXI _X2||2+23

ey [ (X)) - F(XD)
A /R2 ||X1 _X2||2+28

Finally
Hf)\HHS(Q) =1t HfHHS(Q) =A° Hf)\”HS(Q)

We deduce that the regularity s satisfies:
s=a+1>1.

And f € H*"}(Q). According to the error analysis stated in Thm. 2.11, we expect convergence of the
broken flux norm at order min(a, 1) for a first-order approximation (v, € P1(73)).

D SWIP solution

This part mainly corresponds to the calculations by Erell JAMELOT which have not been published.
—]1/ 2,17,
=]0;1/2[x]1/2;1],
Q3 =10;1/2[%,
Q4 =]1/2;1[x]0; 1/2].

We consider the problem on 2 =]0; 1[? separated into 4 domains

We equip €2 with polar coordinates defined as in Fig.31.
We define the boundaries I';; := QN KTJ
On €; we denote by k; the diffusion in the domain, and in the following we will always have x; =

Y
Kk = D kK =1 0
Tha| -/ M(z,y)
Qs ) 6 ol
Q3 Tas o N VTR
[34
k=1 kK =D
xr

Figure 38: Domain {2 and its polar coordinates.

k3 = 1.
We seek the solution to the harmonic problem:

Find div, (kVgu) = 0. (52)
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D SWIP SOLUTION 56

where a = a(D, ) € L*(Q) and b = b(D, ) € L*°(Q) are piecewise constant functions on the ;.
We seek v in the form:
u = r(acos(afd) + bsin(ad)).

To ensure v € H'(Q2), Neumann and Dirichlet transmission conditions must be satisfied at the inter-
faces:

UQZ:'LL‘Q on QiﬂQj,
’ (53)
H‘sz(ubl) ‘M = ﬁ}QjV(u‘Qj) -m;; on Q; N Q.
where m;; is the unit normal directed from €2; to €2;.
In the following, we define x = cos(afy) where 6y = k7.
Similarly, we define y;, = sin(afy).
The condition (53) then translates to:
c4 = Cq, s4 =D sq,
caar1+siyr=cer1+s2y1 Deciyr —Dsixy =coyr — s211, (54)
C2Ty+ S2Y2 = C3X2 — S3Y2, C2Y2 —S2X2 = —Dcgys — D s3wa,
c3T1 —S3Y1 = caw1 — Sayl, Desyr+Ds3xy = cayr + s471.
We can then express these conditions as a linear system:
Fork=0,1,2and ¥ =k +1:
(a2 (2)- it a2 ) (2)
—Dyyr Drayp Sk —Dyryrr Dy gy Sk
(55)
On Iy :
T4 Y4 e\ (10 o\ _
-D Ya Dl’4 S3 0 1 S0 -
Let us set A,, := < Tn Yn ) and B,, ;== — ( Tn Yn >, so that |A,| =1 and |B,,| = D.
—Yn Tn -D Yn Dz,

Equation (55) can be rewritten as: M @ = 0, where @ := (cy, s, ¢1, S1, ¢2, 2, C3, 33)T, and M € R¥*8
is the square matrix:
Ay By 0 0
0 By Ay O
0 0 As; Bsj
Ay 0 0 By

M:

To solve M x = 0, we seek the pairs (D, ) that cancel the determinant of M.
By expanding |[M| with respect to the first column:

il (Bl)g7 0 0 Y1 (Bl)l, 0 0
0 B, Ay, 0 0 B, Ay, 0O
|M| = 0 0 A; Bsj + U1 0 0 A; Bs
0 0
() o 0w ((U) 0 oom
(A1).2 B1 0 0
" 0 B, A, 0
0 0 As B3
1 0 0 (By)e
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By further expanding with respect to the first column:

(B1)2: O 0

By Ay O
‘M’ = x% 0 A3 Bs |+ By Az 0
0 0 B 0 Aj Bs
4 0 0 (By),
B2 A2 0 (Bl)l’: 0 0
B A, 0
+ yl 0 A3 B3 +y1
0 0 B 0 Aj Bs
4 0 0 (By),
(B1)2: O 0 (B1)1: O 0
i B2 A2 0 _ B2 A2 0
Il 0 Ay Bs ' 0 A3 Bj
0 0 (B4)27 0 0 (B4)2,:
B, 0 0
+| By Ay O
0 A3z Bjs
By defining:
(B1)i: O 0
L B, Ay 0
M = 0 Aj Bs

0 0 (Ba)j;

We deduce: |M| =y (|M11]| + [Maz|) + 21 (|Ma1| — [Mi2|) + 2 D2
By expanding |M;;| with respect to the first row, we deduce:

IMij| = (B1)i,1|Laj| — (B1)i2|Layl,

where for 4, j € {1,2}:
(B2).: Az 0

Lij = 0 A3 B3
0 0 (Ba);
We then obtain:
M| = (Daf+yi)Lu|+ (27 + Dy7) Lol

(56)
+x1y1(D — 1) (|L1g| + |La1| ) + 2 D2

We can expand with respect to the first column:
[Lij| = (B2)1,i [Kaj| — (B2)2,i Ky,

where 7, j € {1,2}:

(A2);, 0
Kz‘j = A3 B3
0 (Ba)j;

We expand |K;;| with respect to the first row:

[Kij| = (Ag2)in [J25] — (A2)i2 [J1s],

o= (0 g, )

where 7, j € {1, 2}:
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D SWIP SOLUTION 58
To compute |J;;| and |Kj;;|, we recall:
Yi+1Ti —Yi+1 Ty = Y1,
Tit1Ti tYir1Yi = L1
We obtain:
\Ju1| = —Dwxiw3+ y1ys, Ku| = —(D+1)z1yi,
\Jio| = D?y1z3+ Dayys, |Ki2| = D%y — Da3,
and
[Jo1] = —Dxiys—y1z3, Koi| = Dai—uyi,
[Jo2| = D%*y1ys— Dy ws, |Koo| = —D(D+1)z1y1.
To compute |L;;|, we recall:
Yo2x1+Yy1T2 = Ys,
T2T1 —Y2yy1r = 3.
We then obtain the following values for |L;;/|:
Ll = D*ziyiys— Dayas+aayi,
Lis] = —D3y?ys+D?*z1ys + Daozyy1,
Lot| = —D?ziaoys — Dxiys + Y243,
|Loo| = D3y?xo— D*xy23+ Dy 191
Using Equation (56), we obtain:
M| = —D4yil + D3 (221y1)?
+2D%yf (yf +4a7)
+D(2x191)% — vi.
We note that —1 is an obvious root.
Moreover, if D, is a root, then 1/D, is also a root. We deduce that —1 is a double root. By defining

2z = ﬂ. The two other roots are:
n
Dy = (222 4+1) 4+ 2214/27 + 1,
Finally: [ M| = —y?(D+1)*(D—D4)(D—D_).
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Glossary

Glossary

IP’IC% (Tn) Set of broken polynomials on 7y,
Cp Poincaré constant.

F' Face of an element.

H.,V Hilbert spaces.

H' Topological dual space of H.

T Mesh element.

Vi Space of discretized functions on 7p,.

Capp Constant of L2-orthogonal projection approximation.

Cinv Inverse inequality constant.

Cr Discrete trace inequality constant.

Q Open subset of R

{v}r Component-wise average of v at face F.

H? (div; 7,) Broken divergence-conforming Sobolev space.

nr Unit normal vector of the face.

nr r Unit normal vector of the face, directed from the interior to the exterior of the element.

ngn Unit outward normal vector of the surface, directed outward from the domain.

¢(+) Linear form.
¢, (+) Discrete linear form.

Tryu Trace of u on the boundary ~.

€5, Error between the real solution and the discrete solution.

~ Interior penalty parameter.
[v] Component-wise jump of v at face F.
P (Q) Polynomials of total degree k in Q C R%.

H(div; Q) Vector-valued Sobolev space.

L2(Q) Set of square-integrable vector-valued functions from © to R

tr Tangent at a point of F.

Fr Set of faces of T

Fr1, Set of faces of the mesh.

F? Set of mesh faces included in 9.
F} Set of mesh faces included in €.

Tr Set of triangles that admit F' as a face.
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Tn Set of elements of the triangulation.

Viv Broken gradient of v.

Vu Gradient (Cartesian) of u.

w Weighting for the average in the SWIP method.

Q Closure of Q.

092 Boundary of €.

OFu Ifu:Q — R k= (ki, ..., kg), then 0%u = 8@1...8’;‘5%
o Mesh regularity index.

H; (©) ue H'(Q) such that Trapn(u) = gp.

H5(Q) u € HP(Q) such that Trpq(9%u) =0 for all 0 < |k| < p — 1.
H*(Q2) Sobolev space.

H?® (7;,) Broken Sobolev space.

L2(Q) Set of square-integrable functions from 2 to R.
L>(€2) Set of essentially bounded functions from € to R.
div Divergence of u.

divyv Broken divergence of v.

o Regularity of the mesh.

a(-,-) Bilinear form.

ap(-,-) Discrete bilinear form.

a; Vertex i of an element.

f Function, often the source term of the problem.

h Diameter of the mesh.

hr Diameter of F.

hr Diameter of T'.

hr r Height of a triangle from the vertex opposite to face F.
r7 Radius of the inscribed circle in T'.

uy, Discrete solution.

(Cx)? (Cx)? = 20Tﬁ7€5’)’ where St is the local stiffness matrix of 7.
(St

T T ={T" | Ap(T) N Ap(T") # 0} is the set of elements T” € T, that share a vertex with 7.
Au (Cartesian) Laplacian of w.
I'ny,I'p Neumann and Dirichlet boundaries.

Q; Set of elements T that share a common vertex ;.
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Glossary

|u| ; Norm of the jumps of u.

x; Barycenter of an element.

o(u) Flux of u, o(u) = kVu.

op(u) Broken flux of u, oy (u) = K Vu.

€T conforming Conforming error on 7.

€T non-conforming Non-conforming error on 7T'.

er Error in T.

nr ?7% = 771%IC,T + U%F,T is the a posteriori error estimator on 7.
Nn Mn, 1s the a posteriori error estimator.

ncr,r Conforming error estimator.

n~c, 7 Non-conforming error estimator.

k Diffusion coefficient.

A; Barycentric coordinate in an element.

PL(F,) Piecewise continuous affine functions on Fy,.

Sr Non-normalized normal vector of face F'.

C*¥(2) Functions k-times differentiable with continuous k-th derivative on 2.
]:,le ,.7:}? Set of Neumann and Dirichlet faces.

fr Average of f on an element, f := ‘—,},' Jr f-

gr Average of g on a face, gp := ﬁ Jrg

¢7 Equilibrated numerical flux.

Ly Lp :=max ||z — xp|ge.
TEF

Osc(f,T) Osc(f,T)* = |T| Hf — ?HiQ(T) is the oscillation of the data f on T

Osc(g, F) Osc(g, F)? = |F||lgn — gTvHiz(F) is the oscillation of the data g on F.

lp lp = I;lellr% |z — xp|ge-

curl(u) Curl of u.

T T:={T'" ) Fr N Fp # 0} is the set of neighboring elements of 7.
en ep :=u — up is the error in V.

g = (9N, gp) Dirichlet or Neumann boundary data.

uy Ostwald projection of wy,.
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