Cryptographie et courbes elliptiques

Samuel Gallay

Rapport de stage de L3 sous la supervision de Vanessa Vitse

31 août 2022

Cryptographie symétrique et asymétrique

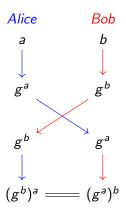
Cryptographie symétrique :

- Nécessite l'échange préalable d'une clef
- Est très rapide
- Résiste bien à l'ordinateur quantique

Cryptographie asymétrique :

- Ne nécessite pas d'échange préalable
- Est très lent
- Ne résiste pas à l'ordinateur quantique

Protocole de Diffie et Hellman



Données publiques :

- G un groupe
- n = #G
- g un générateur de G
- \bullet g^a et g^b après l'échange

Difficulté

Il faut que a soit difficile à trouver à partir de g^a .

Courbe elliptique

Caractéristique

K est un corps de caractéristique différente de 2 et de 3

$$E/K: y^2 = x^3 + ax + b \quad a, b \in K$$

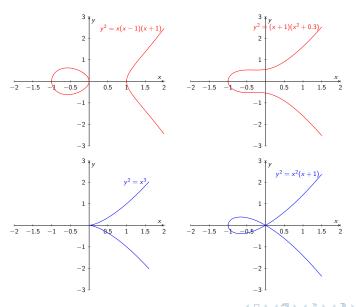
Solutions

On considère les solutions de l'équations dans \overline{K} , plus un point noté ∞

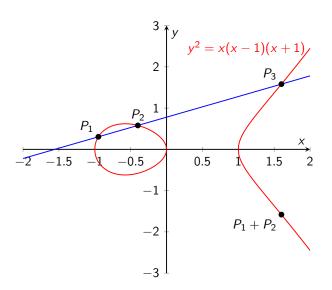
Discriminant

Le discriminant $\Delta = -16(4a^3 + 27b^2)$ doit être non nul

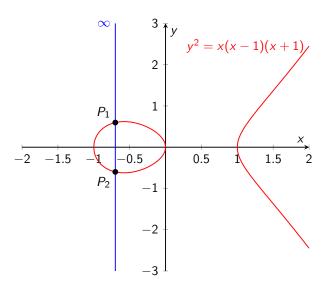
Exemple de courbes définies sur ${\mathbb R}$



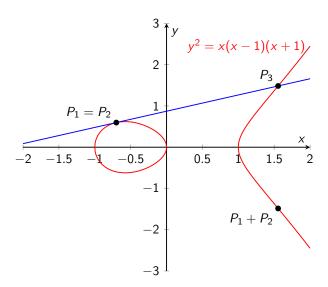
Addition de points I



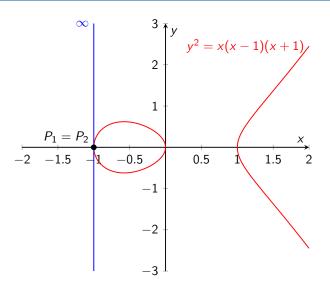
Addition de points II



Addition de points III



Addition de points IV



Loi de groupe et cryptographie

Groupe

 $(E, \infty, +)$ est un groupe abélien

Cryptographie

On peut effectuer un Diffie-Hellman sur ce groupe!

Borne de Hasse

Soit E une courbe elliptique définie sur \mathbb{F}_q . Alors $|\#E(\mathbb{F}_q)-q-1|\leq 2\sqrt{q}$.

Problème du logarithme discret

Définition

Étant donné un groupe G d'ordre n, un générateur g de ce groupe, et un élément h, trouver k tel que $h = g^k$.

Attaques standards

Les meilleures attaques

- ullet Dans un groupe quelconque : algorithme ho de Pollard en $O(\sqrt{n})$
- ullet Dans $\mathbb{F}_q^{ imes}$: calcul d'indice en $L_q(rac{1}{2})$, Function Field Sieve en $L(rac{1}{3})$
- ullet Dans $E(\mathbb{F}_q)$: pas d'attaque meilleure que ho de Pollard

$$L_n(\alpha, c) = e^{c(\log n)^{\alpha}(\log \log n)^{1-\alpha}}$$

Attaques quantiques

Dans un futur peut-être pas si lointain...

l'ordinateur quantique!

Danger : l'algorithme de Shor

Attaque sur les protocoles RSA, et Diffie-Hellman sur \mathbb{F}_q^{\times} et $E(\mathbb{F}_q)$ en $O((\log n)^2(\log\log n)(\log\log\log n))$

Besoin de nouveaux algorithmes...

c'est la cryptographie post-quantique!

Les morphismes entre courbes elliptiques

Définition : Morphisme

$$E_1: y^2 = x^3 + a_1x + b_1$$
 $E_2: y^2 = x^3 + a_2x + b_2$ $\psi: E_1 \to E_2$

$$\psi(x,y)=(R_1(x,y),R_2(x,y)) \qquad \psi(\infty_{E_1})=\infty_{E_2}$$

 R_1 et R_2 des fractions rationnelles

Premier théorème magique

Un morphisme de courbes elliptiques induit un morphisme de groupes entre E_1 et E_2 .

Deuxième théorème magique

Un morphisme non constant est surjectif

Isogénies

Définition

Une isogénie est un morphisme non constant.

Multiplication

Pour $k \in \mathbb{Z}$, si $k \neq 0$, l'application multiplication par k notée $[k]: E \to E$ est une isogénie.

Maintenant $K = \overline{\mathbb{F}}_p$.

Morphisme de Frobenius

L'application $\pi_q: E \to E^{(p)}$ définie par $\pi_p(x,y) = (x^p,y^p)$ est une isogénie.

Courbes supersingulières

Torsions

Soit $k \in \mathbb{Z}$. La k-torsion de E est le noyau de [k] et est notée E[k].

Courbes supersingulières

Une courbe $E/\overline{\mathbb{F}}_p$ est dite supersingulière si sa p-torision est triviale.

Théorème

Toute courbe supersingulière est $\overline{\mathbb{F}}_p$ -isomorphe à une courbe définie sur \mathbb{F}_{p^2} .

L'article à étudier

Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies

Luca de Feo, David Jao & Jérome Plût

On peut maintenant comprendre le titre de l'article!

Graphe des isogénies

Isogénie duale

Soit $\psi: E_1 \to E_2$ une isogénie. Il existe une unique isogénie $\widehat{\psi}: E_2 \to E_1$ telle que $\widehat{\psi} \circ \psi = [\deg \psi]$. C'est l'isogénie duale de ψ .

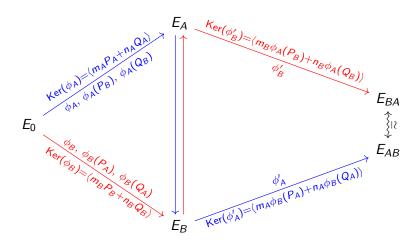
Relation d'équivalence

L'existence d'une isogénie entre deux courbes est une relation d'équivalence.

Construction du graphe d'isogénies

- Les noeuds sont les classes de $\overline{\mathbb{F}}_p$ -isomorphismes des courbes elliptiques définies sur \mathbb{F}_{p^2}
- Deux classes sont reliées lorsqu'elles possèdent une isogénie entre elles

L'échange de clefs



Attaques récentes (août 2022)

Tout semblait en bonne forme avant début août. NIST Post-Quantum Cryptography (PQC) standardization process :

- 1st round (2017)—69 candidates
- 2nd round (2019)—26 surviving candidates
- 3rd round (2020)—7 finalists, 8 alternates
- 4th round (2022)—3 finalists and 1 alternate selected as standards.
 SIKE and three additional alternates advanced to a fourth round.

Quand tout à coup : An efficient key recovery attack on SIDH Wouter Castryck et Thomas Decru

Conclusion

À retenir :

- Les courbes elliptiques sont un domaine de recherche riche et actif
- Elles sont bien adaptées à la cryptographie actuelle (et utilisées partout)
- Par contre la cryptographie post-quantique, comme SIDH, est difficile (et on y comprend pas grand-chose)
- Finalement les mathématiciens et cryptologues ne sont pas près d'être au chomage!

Bibliographie I

Wouter Castryck et Thomas Decru :

An efficient key recovery attack on sidh (preliminary version).

Cryptology ePrint Archive, Paper 2022/975, 2022.

URL https://eprint.iacr.org/2022/975.

https://eprint.iacr.org/2022/975.

🗎 Luca De Feo, David Jao et Jérôme Plût :

Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies.

J. Math. Cryptol., 8(3):209-247, 2014.

ISSN 1862-2976

URL https://doi.org/10.1515/jmc-2012-0015.

Bibliographie II

Joseph H. Silverman:

The arithmetic of elliptic curves, volume 106 de Graduate Texts in Mathematics.

Springer-Verlag, New York, 1992.

ISBN 0-387-96203-4.

Corrected reprint of the 1986 original.

Lawrence C. Washington:

Elliptic curves.

Discrete Mathematics and its Applications. Chapman & Hall/CRC, second édition, 2008.

ISBN 978-1-4200-7146-7; 1-4200-7146-7.

URL https://doi.org/10.1201/9781420071474.

Number theory and cryptography.