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Chapitre 20
Séries numériques
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5 Application : développement décimal d’un nombre réel 17
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Introduction

Pour une suite (vn)n≥n0 , la notion qui nous intéresse le plus est la convergence : quand on
prend n aussi grand que l’on veut, comment se comporte le terme vn ?
C’est cette notion de convergence qui donne beaucoup de résultats mathématiques, et qui est
aussi utilisée dans certaines structures en analyse (continuité, dérivabilité).
Pour une série, au lieu de prendre des nombres un et de regarder leur comportement, on
considère les sommes

∑n
k=n0

uk et on regarde leur comportement.
Une série est une suite de sommes, où pour chaque indice suivant on rajoute un terme à la
somme.

1 Série, convergence, somme

1.1 Séries convergentes, sommes

Définition 1
Soit (un)n≥n0 une suite réelle.

On définit la série de terme général un comme la suite (Sn)n≥n0, avec Sn =

n∑
k=n0

uk.

Le nombre Sn est appelé somme partielle de la suite (un)n≥n0.

En général, on note
∑
n≥n0

un = (Sn)n≥n0.

Remarque 2 — En général les séries sont définies à partir de 0 (n0 = 0), ou à partir de 1.

Attention ! L’expression
∑
n≥n0

un désigne la série de terme général un, cela désigne une suite

(et pas un nombre réel). Nous définirons par la suite le nombre réel

+∞∑
n=n0

un (s’il existe), et il

ne faudra pas confondre les deux notations.

Exemple 3 — La série de terme général 1
n2 (pour n ≥ 1) est définie par Sn =

k=n∑
k=1

1

k2
.

Attention à ne pas confondre un et Sn.

Les premiers termes de la suite (un)n≥1 sont u1 = 1 ; u2 =
1
4 ; u3 =

1

9
.

Ceux de la série (Sn)n≥1 sont S1 = 1 ; S2 = 1 +
1

4
=

5

4
; S3 = 1 +

1

4
+

1

9
=

49

36
.

Définition 4 (Convergence de séries, somme)
Soit (Sn)n≥n0 la série de terme général un.

On dit que la série
∑
n≥n0

un est convergente si la suite (Sn)n≥n0 est convergente.

Et, la somme de la série
∑
n≥n0

un est la limite de la suite (Sn)n≥n0, notée

+∞∑
k=0

uk.

Si la série n’est pas convergente, on dit qu’elle est divergente.
On définit la nature d’une série comme l’information sur sa convergence ou divergence.

Remarque 5 — Attention ! La convergence de la suite (un)n≥n0 et celle de la série
∑
n≥n0

un

ne sont pas du tout la même chose !
Ces deux suites ont des liens entre elles (on le verra par la suite), mais il faut bien voir que ce

1



Lycée du Diadème - Te Tara o Mai’ao PTSI, Année 2025-2026

sont deux suites différentes.

Attention ! La somme
+∞∑
n=n0

un d’une série convergente est définie comme la limite d’une suite.

Une somme infinie est définie comme la limite d’une suite de sommes finies.
Nous verrons comment manipuler ces sommes infinies, mais cela ne se fait pas aussi facilement
que les sommes finies. Principalement car il faut vérifier à chaque fois que la série associée est
convergente.

Quand vous êtes en face d’une série
∑
n≥n0

un, il faut toujours commencer par étudier la conver-

gence de celle-ci (voir si la suite des sommes partielles

n∑
k=n0

uk convege ou non).

Exemple 6 — Pour n ∈ N, posons un =
1

10n
, et étudions la série

∑
n≥0

un.

On a Sn =

n∑
k=0

1

10k
=

1
10n+1 − 1

1
10 − 1

.

Comme ( 1
10)

n →n→+∞ 0, on obtient donc que la somme partielle Sn converge vers
0− 1
1
10 − 1

=
10

9
.

On en déduit que la série
∑
n≥0

un est convergente, et sa somme vaut
10

9
.

Ainsi :
+∞∑
n=0

1

10n
=

10

9
.

Exemple 7 — Pour n ∈ N∗, posons vn = 2 − 1
n . Alors la suite (vn)n≥1 est convergente, de

limite 2.
Regardons la nature de la série

∑
n≥1

vn.

Pour tout k ≥ 1 on a vk ≥ 1, donc
n∑

k=1

vk ≥
n∑

k=1

1 = n.

D’après le théorème de comparaison, la suite des sommes partielles (

n∑
k=1

vk)n≥1 diverge vers

+∞.
La série

∑
n≥1

vn est divergente vers +∞.

On écrira parfois :

+∞∑
n=1

vn = +∞.

Remarque 8 (Relation de récurrence) —
Soit (un)n≥n0 une suite, et soit (Sn)n≥n0 la suite des sommes partielles de la série associée.
Alors, pour tout n ∈ Jn0,+∞J, on a Sn+1 = Sn + un+1.
La suite (Sn)n≥n0 est construite comme une suite récurrente, là où la suite (un)n≥n0 ne l’est
pas forcément.

Exemple 9 — Il est bien plus facile de montrer qu’une série est convergente que de calculer

sa limite. Souvent, on saura que la série
∑
n≥n0

un est convergente, mais sans pouvoir calculer

autrement la valeur de cette série.
Posons par exemple, pour n ≥ 0, un = 1

10n (1−
1

1+n15 ).
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On a un ≥ 0, donc la relation

n+1∑
k=0

uk = un+1+

n∑
k=0

uk implique que la suite des sommes partielles

(

n∑
k=0

uk)n≥0 est une suite croissante.

De plus, on a un < 1
10n , donc

n∑
k=0

uk ≤
n∑

k=0

1

10k
=

1
10n+1 − 1

1
10 − 1

≤ 1

1− 1
10

.

La suite des sommes partielles (
n∑

k=0

uk)n≥0 est donc majorée.

Une suite croissante majorée est convergente, donc la série
∑
n≥0

un est convergente.

Mais, on ne sait pas calculer la valeur de sa somme

+∞∑
k=0

uk. (on sait seulement que c’est un

réel compris entre 0 et 10
9 )

Remarque 10 — Pour une série
∑
n≥n0

un convergente, on pourra abréger cela en CV.

Pour une série
∑
n≥n0

vn divergente, on pourra abréger cela en DV.

En analyse, les équivalents et les DL sont des outils qui permettent d’étudier la ”vitesse” à
laquelle une fonction/suite varie.

Nous allons faire de même pour les séries. Si une série
∑
n≥n0

un converge, à quelle ”vitesse”

converge-t-elle vers sa limite (sa somme) ?

Définition 11 (Reste d’une série convergente)

Soit
∑
n≥n0

un une série convergente.

Pour tout n ≥ n0, on définit le reste d’indice n de la série par Rn =
+∞∑
k=n0

uk − Sn.

On le note aussi
+∞∑

k=n+1

uk.

Le reste d’indice n de la série est la différence entre la somme de la série et la somme partielle
Sn.

Proposition 12
Soit

∑
n≥n0

un une série convergente.

Alors la suite (Rn)n≥n0 des restes de la série converge vers 0.

Démonstration — On a Rn =

+∞∑
k=n0

uk − Sn. Comme la somme partielle Sn converge

+∞∑
k=n0

uk, la différence entre

ces deux quantités tend vers 0.

Pour trouver la ”vitesse de convergence” de la série
∑
n≥n0

un, il faut trouver un équivalent

des restes Rn.

Exemple 13 — Pour la série de terme général 1
10n , qui est convergente, de somme 10

9 , son
reste d’indice n vaut Rn = 10

9 −
∑n

k=0
1

10k
.
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On peut calculer ici une valeur exacte de Rn :

Rn =
10

9
−

( 1
10)

n+1 − 1
1
10 − 1

=
10

9
− 10

9
((

1

10
)n+1 − 1) =

10

9

1

10n+1
.

Ainsi, on connâıt la ”vitesse” à laquelle la série converge vers sa somme.
Ici, la vitesse de convergence est très rapide. Pour n = 9, l’écart entre la somme partielle et la
somme de la série est de l’ordre de 1

1010
. En calculant la somme des 9 premiers termes de la

série, on a une approximation de sa somme (de sa limite) à 10−10 près.

Proposition 14
Soit

∑
n≥n0

un une série convergente et (Rn)n≥n0 la suite des restes de la série.

Pour tout n ≥ n0, on a Rn =
+∞∑

k=n+1

uk = lim
m→+∞

m∑
k=n+1

uk.

Démonstration — Soient n ≥ n0 et m ≥ n+1. On a

m∑
k=n+1

uk = Sm−Sn. Comme la série
∑
k≥n0

uk est convergente,

si l’on fixe n on a Sm − Sn →m→+∞ S − Sn = Rn.

Contrairement à la somme partielle Sn qui est une somme, le reste Rn est la limite d’une
somme. Souvent, lorsque l’on cherche un encadrement ou un équivalent de Rn, on se ramène à

une somme en posant m ≥ n + 1 et en étudiant
m∑

k=n+1

uk. Puis, on regarde la limite quand m

vers +∞.

1.2 Séries à termes positifs

Les méthodes d’étude que nous verrons dépendent du type de la série étudiée.
Dans ce cours, nous allons voir deux grandes familles de suites : les séries à termes positifs, et
les séries absolument convergentes.

Définition 15 (Série à termes positifs)

Soit
∑
n≥n0

un une série.

On dit que la série
∑
n≥n0

un est à termes positifs si pour tout n ∈ Jn0,+∞J on a un ≥ 0.

Nous étudierons beaucoup des séries à termes positifs. Elles sont plus pratiques à étudier
car on ne se préocuppe pas du signe de un, et car ces séries sont croissantes.

Proposition 16 (Convergence d’une série à termes positifs)

Soit
∑
n≥n0

un une série à termes positifs.

Alors, la série
∑
n≥n0

un est convergente si et seulement si la suite des sommes partielles (Sn)n≥n0

est majorée.
Sinon, elle diverge vers +∞.

Démonstration — Pour tout n ≥ n0, on a Sn+1 = un+1 + Sn.

Comme tous les uk sont positifs, on en déduit que Sn+1 ≥ Sn. La suite (Sn)n≥n0 est donc croissante.

Or, une suite croissante est convergente si et seulement si elle est majorée, et elle diverge vers +∞ sinon.
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1.3 Séries absolument convergentes

Comme les séries à termes positifs sont plus faciles à étudier, nous définissons les séries
absolument convergentes, qui reposent sur cela.

Définition 17 (Série absolument convergente )

Soit
∑
n≥n0

un une série.

On dit que la série
∑
n≥n0

un est absolument convergente si la série
∑
n≥n0

|un| converge.

On abrège cela en AC.

Proposition 18
Soit

∑
n≥n0

un une série absolument convergente.

Alors, la série
∑
n≥n0

un est convergente.

Démonstration — Pour n ≥ n0 on pose vn = max(0, un) et wn = −min(0, un). A l’aide d’une disjonction de cas

selon le signe de un, on montre que vn et wn sont positifs, que un = vn − wn, et que |un| = vn + wn.

On a donc vn ≤ |un|, donc
∑n

k=n0
vk ≤

∑n
k=n0

|uk| ≤
∑+∞

k=n0
|uk|. La série de terme général vn est ainsi une

série à termes positifs majorée, donc elle est CV. De même, on a
∑n

k=n0
wk ≤

∑n
k=n0

|uk| ≤
∑+∞

k=n0
|uk|, donc

la série de terme général wn est CV.

Enfin, on a
∑n

k=n0
uk =

∑n
k=n0

vk −
∑n

k=n0
wk. La série de terme général un est donc CV comme différence de

deux suites CV.

Remarque 19 — Attention ! la réciproque est fausse.

Nous verrons un contre-exemple par la suite. (la série
∑
n≥1

(−1)n

n
)

2 Propriétés des séries et de leur somme

2.1 Linéarité de la somme

Proposition 20
Soit

∑
n≥n0

un une série convergente. Alors, son terme général un converge vers 0.

Démonstration — Posons S =

+∞∑
n=n0

un. Par convergence de la série, Sn et Sn−1 tendent vers S quand n tend

vers +∞.

Pour tout n ≥ n0 + 1 on a un = Sn − Sn−1. Donc, un →n→+∞ S − S = 0.

Remarque 21 — Attention ! La réciproque est fausse.

Nous verrons un contre-exemple avec la série
∑
n≥1

1

n
.

Exemple 22 — On utilise surtout la contraposée de ce critère : Si le terme général un ne tend

pas vers 0, alors la série
∑
n≥n0

un est divergente.

Par exemple, la série de terme général (−1)n ne converge pas.

Proposition 23 (Linéarité de la somme)

Soient
∑
n≥n0

un,
∑
n≥n0

vn deux séries convergentes, et λ ∈ R. Alors :

5
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1. La série
∑
n≥n0

(un + vn) est convergente, et

+∞∑
k=0

uk +

+∞∑
k=0

vk =

+∞∑
k=0

(uk + vk).

2. La série
∑
n≥n0

λun est convergente, et
+∞∑
k=0

λuk = λ
+∞∑
k=0

uk.

Démonstration — Cela découle des propriétés des suites convergentes (la somme de suites CV est CV, le multiple

d’une suite CV est CV) et de la limite (la limite de la somme est la somme des limites, la limite d’un multiple

est le multiple de la limite).

Remarque 24 — Attention ! On peut ajouter deux séries convergentes entre elles, mais on
ne peut pas déouper une série convergente en deux morceaux sans précautions.

Par exemple, en prenant un = 1
10n , on a vu que la série

∑
n≥0

un converge.

On peut bien écrire un = 2+ 1
10n − 2, mais les séries

∑
n≥0

(2 +
1

10n
) et

∑
n≥0

−2 sont divergentes.

(on a rajouté et soustrait un terme de série divergente)

Proposition 25
Soient

∑
n≥n0

un,
∑
n≥n0

vn deux séries, avec l’une convergente et l’autre divergente.

Alors, la série
∑
n≥n0

un + vn est divergente.

Démonstration — Considérons
∑
n≥n0

vn divergente. Si l’on suppose que la somme de ces deux séries est conver-

gente, alors
∑
n≥n0

vn = (
∑
n≥n0

un + vn) −
∑
n≥n0

un serait convergente, ce qui est absurde. Cette somme est donc

divergente.

2.2 Théorème de comparaison

Proposition 26 (Théorème de comparaison)

Soient
∑
n≥n0

un,
∑
n≥n0

vn des séries à termes positifs, telles que un ≤ vn à partir d’un certain

rang n1.

• Si la série
∑
n≥n0

vn converge, alors la série
∑
n≥n0

un est aussi convergente.

• Si la série
∑
n≥n0

un diverge vers +∞, alors la série
∑
n≥n0

vn diverge vers +∞.

Démonstration — Supposons
∑
n≥n0

vn convergente. Pour tout n ≥ n1, on a alors

n∑
k=n0

uk =

n1−1∑
k=n0

uk +

k=n∑
k=n1

uk ≤
n1−1∑
k=n0

uk +

k=n∑
k=n1

vk ≤
n1−1∑
k=n0

uk +

+∞∑
k=n1

vk.

La suite des sommes partielles est donc majorée à partir d’un certain rang. Donc cette suite est majorée.

La série
∑
n≥n0

un est donc à termes positifs et majorée, donc elle est convergente.

Supposons maintenant
∑
n≥n0

un divergente. Comme la série est à termes positifs, cela veut dire que la suite de

ses sommes partielles est non-majorée.

Soit M > 0 un réel. Alors il existe n ≥ n1 tel que

n∑
k=0

uk ≥ M +

n0−1∑
k=0

uk.

6
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Cela s’écrit aussi

n∑
k=n1

uk ≥ M . Donc, on a :

n∑
k=n0

vk =

n1−1∑
k=n0

vk +

k=n∑
k=n1

vk ≥
n1−1∑
k=n0

vk +

k=n∑
k=n1

uk ≥
n1−1∑
k=n0

vk +M ≥ M.

La suite des sommes partielles

n∑
k=n0

vk est donc non-majorée, donc la série à termes positifs
∑
n≥n0

vn est divergente.

Nous avons utilisé implicitement ce résultat pour démontrer que la série des 1
10n (1−

1
1+n15 )

est convergente. Son terme général est positif et est majoré par 1
10n , qui est le terme général

d’une série convergente.

2.3 Comparaison série-intégrale

Théorème 27 (Critère de comparaison série-intégrale)
Soient a ∈ N, et f : [a,+∞[ une fonction positive, continue, et décroissante.
Pour n ∈ Ja,+∞J, on pose un = f(n).
• Pour tout n ∈ Ja+ 1,+∞J, on a :∫ n

n−1
f(t)dt ≥ f(n) ≥

∫ n+1

n
f(t)dt (Méthode des rectangles)

• Pour tous b ∈ Ja+ 1,+∞J et n ∈ Jb,+∞J, on a :∫ n

b
f(t)dt ≥

n∑
k=b+1

f(k) ≥
∫ n+1

b+1
f(t)dt, (Comparaison série-intégrale).

• La série
∑
n≥a

un est convergente si et seulement si la fonction x 7→
∫ x

a
f(t) dt a une limite

finie quand x tend vers +∞.

Comparaison série-intégrale. Majoration (à gauche) et minoration (à droite) de

n∑
k=b+1

f(k).

Démonstration — On utilise les propriétés de l’intégrale.
Comme la fonction f est décroissante sur [a,+∞[, pour tout t ≤ n on a f(t) ≥ f(n). D’où

∫ n

n−1
f(t)dt ≥∫ n

n−1
f(n).dt = f(n).1.

Aussi, pour tout t ∈ [n,+∞[, on a f(t) ≤ f(n). D’où
∫ n+1

n
f(t)dt ≤

∫ n+1

n
f(n).dt = f(n).1.

Une fois l’encadrement par la méthode des rectangles démontré, utilisons-le.

On a alors :
n∑

k=b+1

uk =

n∑
k=b+1

f(k). Or,

∫ n

b

f(t)dt =

n∑
k=b+1

∫ k

k−1

f(t)dt ≥
n∑

k=b+1

f(k) ≥
n∑

k=b+1

∫ k+1

k

f(t)dt =

∫ n+1

b+1

f(t)dt.

7
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Ainsi : ∫ n

b

f(t)dt ≥
n∑

k=b

uk ≥
∫ n+1

b+1

f(t)dt.

Alors, si x 7→
∫ x

a

f(t) dt (la primitive de f qui s’annule en a) a une limite finie L en +∞, la série
∑
n≥n0

un est

majorée par f(a) + L, donc est convergente (série à termes positifs majorée).

Réciproquement, supposons que la série
∑
n≥n0

un est CV, de somme S. Soit x ∈ [a,+∞[. Posons n = ⌊x⌋.

On a

∫ x

a

f(x)dx ≤
∫ n+1

a

f(x)dx =

∫ a+1

a

f(x)dx+

∫ n+1

a+1

f(x)dx ≤
∫ a+1

a

f(x)dx+

n+1∑
k=a+1

f(k).

Donc,

∫ x

a

f(x)dx ≤
∫ a+1

a

f(x)dx+ Sn − f(a) ≤
∫ a+1

a

f(x)dx+ S − f(a).

La fonction x 7→
∫ x

a

f(t) dt est croissante majorée sur [a,+∞[, donc elle admet une limite finie en +∞.

Exemple 28 — Pour la série de terme général
1

n ln(n)
(pour n ≥ 2), en posant f : x 7→ 1

x ln(x) ,

on remarque que 1
n ln(n) = f(n) et que la fonction f est continue, positive, et décroissante sur

[2,+∞[. Ainsi, la série
∑
n≥2

1

n ln(n)
a donc la même nature que la suite (

∫ n

2

1

t ln(t)
dt)n≥2.

La comparaison série-intégrale fournit :∫ n+1

3

1

x ln(x)
dx ≤

n∑
k=3

1

k ln(k)
= Sn − 1

2 ln(2)
≤

∫ n

2

1

x ln(x)
dx.

La fonction f est de la forme u′

u , avec u(t) = ln(t). Une primitive est donc t 7→ ln(ln(t)).

Ainsi, on a

∫ n+1

3

1

t ln(t)
dt = [ln(ln(t))]n+1

3 = ln(ln(n+ 1))− ln(ln(3)).

Comme lim
n→+∞

ln(ln(n)) = +∞, on en déduit que
∫ n+1
3

1
x ln(x)dx →n→+∞ +∞. Le théorème de

comparaison implique que Sn →n→+∞ +∞, donc que la série
∑
n≥2

1

n ln(n)
diverge vers +∞.

Exemple 29 — Etudions la série
∑
n≥1

1

n2
. C’est une série à termes positifs. En posant f : x 7→

1
x2 , on a f(n) = 1

n2 . La fonction f est continue, décroissante, et positive sur [1,+∞[.
Donc, par comparaison série-intégrale, on obtient :∫ n+1

2

1

x2
dx ≤

n∑
k=2

1

k2
= Sn − 1 ≤

∫ n

1

1

x2
dx.

Une primitive de f est x 7→ −1
x . On a donc 1

2 − 1
n+1 + 1 ≤ Sn ≤ 1

1 − 1
n + 1.

La suite Sn est ainsi majorée par une suite convergente, donc la suite Sn est majorée (majorée
par 3 par exemple). D’après le critère de convergence des séries à termes positifs, on en déduit

que la série
∑
n≥1

1

n2
est convergente.

Déterminons un équivalent du reste Rn avec un second encadrement série-intégrale.
Soient n ≥ 1 et m ≥ n+ 1. On a alors∫ m+1

n+1

1

x2
dx ≤

m∑
k=n+1

1

k2
≤

∫ m

n

1

x2
dx.

Cela donne 1
n+1 − 1

m+1 ≤
m∑

k=n+1

1

k2
≤ 1

n
− 1

m
.

Ces trois suites convergent pour m → +∞. D’après le théorème de comparaison, leurs limites
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vérifient donc : 1
n+1 ≤ Rn ≤ 1

n .

On a alors n
n+1 ≤ Rn

1
n

≤ 1, donc Rn
1
n

→n→+∞ 1 d’après le théorème des gendarmes.

On obtient ainsi que Rn ∼ 1
n .

Pour obtenir une valeur approchée à 0.01 près de S =

+∞∑
k=1

1

k2
il faudra donc déterminer S100,

car S − S100 = R100 ≃ 1
100 .

2.4 Séries à termes généraux équivalents

Théorème 30 (Séries à termes généraux équivalents)

Soient
∑
n≥n0

un,
∑
n≥n0

vn deux séries à termes positifs, telles que un ∼ vn.

Alors
∑
n≥n0

un est convergente si et seulement si
∑
n≥n0

vn est convergente.

• Si
∑
n≥n0

un,
∑
n≥n0

vn sont convergentes, on a
+∞∑

k=n+1

uk ∼
+∞∑

k=n+1

vk.

Les suites des restes de ces séries sont équivalentes.

• Si
∑
n≥n0

un,
∑
n≥n0

vn sont divergentes, on a

n∑
k=n0

uk ∼
n∑

k=n0

vk.

Les suites des sommes partielles de ces séries sont équivalentes.

Démonstration — Ce théorème sera revu et démontré en deuxième année. Il est extrêmement utile car il permet

d’étudier plus facilement la convergence d’une série, en s’aidant de séries ”de référence” que nous allons étudier

ensuite.

Exemple 31 — Pour la série des 1
10n (1 − 1

1+n15 ), cette série est à termes positifs, et on a
1

10n (1−
1

1+n15 ) ∼ 1
10n .

Comme la série des 1
10n est convergente, cette série est convergente.

De plus (par rapport au théorème d’encadrement de séries), on sait que les suites des restes
sont équivalentes.
Pour la série des 1

10n , on a vu que le reste d’indice n, Rn vaut :

Rn =
10

9

1

10n+1
.

On en déduit donc que

+∞∑
k=n+1

1

10k
(1− 1

1 + k15
) ∼ 10

9

1

10n+1
.

Cette suite a elle aussi une vitesse de convergence extrêmement rapide. Il suffit de calculer la
somme des premiers termes pour avoir une bonne approximation de la somme de la série (de
sa limite).

2.5 Convergence d’une série via les croissances comparées

Méthode 32 (Montrer qu’une série est convergente via les croissances comparées)
Cette méthode s’applique aux séries à termes positifs, dont le terme général est de la forme
an
bn
, avec bn un terme qui domine an d’après les croissances comparées, et de la forme nc avec

c > 1, qn avec q > 1, n!, ou nn.

Alors, la série
∑
n≥n0

an
bn

est convergente.

En effet :

9
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• Si bn est de la forme qn (q > 1), ou n!, ou nn, alors on aura n2.an
bn

→n→+∞ 0 d’après
les croissances comparées.
Donc, il existe n0 ≥ 1 tel que pour tout n ≥ n0 on aura n2.an

bn
< 1, c’est-à-dire an

bn
≤ 1

n2 .

Le terme général de la série
∑
n≥n0

an
bn

, série à termes positifs, est donc majoré à par-

tir d’un certain rang par le terme général d’une série convergente. Par théorème de
comparaison, cette série est donc convergente.

• Si bn est de la forme nc avec c > 1, alors on aura n1+ c
2 .an
bn

→n 0 d’après les croissances
comparées.

Donc, pour n assez grand, on aura n1+ c
2 .an
bn

< 1, c’est-à-dire an
bn

≤ 1

n1+ c
2
.

La série
∑
n≥n0

1

n1+ c
2

est convergente (cf. séries de Riemann). Le terme général de la

série
∑
n≥n0

an
bn

est donc majoré à partir d’un certain rang par le terme général d’une

série convergente. Par théorème de comparaison, cette série est donc convergente.

Cette méthode demande plus de précision pour être utilisée mais permet de montrer faci-
lement que d’autres séries convergent.

Exemple 33 — Pour n ≥ 2, on pose un = ln(n)
n2 et vn = n10

2n . Montrons que les séries
∑
n≥2

un et∑
n≥2

vn sont convergentes.

Premièrement, ce sont deux séries à termes positifs.
• D’après les croissances comparées, on a n10.n2

2n →n→+∞ 0.

Donc, il existe n0 ≥ 2 tel que pour tout n ≥ n0 on a n10.n2

2n ≤ 1, c’est-à-dire n10

2n ≤ 1
n2 .

Comme la série de terme général 1
n2 converge, on en déduit par théorème de comparaison que

la série
∑
n≥2

vn est convergente.

• D’après les croissances comparées, on a ln(n)n
3
2

n2 = ln(n)

n
1
2

→n→+∞ 0.

Donc, il existe n1 ≥ 2 tel que pour tout n ≥ n1 on a ln(n)n
3
2

n2 ≤ 1, c’est-à-dire ln(n)
n2 ≤ 1

n3/2 .

Comme la série de terme général 1
n3/2 converge (cf. séries de Riemann), on en déduit par théo-

rème de comparaison que la série
∑
n≥2

un est convergente.

Dans le cas de la suite (un)n≥2, on a dû choisir un terme de la forme nd avec d < 2 pour
que un.n

d →n→+∞ 0 par croissances comparées, et avec d > 1 pour que la série des 1
nd soit

convergente (cf. séries de Riemann). Le nombre d = 3
2 respecte ces deux conditions.

2.6 Séries et inégalité de Taylor-Lagrange

Méthode 34 (Montrer une convergence et calculer une somme avec l’inégalité de Taylor-La-
grange)
Cette méthode s’applique aux séries à termes positifs, dont le terme général est de la forme
(x−a)nf (n)(a)

n! , avec a, x ∈ R et f une fonction de classe C∞ sur [a, x].
En effet, la somme partielle Sn correspond alors à la partie polynômiale du développement li-
mité de f en a, à l’ordre n, évaluée en x.
L’inégalité de Taylor-Lagrange nous donne :

|f(x)−
n∑

k=0

(x− a)kf (k)(a)

k!
| ≤

|x− a|n+1.maxt∈[a,x] |f (n+1)(t)|
(n+ 1)!

.
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Si le terme
|x−a|n+1.maxt∈[a,x] |f (n+1)(t)|

(n+1)! converge vers 0 quand n → +∞, alors on aura |f(x) −
Sn| →n→+∞ 0 d’après le théorème des gendarmes.
Cela implique que Sn →n→+∞ f(x).

Ainsi, la série
∑
n≥0

(x− a)nf (n)(a)

n!
est convergente, et sa somme vaut S = f(x).

Exemple 35 — On considère la série
∑
n≥0

sin(n)(1).(−1)n

n!
.

On pose a = 1, x = a− 1 = 0, et f = sin. Pour n ∈ N on a alors Sn =
∑n

k=0
f (k)(a)(x−a)k

k! . On
reconnâıt alors que Sn est la partie polynômiale du développement limité de sin en 1, à l’ordre
n, évaluée en 0.

L’inégalité de Taylor-Lagrange nous donne : | sin(0)− Sn| ≤
|−1|n+1.maxt∈[0,1] | sin(n+1)(t)|

(n+1)! .

On a sin(n+1) = ± cos ou ± sin selon la valeur de n, donc | sin(n+1) | ≤ 1.
D’où | sin(0)− Sn| ≤ 1

(n+1)! .

Comme 1
(n+1)! →n→+∞ 0, alors on a | sin(0) − Sn| →n→+∞ 0 d’après le théorème des gen-

darmes.
Cela implique que Sn →n→+∞ sin(0) = 0.

Ainsi, la série
∑
n≥0

sin(n)(1).(−1)n

n!
est convergente, et sa somme vaut 0.

Remarque 36 — L’inégalité de Taylor-Lagrange permet de montrer à la fois qu’une série est
convergente tout en déterminant sa somme. L’idée est de montrer que pour un nombre f(x)
bien choisi on a |f(x)− Sn| →n→+∞ 0.
Contrairement à la comparaison série-intégrale, aux équivalents, ou aux croissances comparées,
cette méthode s’applique sur des séries qui ne sont pas forcément à termes positifs.
Il faut par contre pouvoir identifier une partie polynômiale de développement limité, et arriver

à simplifier
|x−a|n+1.maxt∈[a,x] |f (n+1)(t)|

(n+1)! .

Remarque 37 — Les théorèmes ou méthodes pour déterminer la convergence ou calculer la

somme d’une série
∑
n≥n0

un sont nombreux (comparaison, équivalence, croissances comparées,

série classique, encadrement série-intégrale, inégalité de Taylor-Lagrange).
Il est courant que plusieurs de ces résultats s’appliquent sur une même série. Dans ce cas, il
s’agit de choisir la méthode qui fournira le résultat le plus rapidement possible.
L’objectif est de mâıtriser l’ensemble de ces résultats afin de pouvoir étudier le plus grand
nombre de séries possibles.

3 Séries usuelles

3.1 Séries télescopiques

Définition 38 (Séries télescopiques)

Soit
∑
n≥n0

un une série.

On dit que
∑
n≥n0

un est une série télescopique s’il existe une suite (vn)n≥n0 telle que, pour

tout n ≥ 0, on a un = vn+1 − vn.

On l’écrit aussi
∑
n≥n0

(vn+1 − vn).

11
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Proposition 39 (Convergence des séries télescopiques)

Soit
∑
n≥n0

un une série télescopique, avec un = vn+1 − vn.

Alors, la série télescopique
∑
n≥n0

(vn+1 − vn) est convergente si et seulement si la suite (vn)n≥n0

est convergente.

De plus, si la suite (vn)n≥n0 converge, on a
+∞∑
k=n0

(vk+1 − vk) = lim
n→+∞

(vk)− vn0.

Démonstration — La somme partielle est une somme télescopique. On a donc :

n∑
k=n0

uk =

n∑
k=n0

vk+1 − vk =

vn+1 − vn0 .

Cela permet d’obtenir tous les résultats de l’énoncé.

Exemple 40 — On veut étudier (nature, somme) la série de terme général un = ln

(
1− 1

n2

)
,

pour n ≥ 2.
C’est une série à termes négatifs. Transformons l’expression :
un = ln(1 − 1

n2 ) = ln(n
2−1
n2 ) = ln( (n−1)(n+1)

n.n ) = ln(n − 1) + ln(n + 1) − ln(n) − ln(n) =
(ln(n−1)−ln(n))+(ln(n+1)−ln(n)) On reconnâıt deux termes généraux de séries télescopiques.

On a

n∑
k=2

(ln(k − 1)− ln(k)) = ln(1)− ln(n) = 0− ln(n).

Et,
n∑

k=2

(ln(n+ 1)− ln(n)) = ln(n+ 1)− ln(2).

Donc,
n∑

k=2

uk = − ln(n) + ln(n+ 1)− ln(2) = ln(
n+ 1

n
)− ln(2) = ln(1 +

1

n
)− ln(2).

Cette suite est donc convergente, vers − ln(2).

Ainsi, la série est convergente, et
+∞∑
k=2

ln

(
1− 1

k2

)
= − ln(2).

On peut remarquer ici que les deux séries télescopiques identifiées sont divergentes, mais que
leur différence est convergente (les ”termes dominants” se compensent).

3.2 Séries géométriques

Définition 41 (Séries géométriques)
Soit q ∈ R.
La série

∑
n≥0

qn est appelée série géométrique de raison q.

Proposition 42 (Convergence des séries géométriques)
Soit q ∈ R.
• La série géométrique

∑
n≥0

qn est convergente si et seulement si |q| < 1.

Dans ce cas, on a

+∞∑
k=0

qk =
1

1− q
.

On a de plus Rn ∼ qn+1

1−q .
• Pour q = 1, la série diverge vers +∞, avec Sn ∼ n.
• Pour q = −1, la série diverge. Elle est périodique de période 2.

• Pour q > 1, la série diverge vers +∞, avec Sn ∼ qn+1

|1−q| .

• Pour q < −1, la série diverge, avec |Sn| ∼ |q|n+1

|1−q| .
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Démonstration — On peut remarquer de plus qu’une série géométrique est une série à termes positifs lorsque

q ≥ 0.

Si q = 1 la série est divergente vers +∞ car les sommes partielles valent Sn = n+ 1 ∼ n.

Si q ̸= 1, les sommes partielles sont des sommes géométriques : Sn =
1− qn+1

1− q
.

En utilisant les résultats sur la convergence de qn, on en déduit que si |q| < 1 la suite des sommes partielles

converge vers 1
1−q

.

On a alors Rn = S − Sn = 1
1−q

− qn+1−1
1−q

= qn+1

1−q
.

Si q = −1 ou si |q| > 1, les sommes partielles ne convergent pas.

Pour q = −1 la suite Sn est périodique de période 2 (elle prend les valeurs 1 et 0).

Pour |q| > 1, on a |Sn| =
|1− qn+1|
|1− q| .

Or, on a |q|n+1 → +∞, donc |1−qn+1|
|q|n+1 = | 1

qn+1 − 1| →n→+∞ 1. Ainsi, on obtient que |Sn| ∼ |q|n+1

|1−q| .

Si q > 1, cela implique que Sn diverge vers +∞. Dans le cas q < −1 on a divergence, mais le signe de Sn alterne.

3.3 Série harmonique, séries de Riemann

Définition 43 (Série harmonique)

La série
∑
n≥1

1

n
(avec n ≥ 1) est appelée série harmonique.

Son terme général est 1
n .

Proposition 44

La série harmonique
∑
n≥1

1

n
est divergente.

Plus précisément, on a Sn =
n∑

k=1

1

k
∼ ln(n).

Démonstration — Pour démontrer cela on utilise le théorème de comparaison série-intégrale, avec la fonction
x 7→ 1

x
.

Pour tout k ≥ 2, on a

∫ k+1

k

1

t
dt ≤ 1

k
≤

∫ k−1

k

1

t
dt.

Ainsi, on obtient :
n∑

k=2

∫ k+1

k

1

t
dt ≤

n∑
k=2

1

k
≤

n∑
k=2

∫ k−1

k

1

t
dt

∫ n+1

2

1

t
dt ≤

n∑
k=2

1

k
≤

∫ n−1

1

1

t
dt

ln(n+ 1)− ln(2) ≤
n∑

k=2

1

k
≤ ln(n− 1)− ln(1)

On a ln(n+ 1) = ln(n(1 + 1
n
)) = ln(n) + ln(1 + 1

n
) ∼ ln(n), et de même ln(n− 1) = ln(n) + ln(1− 1

n
) ∼ ln(n).

Comme les membres de gauche et de droite sont équivalents à ln(n) quand n tend vers +∞, on obtient que
n∑

k=2

1

k
∼ ln(n), donc que Sn ∼ ln(n).

La série harmonique est divergente, mais très lentement (à vitesse logarithmique). Pour
n = 1.000.000 = 106, la somme partielle est équivalente à ln(106) = 6 ln(10) ≃ 13, 8.

Définition 45 (Séries de Riemann)
Soit α ∈ R.
La série

∑
n≥1

1

nα
est appelée série de Riemann de paramètre α.

Son terme général est 1
nα .

13



Lycée du Diadème - Te Tara o Mai’ao PTSI, Année 2025-2026

Proposition 46 (Convergence des séries de Riemann)
Soit α ∈ R.
• Si α ≤ 1, la série de Riemann

∑
n≥1

1

nα
est divergente.

Pour α < 1, on a Sn ∼ 1
|α−1|nα−1 .

Pour α = 1 on a Sn ∼ ln(n). (série harmonique)

• Si α > 1, la série de Riemann
∑ 1

nα
est convergente.

De plus, on a Rn =
+∞∑

k=n+1

1

nα
∼ 1

(α− 1)nα−1
.

Démonstration — Les séries de Riemann sont des séries à termes positifs.

• Si α ≤ 1, pour n ≥ 1 on a 1
nα ≥ 1

n
.

Comme la série
∑
n≥1

1

n
est divergente (c’est la série harmonique), par comparaison on en déduit que

∑
n≥1

1

nα

diverge vers +∞.

Pour obtenir un équivalent de Sn, on effectue une comparaison série-intégrale avec x 7→ 1
xα .

• Si α > 1, on refait une comparaison série-intégrale, avec x 7→ 1
xα .

Pour tout k ≥ 2, on a

∫ k+1

k

1

tα
dt ≤ 1

k
≤

∫ k−1

k

1

tα
dt.

On a
∫ x

a
1
tα

= [ 1
−(α−1)

1
tα−1 ]

x
a = 1

(α−1)aα−1 − 1
(α−1)xα−1 .

Comme α − 1 > 0, on trouve que 1
(α−1)xα−1 tend vers 0 quand x → +∞, donc l’intégrale en question est

convergente quand x → +∞, donc elle est majorée.

Cela permet de montrer que Sn est majorée, ce qui implique que Sn converge, car la série est à termes positifs.

Avec la même méthode que pour la série harmonique, on encadre le reste Rn =
∑
k>n

1

kα
par deux intégrales, qui

sont toutes deux équivalentes à 1
(α−1)nα−1 .

Les séries de Riemann sont un exemple fondamental de séries convergentes/divergentes. Dans
beaucoup de cas, on se contente de comparer une série de terme un à une série de Riemann,
pour conclure sur sa convergence ou non.
En particulier, on trouve que la série des 1

n2 est convergente. Des théorèmes d’analyse en PT

montreront que
∑
n≥1

1

n2
=

π2

6
. Pour le moment, on sait que cette série converge vers sa somme

à la vitesse de 1
n (son reste Rn est équivalent à 1

n). La série des 1
n3 est convergente, et converge

vers sa somme à la vitesse de 1
2n2 .

3.4 Séries exponentielles

Définition 47 (Séries exponentielles)

Soit x ∈ R. La série
∑
n≥0

xn

n!
est appelée série exponentielle de paramètre x.

Son terme général est xn

n! .

Proposition 48 (Série exponentielle)

Soit x ∈ R. Alors, la série exponentielle
∑
n≥0

xn

n!
est absolument convergente.

De plus, a

+∞∑
k=0

xk

k!
= exp(x).

Démonstration — Soit x ∈ R. Même si cela n’est pas nécessaire dans cette preuve, montrons que cette série est

convergente à l’aide des croissances comparées. Pour montrer que cette série est convergente, montrons qu’elle

est absolument convergente. La série de terme général
|x|n

n!
est une série à termes positifs, montrons qu’elle est
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majorée.

D’après les croissances comparées, on a |x|nn2

n!
→n→+∞ 0. Donc, il existe n0 ∈ N tel que pour tout n ≥ n0 on a

|x|nn2

n!
≤ 1, ce qui donne |x|n

n!
≤ 1

n2 .

La série de Riemann de terme général 1
n2 est convergente, donc par critère de comparaison la série de terme |x|n

n!

est convergente.

Donc, la série
∑
n≥0

xn

n!
est absolument convergente. Cette série est donc convergente.

On remarque que la somme partielle Sn correspond à la partie polynômiale du développement limité de la

fonction exp, en 0, à l’ordre n, évaluée en x.

L’inégalité de Taylor-Lagrange nous donne alors : | exp(x)− Sn| ≤
|x−0|n+1.maxt∈[0,x] | exp

(n+1)(t)|
(n+1)!

.

On a exp(n+1) = exp, et max[0,x] exp = exp(x) ou exp(0) (selon si x est positif ou négatif).

Comme exp est croissante, on aura toujours max[0,x] exp = max(e0, ex) = max(1, ex).

D’où | exp(x)− Sn| ≤ xn max(1,ex)
(n+1)!

.

D’après les croissances comparées, xn max(1,ex)
(n+1)!

→n→+∞ 0. Donc on a | exp(x)−Sn| →n→+∞ 0 d’après le théorème

des gendarmes.

Cela implique que Sn →n→+∞ exp(x).

Ainsi, on a

+∞∑
k=0

xk

k!
= exp(x).

Exemple 49 — Quand on choisit x = 1, on obtient
+∞∑
k=0

1

k!
= e.

On peut donc calculer une valeur approchée de e de cette façon, et retrouver que e ≃ 2, 7.

De même, on a
+∞∑
k=0

(−1)k

k!
=

1

e
≃ 0, 37.

3.5 Séries alternées, séries logarithmes

Exemple 50 — (Série alternée)
Voici un exemple de série convergente, mais pas absolument convergente.

Pour n ≥ 1, on pose un =
(−1)n+1

n
, et l’on étudie la série associée.

On remarque que le signe de un alterne entre positif et négatif, alors que la valeur de |un|
décrôıt vers 0.
Pour montrer que la suite des sommes partielles (Sn)n≥1 est convergente, on va séparer l’étude
des termes d’indices pairs et impairs, et utiliser le critère des suites adjacentes.
La suite (S2n)n≥1 des termes d’indice pair est croissante car

S2n+2 − S2n =
(−1)2n+3

2n+ 2
+

(−1)2n+2

2n+ 1
= − 1

2n+ 2
+

1

2n+ 1
> 0.

De même la suite (S2n+1)n≥1 des termes d’indice impairs est décroissante (on a S2n+3−S2n+1 <
0).

De plus, la différence S2n+1 − S2n est égale à
(−1)2n+2

2n+ 1
, et tend donc vers 0.

Les deux suites (S2n)n≥1 et (S2n+1)n≥1 sont adjacentes, et convergent donc vers une limite
commune. Ainsi la suite (Sn)n≥1 est convergente.

En fait, l’inégalité de Taylor-Lagrange permet de montrer que
∞∑
n=1

(−1)n+1

n
= ln(2).

Par contre, la série des |un| est la série de terme général 1
n , qui n’est pas convergente.

La série des (−1)n+1

n est convergente, mais pas absolument convergente.

Proposition 51 (Séries logarithmes)
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Soit x ∈]− 1, 1[. Alors, la série de terme général
(−1)n+1xn

n
est convergente. De plus, on a :

+∞∑
k=1

(−1)k+1xk

k
= ln(1 + x).

Démonstration — Cette série est une série dite alternée (HP). Montrer sa convergence se fait comme dans

l’exemple précédent. On montre que sa somme vaut ln(1 + x) avec l’inégalité de Taylor-Lagrange.

Remarque 52 — Les sommes de séries géométrique, exponentielle, logarithme donnent les
fonctions 1

1−x , exp(x), ln(1 + x).
Les termes généraux de ces séries corespondent aux parties polynômiales des développements

limités de leurs sommes (xn, x
n

n! ,
(−1)n+1xn

n ).

Ces séries font partie de la famille des séries entières (de la forme
∑
n≥0

anx
n). Ces séries défi-

nissent des fonctions qui vont pouvoir être décomposées avec la formule de Taylor tout comme

les polynômes : le coefficient devant xn est f (n)(0)
n! (donc an = f (n)(0)

n! ).
Ce lien fort entre DL et séries entières est développé en 2e année et en L3.

4 Bilan des méthodes

Lorsque l’on est face à une série
∑
n≥n0

un, on regardera plus ou moins dans l’ordre :

• Le terme de départ de la série.
Cela permet d’écrire les sommes partielles Sn sans erreurs.

— Les premières valeurs des sommes partielles Sn.
Cela permet parfois de constater des valeurs particulières, une croissance, des oscilla-
tions, une divergence.

• Le signe de un quand n tend vers +∞.
Si le signe de un est constant à partir d’un certain rang, on pourra utiliser les résultats
du cours sur les séries à termes positifs.
Sinon, on ne peut pas utiliser ces résultats (les appliquer serait totalement faux).

• La limite de un quand n → +∞.
Si un → 0 la série peut être convergente.
Sinon, elle est divergente.

• L’expression de un par rapport aux séries classiques.
Si un s’écrit comme une combinaison linéaire de séries classiques (ex : un = 3

2n − 4
n2 , on

peut obtenir la nature de la série à partir des séries classiques.
Attention, cela ne fonctionne pas pour les produits de termes généraux (la série de terme
1
n .

1
n est CV)

• Si un s’écrit de la forme vn+1 − vn.
Cela donne une série télescopique, qui se calcule alors très facilement.

• Si un s’écrit de la forme f (n)(a)(x−a)n

n! , avec f une fonction de classe C∞ sur un intervalle
contenant a.
La somme partielle Sn est alors une partie polynômiale de DLn(a), et l’inégalité de
Taylor-Lagrange peut permettre de montrer que la série converge et que sa somme vaut
f(x).

• Un équivalent de un. (Pour séries à termes positifs)
Pour obtenir un équivalent on pourra utiliser une factorisation par le terme dominant
ou des DL (mais pas les croissances comparées).
Il n’est pas toujours possible d’obtenir un équivalent plus simple.
En général, quand on obtient un ∼ vn, le terme vn est un terme général de série usuelle
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(à une constante près).

Alors la nature de
∑
n≥n0

un est la même que celle de
∑
n≥n0

vn.

• Si un s’écrit de la forme an
bn

avec la possibilité d’appliquer les croissances comparées entre
an et bn. (Pour séries à termes positifs)
Si bn est de la forme nb (b > 1) ou an (a > 1) ou n! ou nn, on peut alors montrer que
la série est convergente en utilisant la méthode des croissances comparées, grâce à une
majoration à partir d’un certain rang.

• Une majoration/minoration de un. (Pour séries à termes positifs)
Il suffit que la majoration soit vraie à partir d’un certain rang.
En général une majoration est plus technique à obtenir qu’un équivalent.

Si un ≤ vn avec
∑
n≥n0

vn CV, alors
∑
n≥n0

un est CV.

Si vn ≤ un avec
∑
n≥n0

vn DV, alors
∑
n≥n0

un est DV.

• Un encadrement série-intégrale. (Pour séries à termes positifs)
On écrit un comme f(n), avec f une fonction continue, positive, décroissante.
Il faut pouvoir calculer une primitive F de f , sinon la méthode n’est pas utile.
On fait un dessin au brouillon de la courbe de f , des valeurs de un, et des intégrales de
f entre n− 1 et n et entre n et n+ 1.

Si F (n) est majorée quand n → +∞, alors la série
∑
n≥n0

un est CV. Si F (n) → +∞ alors

la série
∑
n≥n0

un est DV.

On peut de plus obtenir un équivalent de Rn ou de Sn en changeant les bornes de
l’encadrement série-intégrale.

• Si un n’est pas toujours positif, étudier la série
∑
n≥n0

|un| et voir si |un| vérifie l’un des

critères de convergence précédents.

La série
∑
n≥n0

un sera alors absolument convergente, ce qui implique qu’elle est conver-

gente.
Ces éléménts permettent d’étudier la majorité des séries que vous rencontrerez. Les pre-

mières informations ne sont pas suffisantes pour montrer la CV/DV d’une série, mais permettent
de mieux comprendre comment se comporte la série et ainsi trouver le résultat/le calcul qui

permet de trouver la nature de
∑
n≥n0

un.

Pour les exemples et contre-exemples classiques, il faut se référer aux séries usuelles ( 1n ,
1
n2 ,

1√
n
, 1
2n ,

(−1)n

n , 1
n!).

Pour le calcul de la somme d’une série, les approximations (équivalent, DL, croissances
comparées, majoration/minoration) sont inutiles.
En général il faut réécrire le terme un comme une somme de termes de séries usuelles, ou utiliser
l’inégalité de Taylor-Lagrange, ou déterminer une relation particulière pour Sn.
Calculer la somme d’une série est bien plus compliqué en général que déterminer sa conver-
gence/divergence.

5 Application : développement décimal d’un nombre réel

L’application des séries que nous voyons dans ce chapitre est le développement décimal d’un
nombre réel.
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Théorème 53
Soit x ∈ R un réel.
Alors il existe une suite d’entiers (an)n≥0, avec a0 ∈ Z et an ∈ {0, . . . , 9} pour n ≥ 1, telle
que :

x =

+∞∑
n=0

an
10n

.

De plus, si on impose que la suite (an)n≥0 n’est pas constante égale à 9 à partir d’un certain
rang, celle-ci est unique.
Les nombres de la suite (an)n≥0 forment le développement décimal du nombre réel x.

Démonstration — Avec la définition donnée, les chiffres constituant la suite (à part a0 qui est la partie entière

de x) sont simplement les décimales du nombre x, écrit sous forme décimale usuelle. On pose : a0 = ⌊x⌋ et, pour

tout n ∈ N∗, an = ⌊10nx⌋ − 10⌊10n−1x⌋.
Pour tout n ∈ N, on pose bn = ⌊10nx⌋

10n
. On peut alors remarquer que pour n ≥ 1 on a an

10n
= bn − bn−1.

Par télescopage, on obtient donc :
∑n

k=0
ak

10k
= a0 +

∑n
k=1 bk − bk−1 = a0 + (bn − b0) = ⌊x⌋+ bn − ⌊x⌋ = bn.

Or, on a : 10nx− 1 ≤ ⌊10nx⌋ ≤ 10nx, donc 10nx−1
10n

= x− 1
10n

≤ bn ≤ 10nx
10n

= x.

Ainsi, d’après le théorème des gendarmes, on a bn →n→+∞ x.

La série
∑

n≥0
an
10n

est donc une série convergente, de somme égale à x.

Remarque 54 — Toute série de la forme
∑
n≥0

an
10n

avec a0 ∈ Z et an ∈ {0, . . . , 9} pour tout

n ∈ N∗ s’avère être convergente.
A part a0 cette série est à termes positifs, et pour n ≥ 1 on a an

10n ≤ 9
10n .

Les termes de la série sont majorés, à partir de n = 1, par ceux d’une série géométrique (de
raison 1

10). Comme la série
∑

n≥1
9

10n est convergente, on en déduit par critère de comparaison

que la série
∑
n≥1

an
10n

est convergente.

Donc la série
∑
n≥0

an
10n

est convergente.

Pour S =
∑+∞

n=0
an
10n , les nombres an sont le développement décimal de S.

Théorème 55
Soit x ∈ R un nombre réel.
Alors x est rationnel si et seulement si son développement décimal est périodique à partir d’un
certain rang.

Démonstration —
• Si x =

p

q
est un nombre rationnel, on peut obtenir les chiffres de la suite (an)n≥0 en effectuant la division

euclidienne de p par q. Le nombre de restes possibles à chacune des étapes de cette division étant fini, on finira
par obtenir à une certaine étape un reste déjà obtenu précédemment. Alors, les étapes suivantes vont répéter
exactement les mêmes opérations que précédemment. A partir d’un certain rang, la suite des décimales de x est
périodique.
• Réciproquement, supposons que la suite (an)n≥0 des décimales de x est périodique à partir d’un certain rang.
Posons n0 + 1 le rang à partir duquel la périodicité apparâıt, et posons r la longueur de la période. Notons
b1, . . . , br les entiers qui composent la période.
On pose y = (x−a0, a1 . . . an0).10

n0 . (On retire à x sa partie entière et ses n0 premières décimales, et on multiplie
le tout par 10n0 .

On a alors : y =
∑
k≥1

an0+k

10k
= 0, an0+1an0+2 . . ..

Autrement dit, on a y = 0, b1b2 . . . brb1b2 . . . br . . ..
Le nombre y est un nombre dont les décimales sont périodiques, dès la première décimale (période r, et le motif
est b1 . . . br).
Alors, 10r.y = b1b2 . . . br, b1b2 . . . br . . ..
Et donc,

10ry − y = (b1b2 . . . br, b1b2 . . . br . . .)− 0, b1b2 . . . br . . . = b1b2 . . . br = b1.10
r + b2.10

r−1 + . . .+ br−1.10 + br.
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On en déduit donc que (10r − 1).y est un entier. Donc y est un rationnel.

Comme on a y = (x − a0, a1 . . . an0).10
n0 , on a x = y

10n0 − a0, a1 . . . an0 . Donc, x est un rationnel (comme

quotient et somme de rationnels).

Exemple 56 — Prenons x = 2, 1567423781378137813781 . . . (les décimales répétant le motif
3781), et trouvons une forme rationnelle de x.
On a : (x− 2, 156742).106 = 0, 37813781 . . ..
Donc (x− 2, 156742).1010 = 3781, 37813781 . . ..
Ainsi, on a (x− 2, 156742).1010 − (x− 2, 156742).106 = 3781.
Cela donne : (x− 2, 156742).106.(104 − 1) = 3781.
D’où : x− 2, 156742 = 3781

106.9999
.

Enfin : x = 3781
106.9999

+ 2, 156742 = 3781
106.9999

+ 2156742
106

= 3781+2156742.9999
106.9999

.
On a bien obtenu une écriture rationnelle de x, même si cette écriture est sûrement simplifiable.

Bilan du contenu nécessaire à mâıtriser :

— Définition d’une série
∑
n≥n0

un. Somme partielle Sn. Nature (convergente/divergente),

somme

∞∑
n=n0

un, reste Rn = S − Sn =

+∞∑
k=n+1

uk. Série absolument convergente.

— Connâıtre les propriétés des séries convergentes : Le terme général un tend vers 0, le
reste tend vers 0, somme et multiples de séries CV.

— Savoir prouver correctement la convergence d’une série : Critère de convergence des séries
à termes positifs. Propriété des séries absolument convergentes. Encadrement de séries
à termes positifs. Critère de comparaison série-intégrale. Séries à termes généraux équi-
valents. Méthode des croissances comparées. Méthode de l’inégalité de Taylor-Lagrange.

— Connâıtre les exemples de référence (déf, nature, somme) : Série géométrique
∑
n≥0

qn,

série télescopique
∑
n≥n0

(vn+1 − vn), série harmonique
∑
n≥1

1

n
, séries de Riemann

∑
n≥1

1

na
,

série exponentielle
∑
n≥0

xn

n!
, série alternée

∑
n≥1

(−1)n

n
.

— Savoir utiliser les exemples de référence pour montrer qu’une série
∑

un est convergente

ou divergente (comparaison, équivalent).
Savoir déterminer la somme d’une série à partir des séries de référence, ou avec l’inégalité
de Taylor-Lagrange.

— Savoir effectuer un calcul de somme de série dans un cas simple ou classique.
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