Lycée du Diadéme - Te Tara o Mai’ao PTSI, Année 2025-2026

Chapitre 20
Séries numeriques

Table des matieres

1 Série, convergence, somme

1.1 Séries convergentes, sommes . . . . . . . . ... ...
1.2 Séries a termes positifs . . . . . .. .00
1.3 Séries absolument convergentes . . . . . . .. ... ... ... ..

2 Propriétés des séries et de leur somme

2.1 Linéarité de lasomme . . . . . . . .. ... oL
2.2 Théoreme de comparaison . . . . . . . . . . . ...
2.3 Comparaison série-intégrale . . . . . . .. .. ... . ...
2.4 Séries a termes généraux équivalents . . . . . ...
2.5 Convergence d’une série via les croissances comparées . . . . . .
2.6 Séries et inégalité de Taylor-Lagrange . . . . . ... .. .. ...

3 Séries usuelles

3.1 Séries télescopiques . . . . . . ...
3.2 Séries géométriques . . . . . ... ..o
3.3 Série harmonique, séries de Riemann . . . . . . .. ... .. ...
3.4 Séries exponentielles . . . . . ... oo
3.5 Séries alternées, séries logarithmes . . . . . . ... ... ... ..

4 Bilan des méthodes

5 Application : développement décimal d’un nombre réel

U s =

© © J O Ot Ot

Vidal AGNIEL



Lycée du Diadéme - Te Tara o Mai’ao PTSI, Année 2025-2026

Introduction

Pour une suite (vy,)n>n,, la notion qui nous intéresse le plus est la convergence : quand on
prend n aussi grand que ’on veut, comment se comporte le terme v,, ?
C’est cette notion de convergence qui donne beaucoup de résultats mathématiques, et qui est
aussi utilisée dans certaines structures en analyse (continuité, dérivabilité).
Pour une série, au lieu de prendre des nombres u, et de regarder leur comportement, on
considere les sommes Zzzno uy et on regarde leur comportement.
Une série est une suite de sommes, ot pour chaque indice suivant on rajoute un terme a la
somme.

1 Série, convergence, somme

1.1 Séries convergentes, sommes

DEFINITION 1
Soit (Un)n>n, une suite réelle.

n
On définit la série de terme général u, comme la suite (Sp)n>n,, avec Sy = Z U

k=ng
Le nombre S, est appelé somme partielle de la suite (up)n>n,-

En général, on note Z Up, = (Sn)n>ne-

n>ng

REMARQUE 2 — En général les séries sont définies a partir de 0 (ng = 0), ou a partir de 1.
Attention ! L’expression Z Uy désigne la série de terme général u,, cela désigne une suite

n>ng
+oo
(et pas un nombre réel). Nous définirons par la suite le nombre réel Z un (8’il existe), et il
n=ng
ne faudra pas confondre les deux notations.
k=n 1
EXEMPLE 3 — La série de terme général # (pour n > 1) est définie par S, = Z w2
k=1
Attention a ne pas confondre u, et Sy,.
1
Les premiers termes de la suite (up)n>1 sont up =1; ug = % ;U3 = 3
1 5 11 49
Ceuz de la série (S, sont S1=1;5 =1 =—;5=1+4-+-=—.
( n)nZl 1 2 + 4 4 3 + 4 + 9 36

DEFINITION 4 (Convergence de séries, somme)
Soit (Sp)n>n, la série de terme général wy,.
On dit que la série Z uy, est convergente si la suite (Sp)n>n, €st convergente.

n>ng
+oo
Et, la somme de la série Z up, est la limite de la suite (Sy)n>n,, notée Zuk
n>ng k=0

St la série n’est pas convergente, on dit qu’elle est divergente.
On définit la nature d’une série comme linformation sur sa convergence ou divergence.

REMARQUE 5 — Attention! La convergence de la suite (un)n>n, €t celle de la série Z Unp,
n>ng
ne sont pas du tout la méme chose !

Ces deux suites ont des liens entre elles (on le verra par la suite), mais il faut bien voir que ce
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sont deux suites différentes.
“+o0o

Attention ! La somme g u, d’une série convergente est définie comme la limite d’une suite.

n=ngo
Une somme infinie est définie comme la limite d’une suite de sommes finies.

Nous verrons comment manipuler ces sommes infinies, mais cela ne se fait pas aussi facilement
que les sommes finies. Principalement car il faut vérifier a chaque fois que la série associée est
convergente.

Quand vous étes en face d’une série Z Uy, il faut toujours commencer par étudier la conver-

n>ng
n

gence de celle-ci (voir si la suite des sommes partielles Z U CONVEGE OU NOM).

k=ng

EXEMPLE 6 — Pourn € N, posons u, = , et étudions la série Zun

107
10 =
n 1
1 TonFT — 1
OnaSn:Z—zim .
k 1
prd 10 w1
1\n . . 0—-1 10
Comme (1—0) —n—+too 0, on obtient donc que la somme partielle S, converge vers T = 9
L -
On en déduit que la série Z uy, est convergente, et sa somme vaut 9
n>0
s X110
insi : —_—=—.
10 9
n=0
EXEMPLE 7 — Pour n € N*, posons v, = 2 — % Alors la suite (vy)n>1 est convergente, de
limite 2.
Regardons la nature de la série Z Up-

n>1
n

n
Pour tout k > 1 on a vy > 1, donchkz 1 =n.
k=1 k=1

n
D’apres le théoréme de comparaison, la suite des sommes partielles ( E Ui )n>1 diverge vers
k=1

+00.
La série E vy, est divergente vers +00.
n>1

+oo
On écrira parfois : E Up = F00.

n=1

REMARQUE 8 (Relation de récurrence) —

Soit (Un)n>n, une suite, et soit (Sp)n>n, la suite des sommes partielles de la série associée.
Alors, pour tout n € [ng, +oof, on a Sp+1 = Sy + Unt1-

La suite (Sp)n>n, est construite comme une suite récurrente, la ot la suite (Up)n>n, ne l’est
pas forcément.

EXEMPLE 9 — 1l est bien plus facile de montrer qu’une série est convergente que de calculer

sa limite. Souvent, on saura que la série E uy, est convergente, mais sans pouvoir calculer
n>ng
autrement la valeur de cette série.

Posons par exemple, pour n > 0, u, = 10%(1 - TLK,)
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n+1 n
On a u, > 0, donc la relation Z up = un+1+z uy implique que la suite des sommes partielles
k=0 k=0

n

( E Uk )n>0 est une suite croissante.

k=0
n n 1
1 ot — 1 1
Deplus,onaun<10%,doncg UkSE 1—0]6:102 < T
k=0 k=0 10 1 1—- 10
n
La suite des sommes partielles ( g Uk )n>0 est donc magorée.
k=0
Une suite croissante majorée est convergente, donc la série E Uy, est convergente.
n>0
+00
Mais, on ne sait pas calculer la valeur de sa somme E ug. (on sait seulement que c’est un
k=0

5 ; 10
réel compris entre 0 et 3 )

REMARQUE 10 — Pour une série g Uy, convergente, on pourra abréger cela en CV.
n>ng
Pour une série g vy, divergente, on pourra abréger cela en DV.

n>ng
En analyse, les équivalents et les DL sont des outils qui permettent d’étudier la "vitesse” a
laquelle une fonction/suite varie.
Nous allons faire de méme pour les séries. Si une série g uy, converge, a quelle "vitesse”

n>ng
converge-t-elle vers sa limite (sa somme) ?

DEFINITION 11 (Reste d’une série convergente)
Soit E Uy une série convergente.

n>ng
“+oo
Pour tout n > ng, on définit le reste d’indice n de la série par R, = Z U — Sp.
k=ng
+oo
On le note aussi g U,
k=n+1

Le reste d’indice n de la série est la différence entre la somme de la série et la somme partielle
Sh.

ProrosITION 12
Soit Z Uy une série convergente.
n>ng
Alors la suite (Ry,)n>n, des restes de la série converge vers 0.

+oo too

Démonstration — On a R, = Z ur — Sp. Comme la somme partielle S,, converge Z uk, la différence entre
k=ng k=ng

ces deux quantités tend vers 0. O

Pour trouver la "vitesse de convergence” de la série E Uy, il faut trouver un équivalent
n>ng
des restes R,,.

10

EXEMPLE 13 — Pour la série de terme général ﬁ, qui est convergente, de somme <,

Yo 7 _ 10 no 1
reste d’indice n vaut Ry = 3 — > 1o 1o% -

son
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On peut calculer ici une valeur exacte de R, :

R 10 (5"t =1 10 10((1),1+1 1)_10 1
"9 L—1 9 910 9 107t

Ainsi, on connait la "vitesse” a laquelle la série converge vers sa somme.
Ici, la vitesse de convergence est trés rapide. Pour n =9, l’écart entre la somme partielle et la
somme de la série est de l'ordre de 10%. En calculant la somme des 9 premiers termes de la
série, on a une approzimation de sa somme (de sa limite) a 10710 pres.

ProPOSITION 14
Soit Z up, une série convergente et (Ry)n>n, la suite des restes de la série.

n>ng
—+00 m
Pour tout n > ng, on a R, = Z up = lim Z UL -
m——+00
k=n+1 k=n+1

m
Démonstration — Soient n > ng et m > n+1. On a Z U = Sy —Syn. Comme la série Z uy, est convergente,
k=n+1 k>ng
si l'on fixe n on a Sy, — Spn 2 m—oto0 S — Sn = Ry. ]

Contrairement a la somme partielle S, qui est une somme, le reste R, est la limite d’une

somme. Souvent, lorsque ’on cherche un encadrement ou un équivalent de R,,, on se ramene a
m

une somme en posant m > n + 1 et en étudiant Z uy. Puis, on regarde la limite quand m

k=n+1
vers +o00.

1.2 Séries a termes positifs

Les méthodes d’étude que nous verrons dépendent du type de la série étudiée.
Dans ce cours, nous allons voir deux grandes familles de suites : les séries a termes positifs, et
les séries absolument convergentes.

DEFINITION 15 (Série & termes positifs)
Soit Z Uy, UNE SETIeE.
n>ng
On dit que la série Z up, est a termes positifs si pour tout n € [ng, +oof on a u, > 0.

n>ng

Nous étudierons beaucoup des séries a termes positifs. Elles sont plus pratiques a étudier
car on ne se préocuppe pas du signe de u,, et car ces séries sont croissantes.

PROPOSITION 16 (Convergence d’une série a termes positifs)
Soit Z Uy, une série a termes positifs.
n>ngo
Alors, la série Z uy, est convergente si et seulement si la suite des sommes partielles (Sy)n>n,
n>ng
est magorée.
Sinon, elle diverge vers +oo.

Démonstration — Pour tout n > ng, on a Sp41 = Un+1 + Sn.
Comme tous les uy sont positifs, on en déduit que S, 41 > S,. La suite (Sp)n>n, est donc croissante.

Or, une suite croissante est convergente si et seulement si elle est majorée, et elle diverge vers +oo sinon. O
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1.3 Séries absolument convergentes

Comme les séries a termes positifs sont plus faciles a étudier, nous définissons les séries
absolument convergentes, qui reposent sur cela.

DEFINITION 17 (Série absolument convergente )
Soit Z Uy, UNE SETieE.
n>ng
On dit que la série Z u, est absolument convergente si la série Z |un| converge.

n>ng n>ng

On abrege cela en AC.

PROPOSITION 18

Soit Z Uy une série absolument convergente.
n>ng

Alors, la série Z u, est convergente.

n>ng

Démonstration — Pour n > ng on pose v, = max(0,u,) et w, = —min(0, u,). A 'aide d’une disjonction de cas
selon le signe de u,, on montre que v, et w, sont positifs, que Up = Vnp — Wn, €t que |un| = Unp + Wn.

On a donc v, < |un|, done 370 vp < 370 fuk| < Z;S;LO |ug|. La série de terme général v, est ainsi une

—+o0

P s . . n n
série a termes positifs majorée, donc elle est CV. De méme, on a >7p_ ‘we < 370 luk| < 35050

|uk|, donc
la série de terme général w, est CV.

n _ n n = s cirs
Enfin, on a 57 ue =20, vk — > i, wk. La série de terme général u, est donc CV comme différence de

deux suites CV. O

REMARQUE 19 — Attention ! la réciproque est fausse.
(="
)

n

Nous verrons un contre-exemple par la suite. (la série g
n>1

2 Propriétés des séries et de leur somme

2.1 Linéarité de la somme

ProposiTioN 20
Soit Z up une série convergente. Alors, son terme général u, converge vers 0.

n>ng
“+ oo
Démonstration — Posons S = Z un. Par convergence de la série, S, et S,_1 tendent vers S quand n tend
n=ng
vers +00.
Pour tout n > no + 1 on a u, = Sp, — Sn—1. Donc, un —n—st00 S — 5 =0. O

REMARQUE 21 — Attention ! La réciproque est fausse.

Nous verrons un contre-exemple avec la série g —.
n>1

EXEMPLE 22 — On utilise surtout la contraposée de ce critére : Si le terme général u, ne tend
pas vers 0, alors la série Z uy, est divergente.

n>ng
Par exemple, la série de terme général (—1)" ne converge pas.

PROPOSITION 23 (Linéarité de la somme)
Soient Z U, Z v, deuz séries convergentes, et A € R. Alors :

n>ng nzng
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“+o0o +o0 +o0
1. La série Z (upn, + vy) est convergente, et Z ug + Z v = Z(uk + vg).
n>ng k=0 k=0 k=0
“+o00 “+o00
2. La série Z Au,, est convergente, et Z AU = /\Zuk.
n>ng k=0 k=0

Démonstration — Cela découle des propriétés des suites convergentes (la somme de suites CV est CV, le multiple
d’une suite CV est CV) et de la limite (la limite de la somme est la somme des limites, la limite d’un multiple

est le multiple de la limite). |

REMARQUE 24 — Attention ! On peut ajouter deux séries convergentes entre elles, mais on
ne peut pas déouper une série convergente en deuxr morceaur sans précautions.

Par exemple, en prenant u, = 10%, on a vu que la série E Uy CONVETge.
n>0
On peut bien écrire u, = 2 + 10% — 2, mais les séries g (2+ ﬁ) et E —2 sont divergentes.
n>0 n>0

(on a rajouté et soustrait un terme de série divergente)

PROPOSITION 25

Soient Z Upys Z v, deuz séries, avec l'une convergente et l'autre divergente.
n>ng n>ng

Alors, la série Z Uy + vy est divergente.

n>ng

Démonstration — Considérons E v, divergente. Si ’on suppose que la somme de ces deux séries est conver-

n>ng

gente, alors E vp = ( E Un + Un) — g un, serait convergente, ce qui est absurde. Cette somme est donc
n>ng n>ng n>ng

divergente. O

2.2 Théoréme de comparaison

PROPOSITION 26 (Théoréme de comparaison)
Soient Z U, Z vy, des séries a termes positifs, telles que uy, < v, a partir d’un certain

nzng nzng
rang ni.

e Si la série g vp, converge, alors la série E Uy est ausst convergente.
n>ng n>ng
o Si la série E uy, diverge vers +o00, alors la série g v, diverge vers +o0.

n>ng n>no

Démonstration — Supposons g v, convergente. Pour tout n > ni, on a alors

n=ng
n nyp—1 k=n nyp—1 k=n nyp—1 “+oo
E Up = g Uk + E up < E uk+§ v < E ur + E Vk.-
k=ng k=ng k=n1 k=ng k=n1 k=ng k=n1

La suite des sommes partielles est donc majorée a partir d’un certain rang. Donc cette suite est majorée.
La série E U, est donc a termes positifs et majorée, donc elle est convergente.
n>ng

Supposons maintenant E uy, divergente. Comme la série est a termes positifs, cela veut dire que la suite de
n>ng
ses sommes partielles est non-majorée.

n nog—1
Soit M > 0 un réel. Alors il existe n > n; tel que Zuk > M + Z Uk
k=0 k=0
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n
Cela s’écrit aussi g ur, > M. Donc, on a :

k=n1
nyp—1 np—1 np—1
E vV = E v + E Vi > E vk + E Up > E v + M > M.
k=ng k=ng k=n1 k=ng k=n1 k=ng

n
La suite des sommes partielles g v, est donc non-majorée, donc la série a termes positifs E vy, est divergente.

k=ng n>ng

(I
Nous avons utilisé implicitement ce résultat pour démontrer que la série des 10%(1 - ﬁ)
est convergente. Son terme général est positif et est majoré par 10%, qui est le terme général
d’une série convergente.

2.3 Comparaison série-intégrale

THEOREME 27 (Critére de comparaison série-intégrale)

Soient a € N, et f : [a,+o00[ une fonction positive, continue, et décroissante.
Pour n € [a,+o0[, on pose up, = f(n).

e Pour tout n € Ja+1,4o00[, on a :

f@)dt > f(n) > /TLHL f(t)dt (Méthode des rectangles)

n—1

e Pour tous b € Ja+1,4o00[ et n € [b, 400, on a :

n+1
/ ft)dt > Z f(k / f(t)dt, (Comparaison série-intégrale).
b

k=b+1 +1

o La série Zun est convergente si et seulement si la fonction x — / f(t) dt a une limite
n>a
finie quand = tend vers +oo.

b b41""" nop+1 b b4+1"" non+1

n
Comparaison série-intégrale. Majoration (a gauche) et minoration (a droite) de Z f(k).
k=b+1

Démonstration — On utilise les propriétés de l'intégrale.

Comme la fonction f est décroissante sur [a,+oc[, pour tout ¢ < n on a f(t) > f(n). Dot [  f(t)dt >
f:—1 f(n).dt = f(n).1.

Aussi, pour tout ¢t € [n,4o00[, on a f(t) < f(n). D’ou f:“ fdt < sz f(n).dt = f(n).1.

Une fois ’encadrement par la méthode des rectangles démontré, utilisons-le.

On a alors : Z up = Z f(k). Or

k=b+1 k=b+1

/f ' f t)dt > Z f(k Z /k+1 /bn+1f(t)dt.

k= b+1 k=b+1 k=b+1
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Ainsi :

/n ft)dt > iuk > /HH f(t)dt.

Alors, si x — / f(t) dt (la primitive de f qui s’annule en a) a une limite finie L en +oo, la série Z U, est
n>ng

majorée par f(a)+ L, donc est convergente (série & termes positifs majorée).

Réciproquement, supposons que la série Z un est CV, de somme S. Soit = € [a, +oo[. Posons n = |z].

n>ng
n+1

ona [ fayda < [ " e = /:ﬁ foya+ [ NECE /:H fladat 3, SO

a+1 k=a+1
x a+1 a+1
Donc, / f(z)dzx < / f(z)dx 4+ Sn — f(a) < / f(z)dx + S — f(a).

La fonction = — f(t) dt est croissante majorée sur [a,+oo[, donc elle admet une limite finie en +oo. O
a

EXEMPLE 28 — Pour la série de terme général (pour n > 2), en posant f : x —
n

In(n)

= f(n) et que la fonction f est continue, positive, et décroissante sur

x ln(a:)

1

on remarque que m

1 n
[2, +o0]. Ainsi, la série ; nT(n) a donc la méme nature que la suite (/2 FIn(0) dt)p>2.
La compamison série mtggmle fournit :
n+1 n
/ @ =),
x
3 a:ln kln Sn " 2In(2) — Jy xln(x)
La fonction f est de la forme “, avec u(t) = In(t). Une primitive est donc t — In(In(t)).
n+1 1
Ainsi, on a / n0) dt = [In(In())]5* = In(In(n + 1)) — In(In(3)).
3
Comme lim In(In(n)) = 400, on en déduit que an dr —p— 400 +00. Le théoréme de
n—+00 (z)

comparaison implique que S, —p—100 +00, donc que la série E diverge vers +00.

I
= nln(n)

EXEMPLE 29 — FEtudions la série Z —5. Cest une série a termes positifs. En posant f : x
n
n>1
x%, on a f(n) = n—IQ La fonction f est continue, décroissante, et positive sur [1,+o0l.
Donc, par comparaison série-intégrale, on obtient :

Une primitive de f est x — —= Onadonc§—n—+1+l<5’ <————|—1
La suite S, est ainsi majorée par une suite convergente, donc la suite S est magjorée (magjorée

par 3 par exemple). D’aprés le critére de convergence des séries a termes positifs, on en déduit

que la série Z 2 est convergente.

n>1
Déterminons un équivalent du reste R,, avec un second encadrement série-intégrale.
Sotentn>1etm>n+1. On a alors

m—+1 m 1 m q
—dz < — _/ —dx
/”“ v kzn;ﬂ 2 S
m
1 1 1
1
Cela donne n+1 — 1 < Z = < ——
k=n+1

Ces trois suites convergent pour m — +o0o. D’apreés le théoréme de comparaison, leurs limites
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b .1 1
vérifient donc : — < R, < "

n+
On a alors nL_H < % <1, donc % —n—+too 1 d’aprés le théoréme des gendarmes.
On obtient ainsi que R, ~ %
“+o00
Pour obtenir une valeur approchée a 0.01 prés de S = Z 72 il faudra donc déterminer Sigo,
k=1

1
car S — S100 = Ri00 >~ 155

2.4 Séries a termes généraux équivalents

THEOREME 30 (Séries & termes généraux équivalents)
Soient E Un, E v, deur séries a termes positifs, telles que u, ~ vy,.
n>ngo n>ng

Alors E Uy, est convergente si et seulement si E vy, est convergente.

n>ng n=ng
“+oo —+00
e 5j g U, g vy, sont convergentes, on a E Up ~ g Vg -
n>ng n>ng k=n-+1 k=n-+1

Les suites des restes de ces séries sont équivalentes.

n n
o 5i E Uy, E vy, sont divergentes, on a E Up ~ E V.

n>ng n>ng k=ng k=no
Les suites des sommes partielles de ces séries sont équivalentes.

Démonstration — Ce théoréme sera revu et démontré en deuxieéme année. Il est extrémement utile car il permet

d’étudier plus facilement la convergence d’une série, en s’aidant de séries ”"de référence” que nous allons étudier

ensuite. O

EXEMPLE 31 — Pour la série des 10%(1 - H%)’ cette série est a termes positifs, et on a
1 1 1

or (1 = 1+n15) ~ Tom-

Comme la série des 10% est convergente, cette série est convergente.

De plus (par rapport au théoréme d’encadrement de séries), on sait que les suites des restes

sont équivalentes.

Pour la série des -

on a vu que le reste d’indice n, Ry vaut :

0™
10 1
fon =g qgnet
“+o00
o 1 1 10 1
On en déduit donc que Z W(l — m) ~ 9 10ntL

k=n+1
Cette suite a elle aussi une vitesse de convergence extrémement rapide. Il suffit de calculer la

somme des premiers termes pour avoir une bonne approximation de la somme de la série (de
sa limite).

2.5 Convergence d’une série via les croissances comparées

METHODE 32 (Montrer qu’une série est convergente via les croissances comparées)

Cette méthode s’applique aux séries a termes positifs, dont le terme général est de la forme
‘g—:, avec b, un terme qui domine a,, d’aprés les croissances comparées, et de la forme n® avec
c>1, q" avec ¢ > 1, n!, oun™.

L. Qn
Alors, la série g — est convergente.
n>ng

br,
En effet :
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. 2 \
e Si b, est de la forme q" (¢ > 1), ou n!, ou n™, alors on aura "bf" —n—too 0 d’apres

les croissances comparées.
. . 2 . .
Donc, il existe ng > 1 tel que pour tout n > ng on aura "bﬂ < 1, c’est-a-dire ‘g—" < %
n n
Unp,

Le terme général de la série E , Série a termes positifs, est donc magjoré o par-
n>ng
tir d’un certain rang par le terme général d’une série convergente. Par théoréeme de

comparaison, cette série est donc convergente.

n

i 1+5 . .
e Si by, est de la forme n® avec ¢ > 1, alors on aura *——** —, 0 d’aprés les croissances
n

comparées.

<

1+3 N
Done, pour n assez grand, on aura "——* < 1, c’est-a-dire 3* < ﬁrc .
n n n 2

. 1 . .
La série g — ¢ est convergente (cf. séries de Riemann). Le terme général de la
2
n>ng n
L. Qn, PR . s . . s
série g . est donc majoré a partir d’un certain rang par le terme général d’une
n>ng n
série convergente. Par théoréme de comparaison, cette série est donc convergente.

Cette méthode demande plus de précision pour étre utilisée mais permet de montrer faci-
lement que d’autres séries convergent.

1 10 .
EXEMPLE 33 — Pourn > 2, on pose u, = “n(;”‘) et v, = g—n Montrons que les séries E Up €t
n>2
E vy, sont convergentes.
n>2
Premiérement, ce sont deux séries a termes positifs.
\ . , 10 ,,2
e D’apres les croissances comparées, on a "5~ —rp s ioo 0.
. . 10 )2 N 10
Done, il existe ng > 2 tel que pour tout n > ng on a "5 < 1, ¢’est-a-dire B < 3.

) 1 2 ) 2 n
Comme la série de terme général —; converge, on en déduit par théoréme de comparaison que
la série E vy, est convergente.

n>2
3
D’ s 1 . . In(n)n2 __ In(n) 0
o D’apres les croissances comparées, on @ — 57— = —7 —n—too 0.
n
3
o 1 bl g1
Donc, il existe ny > 2 tel que pour tout n > ny on a M <1, c’est-a-dire “@ < 1.
Y n ) n n3/2

Comme la série de terme général ng%com/erge (cf. séries de Riemann), on en déduit par théo-

reme de comparaison que la série E uy, est convergente.
n>2

Dans le cas de la suite (up)n>2, on a di choisir un terme de la forme nd

avec d < 2 pour
que up.n® =100 0 par croissances comparées, et avec d > 1 pour que la série des ﬁ s01t

convergente (cf. séries de Riemann). Le nombre d = % respecte ces deuz conditions.

2.6 Séries et inégalité de Taylor-Lagrange

METHODE 34 (Montrer une convergence et calculer une somme avec I’inégalité de Taylor-La-
grange)

Cette méthode s’applique aux séries a termes positifs, dont le terme général est de la forme
W, avec a,x € R et f une fonction de classe C*> sur [a,x].

En effet, la somme partielle Sy, correspond alors a la partie polynomiale du développement li-
mité de f en a, a l'ordre n, évaluée en x.

Linégalité de Taylor-Lagrange nous donne :

T — a‘n—l—l‘ maXie(a,z] ‘f(n—’—l) (t)|
(n+1)!

" (z—a)ffP(a

k=0

10
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lz—a|" ! maxyc(q,q) [£" D (1)
(n+1)!

Sn| = n—+00 0 d’apreés le théoreme des gendarmes.

Cela implique que Sy, —n—s+00 f().

Si le terme

converge vers 0 quand n — +o00, alors on aura |f(x) —

—a)"f(n)
Ainsi, la série Z (z—a) 'f (@) est convergente, et sa somme vaut S = f(x).
n!
n>0

in(™(1).(=1)"
EXEMPLE 35 — On consideére la série Z w

n>0

. (k) —a)k
Onposea=1,z=a—1=0, et f=sin. Pourn € N on a alors S :2220%. On
reconnait alors que Sy est la partie polynomiale du développement limité de sin en 1, a l'ordre
n, évaluée en 0.

n!

[—1]" 1 max;eo,1) |sin( 1) (1)]
(n+1)!
On a sin™™) = + cos ou +sin selon la valeur de n, donc ]sin(”+1) | <1.

Dot |sin(0) — S,| < m

Comme ﬁ —n—too 0, alors on a |sin(0) — Sp| —n—t00 0 d’aprés le théoréme des gen-
darmes.
Cela implique que Sy, —n—s+00 sin(0) = 0.

in (1) 1.(=1)"
Ainsi, la série Z M

n!
n>0

L’inégalité de Taylor-Lagrange nous donne : |sin(0) — S, | <

est convergente, et sa somme vaut 0.

REMARQUE 36 — L’inégalité de Taylor-Lagrange permet de montrer a la fois qu’une série est
convergente tout en déterminant sa somme. L’idée est de montrer que pour un nombre f(x)
bien choisi on a |f(z) — Sp| = n—+too 0.

Contrairement a la comparaison série-intégrale, aux équivalents, ou aux croissances comparées,
cette méthode s’applique sur des séries qui ne sont pas forcément a termes positifs.

1l faut par contre pouvoir identifier une partie polynomiale de développement limité, et arriver
|z—a|" ! max;e (g0 [FT(2)]
(n+1)! ’

a simplifier

REMARQUE 37 — Les théoréemes ou méthodes pour déterminer la convergence ou calculer la

somme d’une série Z up sont nombreuz (comparaison, équivalence, croissances comparées,
n>ng

série classique, encadrement série-intégrale, inégalité de Taylor-Lagrange).

1l est courant que plusieurs de ces résultats s’appliquent sur une méme série. Dans ce cas, il

s’agit de choisir la méthode qui fournira le résultat le plus rapidement possible.

L’objectif est de maitriser ’ensemble de ces résultats afin de pouvoir étudier le plus grand

nombre de séries possibles.

3 Séries usuelles

3.1 Séries télescopiques

DEFINITION 38 (Séries télescopiques)
Soit Z Uy UNE SETieE.
n>ng
On dit que Z uy, est une série télescopique s’il existe une suite (vy)n>n, telle que, pour

n>ng
tout n > 0, on @ Up = Vpt1 — Un.

On écrit ausst Z (Un+1 — p).

n>ng

11
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PROPOSITION 39 (Convergence des séries télescopiques)
Soit Z Uy une série télescopique, avec Un = Upy1 — Up.
n>ng

Alors, la série télescopique Z (Un4+1 —vn) est convergente si et seulement si la suite (Vp)n>n,

n>ng

est convergente.

+oo
De plus, si la suite (vy)n>n, converge, on a g (Vg1 — vg) = ngrfoo(vk) — Upg-

k=ng

n n
Démonstration — La somme partielle est une somme télescopique. On a donc : Z U = Z Vg1 — Uk =
k=ng k=ngo

Un+1 — Ung-
Cela permet d’obtenir tous les résultats de I’énoncé. O

o - "y 1
EXEMPLE 40 — On veut étudier (nature, somme) la série de terme général u, = In <1 — 2) ,
n
pour n > 2.
C’est une série a termes négatifs. Transformons ’expression :

wp = (1 — &) = (25l = (=0 — (0 — 1) 4+ In(n + 1) — In(n) — ln(n) =

n.n
(In(n—1)—In(n))+(In(n+1)—In(n)) On reconnait deux termes générauz de séries télescopiques.
n

On a (In(k — 1) — In(k)) = In(1) — In(n) = 0 — In(n).

k=2
Et, Y (In(n+ 1) —1In(n)) = In(n + 1) — In(2).
k=2
Done, S i = ~In(n) + In(n + 1) ~ In(2) = (" L @) =ma + %) “In(2).
k=2

Cette suite est donc convergente, vers —In(2).

+oo
1
Ainsi, la série est convergente, et Zln <1 — k2> = —1In(2).
k=2
On peut remarquer ici que les deux séries télescopiques identifiées sont divergentes, mais que
leur différence est convergente (les "termes dominants” se compensent).

3.2 Séries géométriques

DEFINITION 41 (Séries géométriques)

Soit g € R.

La série Zq" est appelée série géométrique de raison q.
n>0

PROPOSITION 42 (Convergence des séries géométriques)

Soit ¢ € R.
e La série géomélrique Zq" est convergente si et seulement si |q| < 1.
n>0

+00 1
Dans ce cas, on a A

M=

k=0

n+1

On a de plus R, ~ ql,q )

e Pour q =1, la série diverge vers +00, avec Sy ~ n.

e Pour q = —1, la série diverge. Elle est périodique de période 2.
. . n+1
e Pour q > 1, la série diverge vers +00, avec Sy ~ ﬁ.
. nt1
e Pour ¢ < —1, la série diverge, avec |Sy| ~ ‘Fll_q‘ )

12
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Démonstration — On peut remarquer de plus qu'une série gdométrique est une série a termes positifs lorsque
q=>0.

Si g = 1 la série est divergente vers +oo car les sommes partielles valent S, =n+ 1 ~ n.
1— qn+1
I—q
En utilisant les résultats sur la convergence de ¢", on en déduit que si |¢g| < 1 la suite des sommes partielles

Si g # 1, les sommes partielles sont des sommes géométriques : S, =

1
converge vers 1q*

n+1_ n+1
OnauaulorsRn:S—Sn:ﬁ—ql_q1 = ql_q.
Si g = —1ousi |g| > 1, les sommes partielles ne convergent pas.
Pour g = —1 la suite S, est périodique de période 2 (elle prend les valeurs 1 et 0).
1— n+1
Pour |g| > 1, on a |S,| = M
|1 —q B »
Or, on a |¢|"*" — 400, donc ll‘;ﬁTl‘ = Iﬁ — 1] = n—+00 1. Ainsi, on obtient que |Sy| ~ |“11‘7q| .
Si g > 1, cela implique que S, diverge vers +oo. Dans le cas ¢ < —1 on a divergence, mais le signe de S,, alterne.

O

3.3 Série harmonique, séries de Riemann

DEFINITION 43 (Série harmonique)

. 1 . .
La série Z — (avec n > 1) est appelée série harmonique.
n>1
Son terme général est %

PROPOSITION 44

La série harmonique E — est divergente.
n
n>1
n

1
Plus précisément, on a S,, = ™ In(n).
k=1

Démonstration — Pour démontrer cela on utilise le théoreme de comparaison série-intégrale, avec la fonction
T L
k41 g 1 k=1
PourtouthQ,ona/ 7dtggg/ — dt.
k

Ainsi, on obtient :

In(n+1) —In(2) < <lIn(n—1)—In(1)
Onaln(n+1)=In(n(1+ 1)) =In(n) + In(1+ 1) ~ In(n), et de méme In(n — 1) = In(n) + In(1 — 1) ~ In(n).

Comme les membres de gauche et de droite sont équivalents & In(n) quand n tend vers +oo, on obtient que
n

Z% ~ In(n), donc que S, ~ In(n). O
k=2
La série harmonique est divergente, mais treés lentement (a vitesse logarithmique). Pour

n = 1.000.000 = 10°, la somme partielle est équivalente & In(10°) = 61n(10) ~ 13, 8.

DEFINITION 45 (Séries de Riemann)

Soit a € R. )

La série Z — est appelée série de Riemann de parametre «.
n>1 n

Son terme général est n%

13
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PROPOSITION 46 (Convergence des séries de Riemann)
Soit a € R.

1
e Sia<1, la série de Riemann Z — est divergente.
n

n>1
1
a—1ne—1"
Pour ao=1 on a S, ~1In(n). (série harmonique)

Pour a <1, on a S, ~

e Sia>1, la série de Riemann g — est convergente.
n

= 1
De plus, on a R, = Z

_—
n®  (a—1)no-1
k=n+1
Démonstration — Les séries de Riemann sont des séries & termes positifs.

oSiaSl,pournZlonan%Z%.

- 1 . , - . . J— 1
Comme la série E — est divergente (c’est la série harmonique), par comparaison on en déduit que E —
n
n>1 n>1
diverge vers +o00.

Pour obtenir un équivalent de Sy, on effectue une comparaison série-intégrale avec x — w%

e Si o > 1, on refait une comparaison série-intégrale, avec x +— m%

k+1 1 k=1 4
PourtouthZona/ —dtgfg/ — dt.
b te k & to
z ] 1 1 1z 1 1
On a fa @ = [—(a—l) to‘*l]a = (a—Dao=1 = (a—azo—1°

Comme a — 1 > 0, on trouve que W tend vers 0 quand * — +o0o, donc l'intégrale en question est
convergente quand x — +00, donc elle est majorée.
Cela permet de montrer que S, est majorée, ce qui implique que S,, converge, car la série est a termes positifs.

R . L. . 1 L .
Avec la méme méthode que pour la série harmonique, on encadre le reste R,, = Z o AT deux intégrales, qui
k>n

O

sont toutes deux équivalentes a m
Les séries de Riemann sont un exemple fondamental de séries convergentes/divergentes. Dans
beaucoup de cas, on se contente de comparer une série de terme u, a une série de Riemann,
pour conclure sur sa convergence ou non.

En particulier, on trouve que la série des % est convergente. Des théoremes d’analyse en PT

7T2

montreront que Z % = 5 Pour le moment, on sait que cette série converge vers sa somme
n>1

a la vitesse de % (son reste Ry, est équivalent a %) La série des % est convergente, et converge

vers sa somme a la vitesse de ﬁ

3.4 Séries exponentielles

DEFINITION 47 (Séries exponentielles)
n

. Ve . :1: 7z ’ 4 . A\
Soit x € R. La série E — est appelée série exponentielle de parameétre x.
n!
n>0
Ve Ve n
Son terme général est Ty.

PROPOSITION 48 (Série exponentielle)

n

x
Soit x € R. Alors, la série exponentielle E - est absolument convergente.
n!
n>0

—+o0 o
De plus, a Z i exp(z).
k=0

Démonstration — Soit x € R. Méme si cela n’est pas nécessaire dans cette preuve, montrons que cette série est

convergente a ’aide des croissances comparées. Pour montrer que cette série est convergente, montrons qu’elle
n

s ‘s €T PET s
est absolument convergente. La série de terme général — - est une série a termes positifs, montrons qu’elle est
n!

14
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majorée.

n, 2
D’apres les croissances comparées, on a |z|n,” —n—+o00 0. Donc, il existe ng € N tel que pour tout n > ng on a

z|"n? . z|™
% <1, ce qui donne % < L.
n: n: n
‘zl’n/
n!

La série de Riemann de terme général n—lz est convergente, donc par critére de comparaison la série de terme

est convergente.
n

sos x -
Donc, la série E — est absolument convergente. Cette série est donc convergente.
n!
n>0
On remarque que la somme partielle S,, correspond a la partie polynémiale du développement limité de la

fonction exp, en 0, a 'ordre n, évaluée en .

lz—0|" 1. max, ¢ (g, | exp" ) (£)
(n+1)! .
On a exp™™) = exp, et max(y ) exp = exp(x) ou exp(0) (selon si z est positif ou négatif).

L’inégalité de Taylor-Lagrange nous donne alors : |exp(z) — Sn| <

Comme exp est croissante, on aura toujours maxig . exp = max(e”, e*) = max(1,¢e”).

5 N ™ max(1,e”
D’ott |exp(x) — Sn| < %&.e)

R . . , 2" max(1,e”)
D’apres les croissances comparées, *—roeoC )

] —n—+oo 0. Donc on a | exp(z) —Sn| —n—+o0 0 d’apres le théoréme

des gendarmes.

Cela implique que Sp —n—+o00 €xp(z).

+oo
Ainsi, on a Z % = exp(x). O
k=0
+oo
EXEMPLE 49 — Quand on choisit x = 1, on obtient Z i e.
k=0 "
On peut donc calculer une valeur approchée de e de cette facon, et retrouver que e >~ 2,7.
400 (_1)k: 1

De méme, on a E = - ~0,37.
e
k=0

k!

3.5 Séries alternées, séries logarithmes

EXEMPLE 50 — (Série alternée)

Voici un exemple de série convergente, mais pas absolument convergente.

(_1)n+1

Pourn > 1, on pose u, = , et Uon étudie la série associée.

On remarque que le signe de u, alterne entre positif et négatif, alors que la valeur de |uy|
décroit vers 0.

Pour montrer que la suite des sommes partielles (Sy)n>1 est convergente, on va séparer [’étude
des termes d’indices pairs et impairs, et utiliser le critére des suites adjacentes.

La suite (Sopn)n>1 des termes d’indice pair est croissante car

(_1)2n+3 (_1)2n+2 1 1
S — SS9, = = — > 0.
s Iy R P | mt2 o+l

De méme la suite (San+1)n>1 des termes d’indice impairs est décroissante (on a Sopt3—Son+1 <
0).

De plus, la différence Saop1 — Son est égale a

_1)2n+2

2n+1
Les deuz suites (Son)n>1 €t (San+1)n>1 sont adjacentes, et convergent donc vers une limite

commune. Ainsi la suite (Sy)n>1 est convergente.

, et tend donc vers 0.

o
-1 n+1
En fait, inégalité de Taylor-Lagrange permet de montrer que Z L =1In(2).
n
n=1
Par contre, la série des |uy,| est la série de terme général %, qui n’est pas convergente.

(=t

La série des est convergente, mais pas absolument convergente.

PROPOSITION 51 (Séries logarithmes)

15



Lycée du Diadéme - Te Tara o Mai’ao PTSI, Année 2025-2026

. - o -1 n+lxn
Soit x €] — 1,1[. Alors, la série de terme général ) est convergente. De plus, on a :

+

0 (_1)k+1$k
Z =In(1+ x).
k

k=1
Démonstration — Cette série est une série dite alternée (HP). Montrer sa convergence se fait comme dans
Pexemple précédent. On montre que sa somme vaut In(1 4 z) avec I'inégalité de Taylor-Lagrange. O
REMARQUE 52 — Les sommes de séries géométrique, exponentielle, logarithme donnent les

fonctions 72—, exp(z), In(1 + ).

Les termes généraux de ces séries corespondent auzx parties polynomiales des développements

. ey s n —1 n+1xn

limités de leurs sommes (", %, #}
ni n

Ces séries font partie de la famille des séries entiéres (de la forme g anz™). Ces séries défi-
n>0
nissent des fonctions qui vont pouvoir étre décomposées avec la formule de Taylor tout comme

. , (n) (n)
les polynomes : le coefficient devant x™ est ! n!(()) (donc a,, = fT,(O))

Ce lien fort entre DL et séries entieres est développé en 2e année et en LS.

4 Bilan des méthodes

Lorsque 'on est face a une série Z Uy, on regardera plus ou moins dans ’ordre :
n>ng
e Le terme de départ de la série.
Cela permet d’écrire les sommes partielles S, sans erreurs.
— Les premiéres valeurs des sommes partielles S,,.
Cela permet parfois de constater des valeurs particulieres, une croissance, des oscilla-
tions, une divergence.
e Le signe de u, quand n tend vers +ooc.
Si le signe de u,, est constant a partir d’un certain rang, on pourra utiliser les résultats
du cours sur les séries a termes positifs.
Sinon, on ne peut pas utiliser ces résultats (les appliquer serait totalement faux).
e La limite de u, quand n — 4oc0.
Si u, — 0 la série peut étre convergente.
Sinon, elle est divergente.
e L[’expression de u,, par rapport aux séries classiques.
Si u, s’écrit comme une combinaison linéaire de séries classiques (ex : u, = 2% — %, on
peut obtenir la nature de la série a partir des séries classiques.
Attention, cela ne fonctionne pas pour les produits de termes généraux (la série de terme
1 1est CV)
e Si u, s’écrit de la forme v,11 — vy
Cela donne une série télescopique, qui se calcule alors tres facilement.
e Si u, s’écrit de la forme w
contenant a.

, avec f une fonction de classe C*° sur un intervalle

La somme partielle S,, est alors une partie polynémiale de DL, (a), et l'inégalité de
Taylor-Lagrange peut permettre de montrer que la série converge et que sa somme vaut
f(a).

e Un équivalent de u,. (Pour séries a termes positifs)
Pour obtenir un équivalent on pourra utiliser une factorisation par le terme dominant
ou des DL (mais pas les croissances comparées).
Il n’est pas toujours possible d’obtenir un équivalent plus simple.
En général, quand on obtient u, ~ v,, le terme v,, est un terme général de série usuelle
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(a4 une constante pres).
Alors la nature de Z Uy, est la méme que celle de Z Un.-

n>ngo n>ng

e Siu, s’écrit de la forme ‘g—: avec la possibilité d’appliquer les croissances comparées entre
an et by. (Pour séries a termes positifs)
Si b, est de la forme n® (b > 1) ou a” (a > 1) ou n! ou n™, on peut alors montrer que
la série est convergente en utilisant la méthode des croissances comparées, grace a une
majoration a partir d’un certain rang.

e Une majoration/minoration de u,. (Pour séries & termes positifs)
Il suffit que la majoration soit vraie a partir d’un certain rang.
En général une majoration est plus technique a obtenir qu’un équivalent.

Siu, < v, avec Z v, CV, alors Z u, est CV.

n>ng n>ng
Si v, < u,, avee g v, DV, alors g Uup, est DV.
n>ng n>ng

e Un encadrement série-intégrale. (Pour séries a termes positifs)
On écrit u,, comme f(n), avec f une fonction continue, positive, décroissante.
Il faut pouvoir calculer une primitive F' de f, sinon la méthode n’est pas utile.
On fait un dessin au brouillon de la courbe de f, des valeurs de u,, et des intégrales de
f entre n — 1 et n et entre n et n 4 1.
Si F(n) est majorée quand n — o0, alors la série Z up, est CV. Si F(n) — +oo alors
n>ng
la série Z uy, est DV.

n>n
On peut _dg plus obtenir un équivalent de R, ou de S, en changeant les bornes de
I’encadrement série-intégrale.
e Si u, n’est pas toujours positif, étudier la série Z |un| et voir si |uy| vérifie 'un des
n>ngo
criteres de convergence précédents.
La série Z uy, sera alors absolument convergente, ce qui implique qu’elle est conver-

n>no
gente.

Ces éléménts permettent d’étudier la majorité des séries que vous rencontrerez. Les pre-
mieres informations ne sont pas suffisantes pour montrer la CV/DV d’une série, mais permettent
de mieux comprendre comment se comporte la série et ainsi trouver le résultat/le calcul qui
permet de trouver la nature de g U -

n>ng
Pour les exemples et contre-exemples classiques, il faut se référer aux séries usuelles (%, #,
1 1 (=" L)
Vn'2n om0 onl/le

Pour le calcul de la somme d’'une série, les approximations (équivalent, DL, croissances
comparées, majoration/minoration) sont inutiles.
En général il faut réécrire le terme u,, comme une somme de termes de séries usuelles, ou utiliser
I'inégalité de Taylor-Lagrange, ou déterminer une relation particuliere pour S,.
Calculer la somme d’une série est bien plus compliqué en général que déterminer sa conver-
gence/divergence.

5 Application : développement décimal d’un nombre réel

L’application des séries que nous voyons dans ce chapitre est le développement décimal d’un
nombre réel.
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THEOREME 53
Soit © € R un réel.

Alors il existe une suite d’entiers (an)n>0, avec ag € Z et an € {0,...,9} pour n > 1, telle
que :
+o0
an
T = —.
7
= 10

De plus, si on impose que la suite (an)n>0 n'est pas constante égale a 9 a partir d’un certain
rang, celle-ci est unique.
Les nombres de la suite (an)n>0 forment le développement décimal du nombre réel x.

Démonstration — Avec la définition donnée, les chiffres constituant la suite (& part ap qui est la partie entiere
de z) sont simplement les décimales du nombre x, écrit sous forme décimale usuelle. On pose : ap = |z et, pour

tout n € N*, a,, = |10z | — 10[10" 2.
Pour tout n € N, on pose b, = Lllo(;“ . On peut alors remarquer que pour n > 1 on a {gw = by, — bp—1.
Par télescopage, on obtient donc : Y7 < = ao + >, bk — bk—1 = ao + (bn — bo) = |z] +bn — [x]| = bn.

Or,ona: 10"z —1< [10"z] < 10"z, donc 10:0””;1 =z — 10% <b, < 110(;:? = .

Ainsi, d’apres le théoréme des gendarmes, on a b, —p—s 400 -

La série ) - 7o est donc une série convergente, de somme égale & x. O
s a
REMARQUE 54 — Toute série de la forme Z ﬁ avec ag € Z et ap, € {0,...,9} pour tout
n>0
n € N* s’avére étre convergente.
9

. . . i a

A part ag cette série est a termes positifs, et pour n > 1 on a 1o < 1o -

Les termes de la série sont majorés, a partir de n = 1, par ceuzr d’une série géométrique (de
. 1 ;. 9 s . s .

raison 7). Comme la série ), - 15z est convergente, on en déduit par critére de comparaison

a
que la série Z # est convergente.

n>1
L. an,
Donc la série g Ton est convergente.
n>0
Pour S = Z:i% 1gw, les nombres ap, sont le développement décimal de S.

THEOREME 55

Soit x € R un nombre réel.

Alors x est rationnel si et seulement si son développement décimal est périodique a partir d’un
certain rang.

Démonstration —
e Six = P est un nombre rationnel, on peut obtenir les chiffres de la suite (an)n>0 en effectuant la division

euclidienne de p par q. Le nombre de restes possibles a chacune des étapes de cette division étant fini, on finira
par obtenir & une certaine étape un reste déja obtenu précédemment. Alors, les étapes suivantes vont répéter
exactement les mémes opérations que précédemment. A partir d’un certain rang, la suite des décimales de x est
périodique.
e Réciproquement, supposons que la suite (an)n>0 des décimales de z est périodique & partir d’un certain rang.
Posons no + 1 le rang a partir duquel la périodicité apparait, et posons r la longueur de la période. Notons
b1,...,br les entiers qui composent la période.
On pose y = (£—ao, a1 ... any).10™. (On retire & x sa partie entiére et ses no premiéres décimales, et on multiplie
le tout par 10™°. a

o — no+k
On a alors : y = 2 10k
Autrement dit, on a y = 0,b1b2...b,b1b2... by .. ..
Le nombre y est un nombre dont les décimales sont périodiques, dés la premiere décimale (période r, et le motif

= 0, Ang4+1Ang4+2 - - .-

est bi...by).
AIOI‘S, 10r.y = b1b2 e br,ble e b»,» e e
Et donc,
10Ty7y= (blbg...br,blbz...bT...)70,b1b2...br...:blbz...br251.10T+b2.1OT71+...+br_1.10+br.
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On en déduit donc que (10" — 1).y est un entier. Donc y est un rationnel.
Comme on a y = (x — ao,a1...an,).10™, on a z = 10%0 — @p,a1 ...an,. Donc, x est un rationnel (comme

quotient et somme de rationnels). O

EXEMPLE 56 — Prenons x = 2,1567423781378137813781 ... (les décimales répétant le motif
3781), et trouvons une forme rationnelle de x.

On a : (x —2,156742).105 = 0,37813781 .. ..

Donc (x —2,156742).10'° = 3781,37813781.. . ..

Ainsi, on a (v — 2,156742).101° — (z — 2,156742).10% = 3781.

Cela donne : (x — 2,156742).10%.(10* — 1) = 3781.

Dot : x — 2,156742 = 355
Enﬁn g = —378l 49 15.6742 _ _ 3781 2156742 _ 3781+42156742.9999

) 106.9999 T ) 106.9999 + 106A - ) 106.9999 R ) )
On a bien obtenu une écriture rationnelle de x, méme si cette écriture est surement simplifiable.

Bilan du contenu nécessaire a maitriser :
— Définition d’une série g un. Somme partielle S,,. Nature (convergente/divergente),

n>ng
(o) +oo
somme E Uy, Teste R, =5 — 5, = g ug. Série absolument convergente.
n=ngo k=n-+1

— Connaitre les propriétés des séries convergentes : Le terme général u, tend vers 0, le
reste tend vers 0, somme et multiples de séries CV.

— Savoir prouver correctement la convergence d’une série : Critére de convergence des séries
a termes positifs. Propriété des séries absolument convergentes. Encadrement de séries
a termes positifs. Critére de comparaison série-intégrale. Séries a termes généraux équi-
valents. Méthode des croissances comparées. Méthode de 'inégalité de Taylor-Lagrange.

— Connaitre les exemples de référence (déf, nature, somme) : Série géométrique Zq",

n>0

. . . . 1 . . 1
série télescopique g (Un41 — vp), série harmonique E —, séries de Riemann E —,
n n

n>ng n>1 n>1
. . o ) (="
série exponentielle g —» série alternée g .
n! n
n>0 n>1

— Savoir utiliser les exemples de référence pour montrer qu’une série Z uy, est convergente
ou divergente (comparaison, équivalent).
Savoir déterminer la somme d’une série a partir des séries de référence, ou avec 'inégalité
de Taylor-Lagrange.

— Savoir effectuer un calcul de somme de série dans un cas simple ou classique.
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