FEUILLE DE TD

Structures algébriques

■ Relations ■

Exercice 1.

On munit $E = \mathbb{Z} \times \mathbb{N}^*$ de la relation \mathcal{R} :

 $(p_1,q_1) \mathcal{R} (p_2,q_2) \Longleftrightarrow p_1 \cdot q_2 = p_2 \cdot q_1.$

- 1. Montrer que \mathcal{R} est une relation d'équivalence.
- 2. Déterminer la classe d'équivalence de (1,5).
- 3. On note E/\mathcal{R} l'ensemble des classes d'équivalence pour la relation \mathcal{R} . Montrer que cet ensemble est en bijection avec l'ensemble des nombres rationnels \mathbb{O} .

Remarque : Cette méthode est la façon la plus simple de construire l'ensemble \mathbb{Q} . La bijection prouve que toutes les constructions de \mathbb{Q} possibles donnent le "même" ensemble.

■ Fonctions

Exercice 2.

Soient A et B deux parties de E et F. Soit f une application de E dans F. Déterminer si les propositions suivantes sont vraies ou fausses. Justifier.

- 1. Si A est une partie finie de E alors f(A) est une partie finie de F.
- 2. Si f(A) est une partie finie de F alors A est une partie finie de E.
- 3. Si B est une partie finie de F alors $f^{-1}(B)$ est une partie finie de E.
- 4. Si $f^{-1}(B)$ est une partie finie de E alors B est une partie finie de F.

■ Dénombrement ■

Exercice 3.

- 1. Soit $n \in \mathbb{N}^*$.
 - (a) Calculer le nombre de couples d'entiers (i, j) tels que $1 \le i \le j \le n$.
 - (b) Calculer le nombre de triplets d'entiers (i, j, k) tels que $1 \le i \le j \le k \le n$.

On pourra utiliser la formule $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$

- (c) On lance 3 dés (à 6 faces) et on range les chiffres obtenus dans l'ordre croissant. Combien de résultats différents sont possibles?
- 2. Soit $n \in \mathbb{N}$.
 - (a) Calculer le nombre de couples d'entiers naturels $(i, j) \in \mathbb{N}^2$ tels que i + j = n.
 - (b) Calculer le nombre de couples d'entiers naturels $(i, j) \in \mathbb{N}^2$ tels que i + 2j = n.

Exercice 4. 1. Soit $n \in \mathbb{N}^*$, $k \in [[1, n]]$, on veut montrer la formule du pion :

$$k \binom{n}{k} = n \binom{n-1}{k-1}. \tag{1}$$

- (a) Montrer (1) en utilisant la formule de $\binom{n}{k}$.
- (b) Montrer (1) en comptant de deux façons différentes le nombre de couples (X,a) tels que $X \subset [\![1,n]\!]$ avec |X|=k et $a\in X$.
- 2. Soit $n \in \mathbb{N}^*$. On veut montrer que

$$\sum_{k=1}^{n} k \binom{n}{k} = n2^{n-1}.$$
 (2)

- (a) Montrer (2) en utilisant (1).
- (b) Montrer (2) en dérivant $x \mapsto (1+x)^n$.
- 3. Calculer de deux façons la somme $\sum_{k=0}^{n} \frac{\binom{n}{k}}{k+1}.$

Exercice 5. Déterminer les bornes supérieure et inférieure des parties suivantes, après avoir justifié leur existence. Ces parties admettent-elles un maximum ou un minimum?

1.
$$A = \left\{ (-1)^n + \frac{1}{n+1} \mid n \in \mathbb{N} \right\}.$$

2.
$$B = \left\{ \frac{1}{n} - \frac{1}{p} \mid (n, p) \in (\mathbb{N}^*)^2 \right\}.$$

Exercice 6.

- 1. Démontrer que $\binom{n}{p} = \binom{n-1}{p-1} + \binom{n-2}{p-1} + \ldots + \binom{p-1}{p-1}$.
- 2. Démontrer que $\binom{p+q}{p} = \sum_{k=0}^{p} \binom{p}{k} \binom{q}{p-k}$.

■ Groupes ■

Exercice 7.

Dire si ces ensembles avec ces lois de composition sont des groupes. Si oui, dire s'ils sont commutatifs ou non.

- 1. $(\mathbb{Z}, +)$
- 2. $(\mathbb{Z}, -)$
- 3. $(Fonct(\mathbb{R},\mathbb{C}),+)$
- 4. $(\mathbb{K}[X] \setminus \{0\}, \times)$
- 5. $(P(E), \cup)$
- 6. $(P(E), \cap)$
- 7. $(P(E), \Delta)$, pour $A\Delta B = (A \cap \bar{B}) \cup (B \cap \bar{A})$

Exercice 8.

Soit (G, \star) un groupe tel que $x^2 = e$ pour tout $x \in G$.

Montrer que le groupe G est commutatif.

Exercice 9.

- 1. Soit (G, \star) un groupe commutatif. Soient $x \in G$ un élément d'ordre p et $y \in G$ un élément d'ordre q. Montrer que xy est d'ordre au plus pq.
- 2. xy est-il nécessairement d'ordre pq ? (donnez des exemples)
- 3. On pose $H=\mathrm{Bij}\,(\mathbb{Z}\times\mathbb{Z}).$ Montrer que $f:(m,n)\mapsto (-n,m)$ et $g:(m,n)\mapsto (n,-m-n)$ sont des éléments de (H,\circ) d'ordres 4 et 3. Quel est l'ordre de $f\circ g$?

Exercice 10.

- 1. Pour (G,\star) un groupe, quels sont les éléments de G d'ordre 1?
- 2. Combien vaut $ord(x^{-1})$ en fonction de ord(x)?
- 3. Trouver des matrices de $Gl_3(\mathbb{R})$ d'ordres 2 et 3.
- 4. Soient $n \geq 2$ et $M \in Gl_n(\mathbb{R})$ une matrice diagonale. On suppose que M est d'ordre fini. Déterminer ord(M).
- 5. Soit $n \geq 2$. On pose $G = Bij(\{1, ..., n\})$. On prend $f \in G$ avec f(i) = i+1 pour $1 \leq i \leq n-1$ et f(n) = 1. Calculer l'ordre de f dans (G, \circ) .

Exercice 11.

Dire si les groupes suivants sont isomorphes ou non. Le prouver.

- 1. $(\mathbb{Z},+)$ et $(\mathbb{Q},+)$
- 2. $(\mathbb{Q},+)$ et $(\mathbb{R},+)$
- 3. $\mathbb{Z}/13\mathbb{Z}$ et $\mathbb{Z}/15\mathbb{Z}$
- 4. $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/4\mathbb{Z})$ et U_8 (racines 8èmes de l'unité)
- 5. $\mathbb{Z}/n!\mathbb{Z}$ et \mathcal{S}_n , $n \geq 2$. Moins facile ...
- 6. $(\mathbb{Z}, +)$ et $(\mathbb{Z}^2, +)$
- 7. $(\mathbb{Z}^n, +)$ et $(\mathbb{Z}^m, +)$, n < mOn pourra utiliser la base canonique de \mathbb{Q}^m et chercher une contradiction.
- 8. $(\mathbb{Q}, +)$ et $(\mathbb{Q}^2, +)$
- 9. $(\mathbb{R},+)$ et $(\mathbb{R}^2,+)$. (Pas de preuve demandée.)
- 10. $(\mathbb{R}, +)$ et $(\mathbb{R}^n, +)$, n > 0.

Exercice 12.

Soient (G, \star) et (H, Δ) des groupes, et $f: G \to H$ un morphisme de groupes.

- 1. Soit G_1 un sous-groupe de G. Montrer que $f(G_1)$ est un sous-groupe de H.
- 2. Soit H_1 un sous-groupe de H. Montrer que $f^{-1}(H_1)$ est un sous-groupe de G.
- 3. Soit $x \in G$. Montrer que $f(\langle x \rangle) = \langle f(x) \rangle$.

- 4. Soit $S \subset G$ une partie de G. Montrer que $f(\langle S \rangle) = \langle f(S) \rangle$.
- 5. Soit $S' \subset H$. Montrer qu'en général on a $f^{-1}(\langle S' \rangle) \neq \langle f^{-1}(S) \rangle$.

Exercice 13. Soit G un groupe fini.

Pour tout $a \in G$, on pose $\Phi_a : x \in G \mapsto axa^{-1} \in G$.

- 1. Vérifier que Φ_a est un automorphisme de G (un isomorphisme de G dans G.
- 2. Montrer que pour $Aut(G) = \{f : G \to G, f \text{ automorphisme }\}, (Aut(G), \circ)$ est un groupe.
- 3. On pose $I = \{\Phi_a \mid a \in G\}$. Montrer que I est un sous-groupe de Aut(G).
- 4. Montrer que $h: a \in G \mapsto \Phi_a \in I$ est un morphisme de groupes. Déterminer Ker(h).
- 5. On suppose que G est un groupe commutatif. Déterminer I.
- 6. On suppose que I est un groupe cyclique (engendré par un seul élément, $I=\langle x\rangle.$
 - Montrer que G est un groupe commutatif.
- 7. En déduire que les ensembles I et Aut(G) ne sont en général pas égaux.

Exercice 14.

Soit $n \in \mathbb{N}^*$. Soient $i, j, k \in [1, n]$.

- 1. Calculer $(i \ j)(i \ k)$.
- 2. Calculer $(i \ j) (i \ k) (i \ j)$.
- 3. Soit $\sigma \in \mathcal{S}_n$, que vaut $\sigma(i \ j) \sigma^{-1}$?

Exercice 15.

Décomposer les permutations suivantes en produit de cycles à supports disjoints, ainsi qu'en produit de transpositions, calculer leur ordre. Calculer enfin σ_1^{1000} et σ_2^{1000} .

$$\sigma_1 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 4 & 6 & 2 & 1 \end{bmatrix} \quad \text{et} \quad \sigma_2 = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 4 & 6 & 9 & 7 & 2 & 5 & 8 & 1 & 3 \end{bmatrix}.$$

Exercice 16.

- 1. Montrer que les doubles transpositions de la forme $(1 \ i)(1 \ j)$ engendrent le groupe alterné A_n .
- 2. Montrer que les 3-cycles engendrent le groupe alterné A_n .

Exercice 17. Soit $n \geq 2$. Soit $\overline{m} \in \mathbb{Z}/n\mathbb{Z}$.

Déterminer l'ordre de \overline{m} dans $(\mathbb{Z}/n\mathbb{Z}, +)$.

Quels sont tous les ordres possibles?

Pour chaque ordre r, trouver un élément \overline{m} d'ordre r.

Exercice 18.

Décrire (cardinal, commutatif ou non, cyclique ou non, ordre des éléments) les groupes suivants :

- 1. $\mathbb{Z}/7\mathbb{Z}$
- 2. $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
- $3. \mathbb{Z}/8\mathbb{Z}$
- 4. $\mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ et $\mathbb{Z}/8\mathbb{Z}$ sont-ils isomorphes?

Exercice 19.

- 1. Développer $(x^2 + x \bar{1})(x^2 x \bar{1})$ et $(x^2 + \bar{2})(x^2 \bar{2})$ dans $\mathbb{Z}/3\mathbb{Z}$.
- 2. Développer $(x^2+x-\bar{1})(x^2-x-\bar{1})$ et $(x^2+\bar{2})(x^2-\bar{2})$ dans $\mathbb{Z}/5\mathbb{Z}$ Que remarque-t-on?

Exercice 20.

1. Résoudre l'équation diophantienne modulaire : $x \equiv 4 \mod (6)$ et $x \equiv 7 \mod 11$.

Trouver un isomorphisme entre les groupes suivants :

- 1. $\mathbb{Z}/15\mathbb{Z}$ et $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z}$.
- 2. $\mathbb{Z}/100\mathbb{Z}$ et $\mathbb{Z}/4Z \times \mathbb{Z}/25\mathbb{Z}$

On écrira à chaque fois ϕ et sa bijection réciproque ϕ^{-1} .

Exercice 21. Soit $n \geq 2$. On note $(\mathbb{Z}/n\mathbb{Z})^{\times}$ l'ensemble des éléments de $\mathbb{Z}/n\mathbb{Z}$ qui ont un inverse pour \times .

- 1. Quels sont les éléments $\overline{a} \in (\mathbb{Z}/n\mathbb{Z})^{\times}$?
- 2. Montrer que $((\mathbb{Z}/n\mathbb{Z})^{\times}, \times)$ est un groupe commutatif.

- 3. Trouver un produit de groupes $\mathbb{Z}/m\mathbb{Z}$ isomorphe à $(\mathbb{Z}/7\mathbb{Z})^{\times}$.
- 4. Trouver un produit de groupes $\mathbb{Z}/m\mathbb{Z}$ isomorphe à $(\mathbb{Z}/8\mathbb{Z})^{\times}$.
- 5. Trouver un produit de groupes $\mathbb{Z}/m\mathbb{Z}$ isomorphe à $(\mathbb{Z}/9\mathbb{Z})^{\times}$.

■ Anneaux ■

Exercice 22.

Pour chaque anneau A, donner son groupe des inversibles A^{\times} , et résoudre (si l'on peut) l'équation $a^2=1_A$.

- 1. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$
- $2. \mathbb{K}[X]$
- 3. $M_n(\mathbb{K})$
- 4. $\mathcal{F}(E,\mathbb{C})$, pour E un ensemble.
- 5. $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2}, a, b \in \mathbb{Q}\}\$

Dans quelle famille d'anneaux l'équivalence " $a^2=1_A$ ssi $a=\pm 1_A$ " est-elle forcément vraie?

Exercice 23.

- \bullet Donner le groupe des inversibles de l'anneau $\mathbb{Z}/20\mathbb{Z}.$ Quel est son cardinal?
- Donner un isomorphisme de groupes ϕ entre $(\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}, +)$ et $((\mathbb{Z}/20\mathbb{Z})^{\times}, \times)$. On ne demande pas de vérifier que ϕ est bien un isomorphisme de groupes.

Exercice 24. On pose $j := e^{\frac{2i\pi}{3}}$. et $\mathbb{Z}[j] := \{a + jb \in \mathbb{C}/(a,b) \in \mathbb{Z}^2\}$.

- 1. Montrer que $1 + j + j^2 = 0$
- 2. Est-ce que $(\mathbb{Z}[j], +, \times)$ est un anneau? Dire pourquoi.
- 3. Soit $z \in \mathbb{Z}[j]$. Montrer que $z \in \mathbb{Z}[j]^{\times} \Leftrightarrow |z| = 1$
- 4. Soit $z = a + jb \in \mathbb{Z}[j]$. Montrer que $z \in \mathbb{Z}[j]^{\times} \Rightarrow (a, b) \in \{-1, 0, 1\}^2$
- 5. En déduire l'ensemble $\mathbb{Z}[j]^{\times}$.

Exercice 25.

- 1. Soit A un anneau commutatif fini. Trouver un polynôme P tel que P(a)=0 pour tout $a\in A$.
- 2. Dans $\mathbb{Z}/p\mathbb{Z}$, montrer que $Q(X) = X^p X$ convient. On pourra s'aider de l'exercice précédent.
- 3. Dans $\mathbb{Z}/6\mathbb{Z}$, trouver un polynôme R, avec $\deg(R) < 6$, tel que R(a) = 0 pour tout $a \in \mathbb{Z}/6\mathbb{Z}$.

On pourra chercher un polynôme qui ressemble à Q.

Exercice 26. Soit A un anneau commutatif. Soit $x \in A$. On dit que x est **nilpotent** s'il existe $n \ge 1$ tel que $x^n = 0$.

- 1. Soit $x \in A$ nilpotent, et $a \in A$. Montrer que ax est nilpotent.
- 2. Soit $y \in A$ nilpotent. Montrer que x + y est nilpotent.
- 3. En déduire que $N = \{x \in A \text{ t.q. } x \text{ nilpotent}\}$ est un idéal de A.
- 4. Quels sont les éléments nilpotents dans un anneau intègre?
- 5. Donner un exemple d'anneau A qui a des éléments nilpotents non-nuls.
- 6. Donner un exemple d'anneau A commutatif qui a des éléments nilpotents non-nuls.
- 7. Montrer que le résultat de 1) est faux si A n'est pas commutatif. On cherchera un contre-exemple.
- 8. Est-ce qu'il existe des anneaux A non-intègres tels que $N = \{0\}$?
- 9. Montrer que 1-x est inversible, et donner son inverse.
- 10. Montrer que $1 + N \subset A^{\times}$.

Exercice 27 (Quaternions). Dans $M_2(\mathbb{C})$, on pose $i = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $j = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $k = \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}$.

- 1. Calculer $i^2, j^2, k^2, ij, jk, ik$.
- 2. Combien valent ijk, et ji, kj, ki?
- 3. On pose $A = Vect_{\mathbb{R}}(I_2, i, j, k)$, le sous-ev **réel** engendré par ces 4 matrices. Montrer que A est un sous-anneau de $M_2(\mathbb{C})$.

- 4. Est-ce que A est commutatif?
- 5. Soit $x = aI_2 + bi + cj + dk \in A$, $a, b, c, d \in \mathbb{R}$. Pourquoi a-t-on x = 0 si et seulement si a = b = c = d = 0? Penser au cours de Géométrie.
- 6. On pose $\overline{x} = aI_2 bi cj dk$. Calculer $x\overline{x}$.
- 7. Montrer que $A^{\times} = A^*$.
- 8. En déduire que l'anneau A est intègre.
- 9. Résoudre l'équation $x^2 = -1_A$. On pourra s'aider de la question 6).
- 10. L'anneau A est intègre, mais l'équation polynomiale $x^2 = -1_A$ possède plus de 2 solutions dans A.

 Qu'est-ce que cet anneau a de particulier?

Exercice 28 ($\mathbb{Z}[i]$ et somme de deux carrés). On étudie $\mathbb{Z}[i] = \{a+ib, a, b \in \mathbb{Z}\}.$

- 1. Montrer que $(\mathbb{Z}[i], +, \times)$ est un sous-anneau de \mathbb{C} .
- 2. Quelles sont ses propriétés? (commutatif? intègre?)
- 3. Soit $z = x + iy \in \mathbb{Z}[i]$. En utilisant la fonction $|z|^2 = z\overline{z}$, Montrer que l'on a $z \in \mathbb{Z}[i]^{\times}$ ssi |z| = 1.
- 4. En déduire que $\mathbb{Z}[i]^{\times} = \{1, -1, i, -i\}.$
- 5. Soit $z \in \mathbb{Z}[i]$ tel que $|z|^2 = p$, avec p premier. Montrer que z est irréductible dans $\mathbb{Z}[i]$.
- 6. Soit q un nombre premier, tel que $q \equiv 3 \mod (4)$. On veut montrer que q est irréductible dans $\mathbb{Z}[i]$.
 - (a) Supposons par l'absurde que q est réductible dans $\mathbb{Z}[i]$. On écrit alors q=zz', avec z,z' qui ne sont pas inversibles. Combien vaut $|z|^2$? Et $|z'|^2$?
 - (b) Montrer que pour z = x + iy, on a $x, y \neq 0$. On pourra démontrer cela par l'absurde.
 - (c) Trouver une relation entre arg(z) et arg(z').
 - (d) Montrer que $z' = \overline{z}$.

- (e) En déduire que q est la somme de deux carrés. Conclure.
- 7. On admet que l'anneau $\mathbb{Z}[i]$ est principal. (On démontre cela en prouvant qu'il existe une division euclidienne sur $\mathbb{Z}[i]$.)
 Dire si les éléments 1 + 2i, 5, 13, 3 + 4i, sont irréductibles dans $\mathbb{Z}[i]$.

Si non, donner leur factorisation en produit d'éléments irréductibles. **Exercice 29.** Existe-t-il un morphisme d'anneaux entre les anneaux suivants? Si oui, en donner un. Si non, prouver qu'il n'en existe pas.

- 1. \mathbb{Z} et \mathbb{O}
- 2. \mathbb{Q} et \mathbb{Z}
- 3. \mathbb{Z} et $\mathbb{Z}/n\mathbb{Z}$, pour $n \geq 2$
- 4. \mathbb{Q} et $M_n(\mathbb{R})$, pour $n \geq 2$
- 5. $\mathbb{Z}/n\mathbb{Z}$ et \mathbb{C} Plus durs:
- 6. $\mathbb{Z}/n\mathbb{Z}$ et $\mathbb{Z}/m\mathbb{Z}$, pour $n, m \geq 2$
- 7. $\mathbb{Q}[\sqrt{2}]$ et $M_2(\mathbb{Q})$

Exercice 30. Les anneaux suivants sont-ils isomorphes?

Si oui, trouver un isomorphisme. Si non, montrer qu'il n'en existe pas. On pourra utiliser les propriétés des anneaux, leurs groupes des inversibles, et l'exercice précédent.

- 1. \mathbb{Z} et \mathbb{Q}
- 2. \mathbb{Q} et \mathbb{R}
- 3. \mathbb{R} et \mathbb{C}
- 4. \mathbb{R} et l'anneau produit $\mathbb{R} \times \mathbb{R}$
- 5. $\mathbb{Q}[\sqrt{2}]$ et $\mathbb{Q}[i]$
- 6. \mathbb{C} et $\mathbb{R}[A]$, avec $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
- 7. \mathbb{C} et $\mathbb{R}[A]$, avec $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

■ Corps

Exercice 31. Soient $A = \{a + b\sqrt{7}, (a, b) \in \mathbb{Q}^2\}$ et $B = \{a + b\sqrt{11}, (a, b) \in \mathbb{Q}^2\}$.

- 1. Démontrer que A et B sont des sous-corps de $(\mathbb{R}, +, \times)$.
- 2. Montrer que la fonction $\varphi: a+b\sqrt{7} \in A \mapsto a+b\sqrt{11} \in A$ est un morphisme de groupes, mais pas un morphisme d'anneaux.

Exercice 32. Soit $J = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}$.

- 1. Rappeler la définition de $\mathbb{Q}[J]$.
- 2. Montrer que $\mathbb{Q}[J] = \{aI_2 + bJ, a, b \in \mathbb{Q}\}.$ On pourra calculer J^2 .
- 3. Montrer que l'on a $aI_2 + bJ = 0$ ssi a = b = 0.
- 4. L'anneau $\mathbb{Q}[J]$ est-il commutatif, intègre, principal, un corps?
- 5. Reprendre les mêmes questions avec $\mathbb{R}[J]$.

Exercice 33. Soit A un anneau commutatif, intègre. On suppose que A est fini. Indication: Dans cet exercice, toutes les propriétés de l'anneau A sont utilisées.

1. Première partie

Soit $f: n \in \mathbb{Z} \mapsto n.1_A \in A$. f est un morphisme d'anneaux de \mathbb{Z} vers A. Montrer qu'il existe $p \in \mathbb{Z}$ tel que $Ker(f) = p\mathbb{Z}$.

- 2. Montrer que l'on a $p \neq 0, 1, -1$, et montrer que l'on peut choisir p positif.
- 3. Soient $n, m \in \mathbb{Z}$ tels que $\overline{n} = \overline{m}$ dans $\mathbb{Z}/p\mathbb{Z}$. Montrer que dans A on a $n.1_A = m.1_A$.
- 4. En déduire que la fonction $h: \overline{n} \in \mathbb{Z}/p\mathbb{Z} \mapsto n.1_A \in A$ est bien définie.
- Montrer que le nombre entier positif p est premier.
 On pourra raisonner par l'absurde.

 Ropus: Montrer qu'en posent \(\overline{\pi}\), \(a = h(\overline{\pi})\) \(a \in A \).

Bonus : Montrer qu'en posant $\overline{n} \cdot a = h(\overline{n}).a \in A$, l'ensemble $(A,+,\cdot)$ est un $\mathbb{Z}/p\mathbb{Z}$ -espace vectoriel.

- 6. Montrer que $(A, +, \cdot)$ est un $\mathbb{Z}/p\mathbb{Z}$ -ev de dimension finie.
- 7. On pose $r = \dim(A)$. En posant (e_1, \ldots, e_r) une base de A, calculer Card(A).

8. Deuxième partie

Soit $x \in A$ non-nul. On pose $g_x : a \in A \mapsto ax \in A$. Montrer que g_x est une fonction injective.

- 9. Montrer que x possède un inverse dans A.
- 10. En déduire que A est un corps.

Conclusion : On vient de démontrer que pour tout anneau A qui est commutatif, intègre, et fini, alors A est un corps et il existe p premier et $r \ge 1$ tels que $Card(A) = p^r$.

En algèbre, un tel corps est noté \mathbb{F}_{p^r} . On l'appelle corps fini.

Les corps finis sont très utiles en informatique (par ex : codes correcteurs d'erreurs, cryptographie).

■ Polynômes ■

Exercice 34.

Soient $a \in \mathbb{K}$ et $n \geq 1$.

La famille $(1, X - a, (X - a)^2, \dots, (X - a)^n)$ est-elle une base de $\mathbb{K}_n[X]$?

Exercice 35.

Résoudre dans $\mathbb{K}[X]$:

$$P(X^2) = (X^2 + 1)P(X).$$

Exercice 36.

Soit f l'endomorphisme de $\mathbb{K}[X]$ qui, à tout polynôme P, associe sa dérivée P'. Soit g l'endomorphisme de $\mathbb{K}[X]$ défini par $P(X^k) = \frac{1}{k+1}X^{k+1}$. Déterminer $\ker(f \circ g)$ et $\ker(g \circ f)$.

Est-ce que $f \circ g$ est injectif? surjectif? bijectif?

Est-ce que $g \circ f$ est injectif? surjectif? bijectif?

Exercice 37.

Pour $n \in \mathbb{N}^*$, développer le polynôme

$$P_n(X) = (1+X)(1+X^2)(1+X^4)\dots(1+X^{2^{n-1}})$$

Exercice 38.

Déterminer tous les polynômes P tels que :

$$P(2) = 6, P'(2) = 1$$
 et $P''(2) = 4$

et:

$$\forall n \geqslant 3 \quad P^{(n)}(2) = 0.$$

Exercice 39.

Effectuer les divisions euclidiennes suivantes :

- 1. $X^3 X^2 + X 1$ par X + 1
- 2. $X^4 3X^3 + 2$ par $X^2 + 2$
- 3. $3X^5 + 2X^2 + X 4$ par $X^2 + X + 1$
- 4. $X^n 1$ par X 1, pour $n \ge 1$

Exercice 40. Soient $a \in \mathbb{K}$ et $P \in \mathbb{K}[X]$.

- Déterminer le reste de la division euclidienne de P(X) par X-a.
- Montrer que l'on a $X a \mid P$ si et seulement si P(a) = 0.
- Soit $b \in \mathbb{K}$. Montrer que l'on a $(X a)(X b) \mid P$ si et seulement si P(a) = P(b) = 0.

Exercice 41.

- 1. Calculer $pgcd(X^2, (X-1)^3)$, $pgcd(X^2-1, X^3-1)$, $pgcd(X^4-1, X^6-1)$, $pgcd(X^4-2X^2+3, X^2+X)$.
- 2. Factoriser dans $\mathbb{R}[X]: X^2-1, X^3-1, X^2-5X+2, X^2+1, X^4+1.$
- 3. Factoriser dans $\mathbb{C}[X]: X^3-1, X^n-1 \ n \geq 1, X^2-5X+2, X^2+1, X^n-z \ n \geq 1 \ z=r.e^{it}.$

Exercice 42. Soit $P \in \mathbb{C}[X]$ vérifiant $P(X^2) = P(X-1)P(X+1)$.

Soit $z \in \mathbb{C}$ une racine de P. On admet que P possède alors une racine w telle que |w| > |z|.

En déduire les polynômes $P \in \mathbb{C}[X]$ solutions de l'équation.

Exercice 43.

- 1. Montrer qu'un polynôme de $\mathbb{K}[X]$, de degré 3, qui n'a pas de racines dans \mathbb{Q} , est irréductible dans $\mathbb{K}[X]$.
- 2. Soit $n \in \mathbb{N}$. Est-ce que le polynôme $X^2 + X + 1$ divise $X^{3n+8} + X^{3n+4} + X^{3n}$ dans $\mathbb{Q}[X]$?

Exercice 44. Soit $n \ge 1$. Dans $\mathbb{R}[X]$, on definit $P(X) = (X^2 - 1)^n$.

- 1. Montrer que pour tout $k \ge 0$, le polynôme $P^{(k)}$ est scindé (ou nul).
- 2. Quelle est la multiplicité de -1 et 1 dans $P^{(k)}$, pour k < n?
- 3. Montrer que pour tout $0 \le k \le n-1$, $P^{(k)}$ possède au moins 2+k racines distinctes, situées dans l'intervalle [-1,1].

- 4. En déduire que pour tout $0 \le k \le n-1$, $P^{(k)}$ possède exactement 2+k racines distinctes, situées dans l'intervalle [-1,1].
- 5. En déduire que $P^{(n)}$ est scindé à racines simples, à racines dans]-1,1[.

Exercice 45.

- 1. Soit $n \ge 1$. Le polynôme $P(X) = \sum_{k=0}^{n} \frac{1}{k!} X^k$ a-t-il des racines multiples?
- 2. Soit $P \in \mathbb{R}[X]$ non-nul tel que $P' \mid P$. Montrer que P ne possède qu'un seul facteur irréductible P_1 .

Que peut-on dire sur $deg(P_1)$?.

Trouver tous les polynômes $P \in \mathbb{K}[X]$ non-nuls tels que $P' \mid P$.

3. Soit $Q \in \mathbb{R}[X]$, de degré n. Montrer que $Q(X+1) = \sum_{k=0}^{n} \frac{Q^{(k)}(X)}{k!}$. (On pourra utiliser des applications linéaires, ou des bases.)

Exercice 46. Soit $P \in \mathbb{K}[X]$. Soient $a, b \in \mathbb{K}$ avec $a \neq b$.

- 1. Déterminer le reste de la division euclidienne de P par (X-a)(X-b).
- 2. Soient $n \ge 1$ et $t \in \mathbb{R}$. Déterminer le reste dans la division euclidienne, dans $\mathbb{R}[X]$, de $P(X) = (X\cos(t) + \sin(t))^n$ par $X^2 + 1$.