Exercise sheet 1: groups and modular arithmetic

Exercise 1. 1. Compute the order of x in the group $(\mathbb{Z}/15\mathbb{Z}, +)$ for all $x \in \{1, 2, 3, 4, 5\}$.

2. Same question (when it makes sense) for their order in the multiplicative group $(\mathbf{Z}/15\mathbf{Z})^{\times}$.

Exercise 2. Which residue class modulo 35 corresponds to the pair $(2 \pmod{5}, 3 \pmod{7})$ in the isomorphism of the Chinese Remainder Theorem?

Exercise 3. We recall that if p is a prime number, the group $(\mathbf{Z}/p\mathbf{Z})^{\times}$ is a cyclic group of order p-1.

- 1. Determine a generator of that group when $p \in \{5, 7, 11\}$.
- 2. We choose g := 2 as a generator of the group $(\mathbf{Z}/11\mathbf{Z})^{\times}$. Determine the values $\log_g(h)$ for h in $(\mathbf{Z}/11\mathbf{Z})^{\times}$.

Exercise 4. Let (G, .) be a group. Let $x \in G$ be an element of finite order n. For $k \in \mathbb{Z}$, what is the order of x^k ?

Exercise 5. Let p be a prime number and $\alpha \ge 1$ be an integer. Prove that $\varphi(p^{\alpha}) = p^{\alpha-1}(p-1)$.

Exercise 6. Let p be an odd prime. Denote by $\mathbf{F}_p := \mathbf{Z}/p\mathbf{Z}$ and by \mathbf{F}_p^{\times} and $(\mathbf{F}_p^{\times})^2$ the set of non-zero elements and the set of non-zero quadratic residues, respectively. In other words,

$$(\mathbf{F}_p^{\times})^2 = \{x^2, x \in \mathbf{F}_p^{\times}\}.$$

1. Consider the group homomorphism

$$\begin{array}{rcccc} f & \colon & \mathbf{F}_p^{\times} & \to & (\mathbf{F}_p^{\times})^2 \\ & & x & \mapsto & x^2 \end{array}$$

determine its kernel and deduce the cardinality of $(\mathbf{F}_p^{\times})^2$.

2. Consider the group homomorphism

$$g : \mathbf{F}_p^{\times} \to \mathbf{F}_p^{\times} \\ x \mapsto x^{\frac{p-1}{2}}$$

Determine its image.

- 3. Deduce the cardinality of the kernel of g.
- 4. Prove that $\operatorname{Im}(f) \subseteq \ker(g)$ and show that this inclusion is in fact an equality.
- **Exercise 7.** 1. Let G be a finite abelian group, and let \widehat{G} denote its dual (or group of characters of G). Determine, for all $\chi \in \widehat{G}$, the value of the sum

$$\frac{1}{|G|} \sum_{g \in G} \chi(g).$$

2. For all $a \in \mathbf{Z}/n\mathbf{Z}$, we denote by

$$\psi_a : \mathbf{Z}/n\mathbf{Z} \to \mathbf{C}^{\times} \\ x \mapsto \exp\left(\frac{2i\pi ax}{n}\right)$$

Show that $a \mapsto \psi_a$ is an isomorphism from $\mathbf{Z}/n\mathbf{Z}$ to its dual group.

3. Let $n \ge 1$. Using the two previous questions recover the well-know fact:

$$\forall k \in \mathbf{Z}, \quad \frac{1}{n} \sum_{a=0}^{n-1} \exp\left(\frac{2i\pi ka}{n}\right) = \begin{cases} 1 \text{ if } n \mid k\\ 0 \text{ otherwise} \end{cases}$$