Exercise sheet 2: computing with qubits

- **Exercise 1.** 1. Let X be a finite set. For $x \in X$, denote by $|x\rangle : X \to \mathbb{C}$ the indicator function of x. Show that the family $(|x\rangle)_{x \in X}$ forms a basis of the vector space \mathbb{C}^X .
 - 2. What is the dimension of \mathbf{C}^X as a \mathbf{C} -vector space?
 - 3. If $\varphi \in \mathbf{C}^X$ is decomposed as $\sum_{x \in X} \alpha_x |x\rangle$, what is α_x with respect to φ ?

Exercise 2. Prove that $Q_1 \times Q_1 \xrightarrow{\otimes} Q_2$ is not surjective. *Hint: one can consider the element* $\frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \in Q_2$ as a candidate that cannot be written as $\varphi \otimes \psi$.

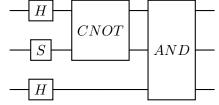
Exercise 3. Prove that there is no unitary transformation $U: Q_{2n} \to Q_{2n}$ that satisfies

 $U(|\psi\rangle \otimes |0\rangle) = |\psi\rangle \otimes |\psi\rangle$

for all $|\psi\rangle \in Q_n$. This fact is called the *no-cloning theorem*.

Exercise 4. Let $f: B_1 \to B_1$ be the constant map equal to 1. Compute the matrix of the corresponding unitary transformation U_f in the basis $(|00\rangle, |01\rangle, |10\rangle, |11\rangle)$ of Q_2 .

Exercise 5. We consider the same quantum circuit as in the lecture.



What is the image of the 3-qubit $|000\rangle$ under the unitary transformation represented by this circuit?

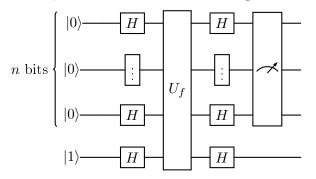
Exercise 6. For the 1-qubits

$$|\varphi_1\rangle = |0\rangle, \quad |\varphi_2\rangle = |1\rangle, \quad |\varphi_3\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle),$$

determine the possible outcomes of the measurement at the end of the circuit below and their proba-

bilities. -H

Exercise 7 (General case of the Deutsch-Jozsa algorithm). Let $f: B_n \to B_1$. We assume that we know that f is either constant or balanced (meaning the f takes as many times the value 0 as it takes the value 1). Let us consider the following circuit, that takes as an input the (n + 1)-qubit $|0 \cdots 01\rangle$:



1. Show that the new state after the first column of Hadamard gates is

$$\left(\frac{1}{2^{n/2}}\sum_{x\in B_n}|x\rangle\right)\otimes\frac{1}{\sqrt{2}}(|0\rangle-|1\rangle)$$

2. Show that the state after passing the gate U_f is

$$\frac{1}{2^{n/2}} \sum_{x \in B_n} (-1)^{f(x)} |x\rangle \otimes \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

3. Show that for all $x \in B_n$,

$$H^{\otimes n}(|x\rangle) = \frac{1}{2^{n/2}} \sum_{y \in B_n} (-1)^{\langle x, y \rangle} |y\rangle$$

where $\langle x, y \rangle := \sum_{i=1}^{n} x_i y_i \pmod{2}$.

4. Deduce that the state after the second column of Hadamard gates is

$$\frac{1}{2^n} \sum_{x,y \in B_n} (-1)^{f(x) + \langle x, y \rangle} |y\rangle \otimes |1\rangle$$

5. Explain why the final measurement allows us to conclude on the type of f (constant or balanced).