FEUILLE DE TD Nº 4

 $Nombres\ complexes$

■ Généralités

Exercice 1. Calculer $(1-i)^{2005}$.

Donner une première expression avec la formule du binôme. Puis, une seconde expression en utilisant la forme exponentielle. Enfin, une troisième expression en revenant à la forme algébrique.

Exercice 2. 1. Forme algébrique et forme exponentielle de $3e^{i\pi} \cdot (-4e^{i\frac{\pi}{2}})$.

- 2. Forme algébrique de $(5-4i)^2$, $(5-4i)^3$.
- 3. Forme algébrique et exponentielle de $\frac{1}{5-4i}$
- 4. Forme algébrique de $\sqrt{2} \exp(i\frac{\pi}{6})$.
- 5. Forme algébrique de $\pi \exp(i)$ et de $\frac{1}{\pi e^i}$.
- 6. Forme exponentielle de $5\exp(i\frac{\pi}{4}) + 2e^{i\frac{\pi}{2}}$.
- 7. Forme algébrique et forme exponentielle de $e^{ia} + e^{ib}$.
- 8. Forme algébrique et forme exponentielle de $\frac{1}{e^{ia}}$.
- 9. Forme exponentielle de $\frac{1}{e^{ia}+e^{ib}}$.
- 10. Déterminer z_1, z_2 les racines de $z^2 + z + 5 = 0$. Montrer que $\bar{z_1} = z_2$. Pour $z_1 = re^{it}$, déterminer r, $\cos(t)$, $\sin(t)$. Montrer que z_1 est solution de $z^2 2Re(z_1).z + |z_1|^2 = 0$.
- 11. Forme algébrique et exponentielle de e^{3-4i} .

Exercice 3. Soient $a, b \in \mathbb{C}$ de module 1. Soit z de module 1 et différent de b. Montrer que l'on a $\frac{b}{a} \left(\frac{z-a}{z-b} \right)^2 \in \mathbb{R}_+$.

Exercice 4. Déterminer le module et un argument des nombres complexes suivants :

$$\frac{1+i}{\sqrt{3}-i} \qquad \qquad \left| \quad 1+i\tan(\theta) \qquad \quad \right| \quad (1+i)^n \qquad \quad \left| \quad \frac{1+\cos(\theta)+i\sin(\theta)}{1-\cos(\theta)-i\sin(\theta)} \right|$$

■ Trigonométrie

Exercice 5.

- 1. On pose $z = e^{\frac{2i\pi}{5}}$. Calculer $1 + z + z^2 + z^3 + z^4$.
- 2. En déduire la valeur de $1 + \cos(\frac{2\pi}{5}) + \cos(\frac{4\pi}{5}) + \cos(\frac{6\pi}{5}) + \cos(\frac{8\pi}{5})$.
- 3. Montrer que $\cos(\frac{2\pi}{5}) + \cos(\frac{8\pi}{5}) = 4\cos^2(\frac{\pi}{5}) 2$. Puis, montrer que $\cos(\frac{4\pi}{5}) + \cos(\frac{6\pi}{5}) = -2\cos(\frac{\pi}{5})$.
- 4. En déduire la valeur de $\cos(\frac{\pi}{5})$.

Exercice 6. Calculer

$$S = \sum_{k=0}^{5} \cos\left(\frac{(2k+1)\pi}{13}\right).$$

Donner une expression simplifiée de

$$T = \sum_{k=0}^{5} \sin\left(\frac{(2k+1)\pi}{13}\right).$$

■ Équations complexes/Racines n-ièmes

Exercice 7. Déterminer les racines carrées de (1+i). En déduire les valeurs de $\cos(\frac{\pi}{8}), \sin(\frac{\pi}{8})$ et $\tan(\frac{\pi}{8})$.

Exercice 8. Déterminer :

les racines 2-iemes de 2i; les racines 3-iemes de -i; les racines 4-iemes de -4; les racines 2-iemes de 8-6i;

Exercice 9. Résoudre dans $\mathbb C$ les équations suivantes :

1.
$$z^2 - 2(2+i)z + 6 + 8i = 0$$

2.
$$z^2 - (1 + i\sqrt{3})z - 1 + i\sqrt{3} = 0$$

3.
$$z^4 - 15(1+2i)z^2 - 88 + 234i = 0$$

4. $2z^3 - (1-i)z^2 + (1+i)z + 2i = 0$, en sachant que l'une des solutions est un imaginaire pur. (de la forme ia)

Exercice 10. Linéariser les fonctions suivantes.

Puis, leur trouver une primitive.

$$1. \ f(x) = \cos(x)^2$$

1.
$$f(x) = \cos(x)^2$$

2. $g(x) = \cos(x)^3$
3. $h(x) = \cos(2x)\sin(3x)$
4. $k(x) = x\cos(x)^2$

$$2. \ g(x) = \cos(x)^{3}$$

$$4. \ k(x) = x\cos(x)^2$$

Exercice 11. On note $z = e^{\frac{2i\pi}{7}}$ une racine septième de 1.

On pose $u = z + z^2 + z^4$ et $v = z^3 + z^5 + z^6$

- 1. Calculer u + v et uv.
- 2. En déduire les valeurs de u et de v.

Exercice 12. Trouver tous les couples (u, v) de complexes solutions du système :

$$\begin{cases} u^2 + v^2 &= -1 \\ uv &= 1 \end{cases}$$

Exercice 13. Soit $E = \{n^2 + m^2, n, m \in \mathbb{N}\}.$

Montrer que E est stable par multiplication : Si $a, b \in E$ alors $a \times b \in E$.

Exercice 14. Soit $\alpha \in \mathbb{C}$.

Résoudre l'équation $e^z = \alpha$, d'inconnue $z \in \mathbb{C}$.

■ Géométrie et nombres complexes

Exercice 15. Est-ce que les points A, B, C du plan associés aux nombres complexes -10 - 7i, 2 + 13i et 11 + 28i sont alignés?

Exercice 16. Dans le plan complexe, déterminer l'ensemble des points dont l'affixe z vérifie :

$$|(1+i)z - 2i| = 2$$

Exercice 17. On identifie les points de \mathbb{C} à leur affixe.

Déterminer l'ensemble E des nombres complexesz tels que 1, z et z^3 soient alignés.

Exercice 18. Déterminer dans le plan complexe, l'ensemble E des points Md'affixe z telle que :

1.
$$z^{3} \in \mathbb{R}$$

2. $z + \frac{1}{z} \in \mathbb{R}$
3. $\frac{1 - iz}{1 + iz} \in \mathbb{R}$
4. $\frac{z - i\sqrt{3}}{z - 1} \in i\mathbb{R}$
5. $z^{2} - (1 - 2i)^{2} = \bar{z}^{2} - (1 + 2i)^{2}$

Exercice 19. Soient A et B deux points distincts du plan. Soit M un point du

En utilisant les nombres complexes, retrouver le résultat suivant :

$$M$$
 est sur le cercle de diamètre [AB] \iff $(MA) \perp (MB)$.

Exercice 20. Pour $z \in \mathbb{C}^*$, on note u, v les racines carrées complexes de z. Déterminer l'ensemble des $z \in \mathbb{C}^*$ tels que les points A, B, C d'affixes z, u, vforment un triangle qui est rectangle en A.