Développement : Théorème de compacité

Pierron Théo – Lacoste Cyril

29 octobre 2013

Référence : Cori-Lascar, p.62

<u>Théorème</u> Soit Σ un ensemble de formules du calcul propositionnel. Alors :

 Σ est satisfiable $\Leftrightarrow \Sigma$ est finiment satisfiable

Démonstration. Nous allons montrer le sens non trivial. Considérons un ensemble Σ de formules finiment satisfiable. On notera $(x_n)_{n\in\mathbb{N}^*}$ les variables propositionnelles (leur ensemble étant supposé dénombrable).

Il s'agit de prouver l'existence d'une valuation satisfaisant toutes les formules de Σ . Nous allons pour cela définir une suite $(\varepsilon_n)_{n\in\mathbb{N}^*}\in\{0,1\}^{\mathbb{N}}$ telle que la valuation δ_0 définie par :

$$\forall n \in \mathbb{N}^*, \delta_0(x_n) = \varepsilon_n$$

satisfasse Σ . Nous allons pour cela montrer qu'il existe une suite $(\varepsilon_n)_n$ qui vérifie pour tout n, R_n :

« Pour toute partie $\mathfrak{F} \subset \Sigma$ finie, il existe une valuation δ qui satisfait \mathfrak{F} et telle que $\delta(x_i) = \varepsilon_i$ pour $i \in \{1, \dots, n\}$ ».

On va construire ε_{n+1} à partir de $(\varepsilon_1, \dots, \varepsilon_n)$ en prouvant R_{n+1} simultanément.

 $\underline{R_0 \text{ est vraie}}: R_0 \text{ se réécrit pour tout partie finie } \mathfrak{F} \subset \Sigma$, il existe une valuation δ qui la satisfait. Comme Σ est finiment satisfiable, R_0 est vraie.

Supposons que $\varepsilon_1, \ldots, \varepsilon_n$ soient définis et que R_n est vraie pour un certain $n \ge 0$ On va définir ε_{n+1} et montrer R_{n+1} . On distingue deux cas :

- Pour toute partie finie $\mathfrak{F} \subset \Sigma$ il existe une valuation δ qui satisfait \mathfrak{F} et telle que $\delta(x_1) = \varepsilon_1, \ldots, \delta(x_n) = \varepsilon_n$ et $\delta(x_{n+1}) = 0$. Dans ce cas là $\varepsilon_{n+1} = 0$ convient.
- Sinon, il existe une partie finie $\mathfrak{F}_{n+1} \subset \Sigma$ telle que, pour toute valuation δ qui satisfait \mathfrak{F}_{n+1} et telle que $\delta(x_1) = \varepsilon_1, \ldots, \delta(x_n) = \varepsilon_n$, on ait $\delta(x_{n+1}) = 1$.

Dans ce cas on pose $\varepsilon_{n+1} = 1$ et on va montrer que R_{n+1} est vérifiée. Soit $\mathfrak{F} \subset \Sigma$ finie, alors $\mathfrak{F} \cup \mathfrak{F}_{n+1}$ est finie donc d'après R_n , il existe δ qui la satisfait et telle que $\delta(x_1) = \varepsilon_1, \ldots, \delta(x_n) = \varepsilon_n$. Alors δ satisfait en particulier \mathfrak{F}_{n+1} et vaut ε_i en les x_i pour $i \leq n$ donc $\delta(x_{n+1}) = 1$.

On a donc trouvé une valuation δ qui satisfait \mathfrak{F} et telle que $\delta(x_1) = \varepsilon_1, \ldots, \delta(x_n) = \varepsilon_n$ et $\delta(x_{n+1}) = \varepsilon_{n+1}$. R_{n+1} est donc montrée.

Par conséquent R_n est vraie pour tout n. On pose donc $\delta_0(x_n) = \varepsilon_n$ et nous allons montrer que δ_0 satisfait Σ . Soit $F \in \Sigma$ une formule. Il existe un entier k tel que toutes les variables propositionnelles apparaissant dans F soient dans l'ensemble $\{x_1, \ldots, x_k\}$ (F ne contenant qu'un nombre fini de variables).

L'ensemble $\{F\}$ étant fini, d'après R_k il existe une valuation δ qui satisfait F et telle que $\delta(x_1) = \varepsilon_1, \ldots, \delta(x_k) = \varepsilon_k$. Comme δ et δ_0 coïncident sur $\{x_1, \ldots, x_k\}$, on a $\delta_0(F) = \delta(F) = 1$. Donc δ_0 satisfait toutes les formules de Σ donc Σ est satisfiable.

<u>Applications du théorème de compacité</u>: La réfutation par coupure est complète, tout graphe est 3-coloriable si et seulement si toute partie finie est 3-coloriable.