FEUILLE DE TD Nº 5

Primitives et équations différentielles

■ Calculs directs de primitives/intégrales

Exercice 1. Calculer les intégrales suivantes :

1.
$$\int_{1}^{8} x^{6} dx$$

2.
$$\int_0^{\frac{\pi}{2}} \sin(2x) dx$$

3.
$$\int_0^{\frac{\pi}{6}} \frac{1}{\cos(x)^2} dx$$

4.
$$\int_0^5 \exp(-t) dt$$

5.
$$\int_0^1 \frac{x}{1+x^2} dx$$

6.
$$\int_{1}^{\sqrt{\pi}} \frac{\sin(\sqrt{x})}{\sqrt{x}} dx$$
 12. $\int_{0}^{2} t e^{-t^{2}} dt$

7.
$$\int_{0}^{2} \frac{x^{2n-1}}{1+x^{2n}} dx$$
, $n \in [13. \int_{0}^{3} (1-t)^{6} dt]$

$$\mathbb{N}^*$$
8.
$$\int_0^1 \frac{1}{x+3} dx$$

9.
$$\int_{-5}^{-4} \frac{1}{x-2} dx$$

$$10. \int_1^2 \frac{\ln(x)}{x} dx$$

5.
$$\int_0^1 \frac{x}{1+x^2} dx$$
 11. $\int_2^4 \frac{1}{x \ln(x)} dx$

12.
$$\int_0^2 t e^{-t^2} dt$$

13.
$$\int_{0}^{3} (1-t)^{6} dt$$

14.
$$\int_0^3 (1-t^2)^3 dt$$

15. $\int_0^3 (1-t^2)^3 t dt$

15.
$$\int_0^3 (1-t^2)^3 t dt$$

16.
$$\int_0^3 (t^2 + t^4)^3 dt$$

10.
$$\int_{1}^{2} \frac{\ln(x)}{x} dx$$
 17. $\int_{0}^{2} \frac{1}{1+4x^{2}} dx$

$$18. \int_0^2 \cos(t)\sin(t)dt$$

19.
$$\int_0^2 \cos(t)^5 \sin(t) dt$$

Exercice 2. Calculer les intégrales suivantes :

$$1. \int_1^8 \frac{x}{x+1} dx$$

$$2. \int_{1}^{8} \frac{x^2}{1+x^2} dx$$

3.
$$\int_{2}^{4} \frac{x-1}{x+1} dx$$

4.
$$\int_{2}^{4} \frac{1}{(x-1)(x+1)} dx$$
 8. $\int_{0}^{2} \frac{1}{4x+3} dx$

$$5. \int_{2}^{4} \frac{1}{x(x+1)} dx$$

$$6. \int_0^2 x\sqrt{x+1}dx$$

$$7. \int_0^1 \tan(x)^2 dx$$

8.
$$\int_0^2 \frac{1}{4x+3} dx$$

9.
$$\int_0^3 \frac{1}{5+x^2} dx$$

1.
$$\int_{1}^{8} \frac{x}{x+1} dx$$

2. $\int_{1}^{8} \frac{x^{2}}{1+x^{2}} dx$
3. $\int_{2}^{4} \frac{x-1}{x+1} dx$
5. $\int_{2}^{4} \frac{1}{x(x+1)} dx$
6. $\int_{0}^{2} x \sqrt{x+1} dx$
7. $\int_{0}^{1} \tan(x)^{2} dx$
10. $\int_{0}^{3} (\cos(x)^{2})^{4} \cos(x) dx$

11.
$$\int_{1}^{3} \frac{\exp(10x) - 1}{\exp(x) - 1} dx$$

Exercice 3. Déterminer les primitives des fonctions suivantes :

1.
$$f_1: t \mapsto \frac{t^2}{1+t^3}$$

1.
$$f_1: t \mapsto \frac{t^2}{1+t^3}$$
 2. $f_2: t \mapsto \frac{t}{\sqrt{1+t^2}}$ 3. $f_3: t \mapsto \tan(2x)$

$$3. \ f_3: t \mapsto \tan(2x)$$

Exercice 4 (Linéarisation).

- 1. Déterminer une primitive de $f: x \mapsto \cos(x)^2 \sin(x)$.
- 2. Déterminer une primitive de $q: x \mapsto \cos(2x)\sin(3x)$.

Exercice 5. Calculer les intégrales suivantes :

1.
$$\int_{1}^{8} \exp^{2x} \cos(x) dx$$

1.
$$\int_{1}^{8} \exp^{2x} \cos(x) dx$$

2. $\int_{0}^{1} \exp(-x) \sin(2x) dx$

3.
$$\int_{1}^{2} \exp(3x) \exp(-x) \sin(-x) dx$$

4.
$$\int_{2}^{3} \exp(2x) \cos(x) \sin(3x) dx$$

■ *Intégration par parties*

Exercice 6. En utilisant une intégration par parties, calculer les intégrales suivantes:

$$1. \int_1^e x(\ln(x))^2 dx$$

2.
$$\int_0^3 x \sqrt{x+1} dx$$

3.
$$\int_1^4 (x+3) \ln(x) dx$$

$$4. \int_2^3 \ln\left(\frac{x-1}{x+1}\right) dx$$

$$5. \int_0^M x \exp(-x) dx$$

1.
$$\int_{1}^{e} x(\ln(x))^{2} dx$$
 5. $\int_{0}^{M} x \exp(-x) dx$ 9. $\int_{1}^{2} (2x - 1) \sin(3x) dx$ 1. $\int_{1}^{3} x \sqrt{x+1} dx$ 6. $\int_{-M}^{0} (2x + 1) \exp(2x) dx$ 10. $\int_{0}^{1} x^{2} \cos(2x) dx$ 11. $\int_{1}^{2} \frac{\ln(t)}{t^{2}} dt$ 12. $\int_{0}^{3} \frac{\ln(t)}{t^{2}} dt$ 12. $\int_{0}^{3} \frac{\ln(t)}{t^{2}} dt$ 12. $\int_{0}^{3} \frac{\ln(t)}{t^{2}} dt$ 13. $\int_{0}^{3} \frac{\ln(t)}{t^{2}} dt$ 15. $\int_{0}^{3} \frac{\ln(t)}{t^{2}} dt$ 16. $\int_{0}^{3} x^{2} \cos(2x) dx$ 17. $\int_{0}^{3} \frac{\ln(t)}{t^{2}} dt$ 18. $\int_{0}^{3} x \cos(x) dx$ 19. $\int_{0}^{3} x^{2} \cos(2x) dx$ 19. $\int_{0}^{3} x^{2} \cos(2x) dx$ 19. $\int_{0}^{3} x^{2} \cos(2x) dx$ 10. $\int_{0}^{3} x^{2} \cos(2x) dx$ 11. $\int_{0}^{3} \frac{\ln(t)}{t^{2}} dt$ 19. $\int_{0}^{3} x^{2} \cos(2x) dx$ 19. $\int_{0}^{3} x$

7.
$$\int_0^1 x^2 \exp(2x)$$

9.
$$\int_{1}^{2} (2x - 1) \sin(3x) dx$$

10.
$$\int_0^1 x^2 \cos(2x) dx$$

11.
$$\int_1^2 \frac{\ln(t)}{t^2} dt$$

8.
$$\int_0^1 x \cos(x) dx$$
 12. $\int_1^3 \frac{\ln(t)}{t^n} dt$, $n \ge 2$.

Exercice 7. Déterminer une primitive sur \mathbb{R} de la fonction arctan. Déterminer une primitive sur]-1,1[de la fonction arccos.

Exercice 8.

- 1. Soit $n \in \mathbb{N}$. Déterminer une primitive de la fonction $f(x) = x^n \ln(x)$.
- 2. Pour tout $a \in \mathbb{R}$ avec $a \neq -1$, déterminer une primitive de $g(x) = x^a \ln(x)$.
- 3. Déterminer une primitive de $h(x) = \frac{\ln(x)}{x}$.

■ Changement de variable

Exercice 9. Calculer les intégrales suivantes en effectuant les changements de variables suggérés.

1.
$$\int_0^1 \frac{1}{1+e^t} dt$$
, (poser $u = e^t$)

1.
$$\int_0^1 \frac{1}{1+e^t} dt$$
, (poser $u = e^t$)
2. $\int_0^1 \sqrt{1-x^2} dx$, (poser $x = \sin(t)$)
3. $\int_0^1 \sqrt{1-x^2} dx$, (poser $x = \sin(t)$)
4. $\int_0^{\frac{\pi}{2}} \cos(t)^3 dt$, (poser $u = \sin(t)$)
5. $\int_0^2 \frac{x}{\sqrt{2x+1}}$, (poser $u = 2x+1$)

3.
$$\int_0^{\frac{\pi}{3}} \frac{\sin(2t)}{(1+\cos(t))^2} dt$$
, (poser $u = \cos(t)$)

6. $\int_0^3 \cos(x)^{2n} \cos(x) dx$ (poser $t = \sin(x)$)

4.
$$\int_0^{\frac{\pi}{2}} \cos(t)^3 dt$$
, (poser $u = \sin(t)$

5.
$$\int_0^2 \frac{x}{\sqrt{2x+1}}$$
, (poser $u = 2x + 1$)

6.
$$\int_0^3 \cos(x)^{2n} \cos(x) dx \text{ (poser } t = \sin(x))$$

Exercice 10. Calculer les intégrales suivantes :

1.
$$\int_1^3 \frac{1}{x^2 + 2x + 3} dx$$

$$3. \int_3^4 \frac{1}{x^2 - 2x - 1} dx$$

1.
$$\int_{1}^{3} \frac{1}{x^{2} + 2x + 3} dx$$
 3. $\int_{3}^{4} \frac{1}{x^{2} - 2x - 1} dx$ 5. $\int_{0}^{M} \frac{2 + x}{x^{2} + 2x + 3} dx$ 2. $\int_{0}^{3} \frac{1}{x^{2} + 2x + 1} dx$ 4. $\int_{2}^{3} \frac{1}{2x^{2} + 7} dx$ 6. $\int_{0}^{1} \frac{2}{3x^{2} - 2x + 1} dx$

2.
$$\int_0^3 \frac{1}{x^2 + 2x + 1} dx$$

4.
$$\int_{2}^{3} \frac{1}{2x^2+7} dx$$

$$6. \int_0^1 \frac{2}{3x^2 - 2x + 1} dx$$

■ Résolution d'équations différentielles

Exercice 11. Résoudre les équations différentielles suivantes.

1. Sur
$$\mathbb{R}$$
, $y' - 3y = 0$.

2. Sur
$$\mathbb{R}$$
, $y' - \cos y = 0$.

3.
$$\forall x \in \mathbb{R}_+^*, y'(x) - 2x^2y(x) = 0.$$

4.
$$\forall x \in \mathbb{R}, (1+x^2)y'(x) + y(x) = 0.$$

5.
$$\forall x \in \mathbb{R}, y'(x) - 3y(x) = 2e^{4x}$$
.

6.
$$\forall x \in \mathbb{R}, \ y'(x) + 2y(x) = (x^2 + 1)e^{-2x}.$$

7. Sur
$$\mathbb{R}$$
, $y' - \cos y = \cos$.

8. Sur
$$\mathbb{R}$$
, $y' + 2y = \sin$.

9. Sur
$$\mathbb{R}$$
, $y' - \exp y = 2 \exp$.
Déterminer une solution particulière constante.

10.
$$\forall x \in \mathbb{R}_{-}^{*}, x^{3}y'(x) = 2y(x).$$

11.
$$\forall t \in \mathbb{R}_+^*, \ t^2 y'(t) - (2t - 1)y(t) = t^2.$$

12.
$$\forall t \in \mathbb{R}, \ (1+t^2)y'(t) + ty(t) = \sqrt{1+t^2}.$$

13. Sur
$$\mathbb{R}$$
, $4y' - y = 0$ et $y(0) = 0$.

14.
$$\forall t \in]-1, +\infty[, (1+t^3)y'(t) + 3ty(t) = 0 \text{ et } y(0) = 1.$$

15. Sur
$$\mathbb{R}$$
, $y' - \cos y = \cos \operatorname{et} y(\pi) = 1$.

16.
$$\forall x \in \mathbb{R}, (1+x^2)y'(x) + y(x) = 0$$

et $y(1) = 1$.

Exercice 12. Résoudre les équations différentielles suivantes.

1.
$$y'' - 5y' + 6y = 0$$
.

2.
$$y'' + 3y' - 6y = 1$$
.

3.
$$y'' + 3y' - 6y = 2x + 3$$
.
Chercher $y_p : x \mapsto ax + b$.

4.
$$y'' + y = 0$$
.

5.
$$y'' + y = 1$$
.

6.
$$y'' + y = 1$$
 et $y(0) = 1$ et $y'(0) = 1$.

7.
$$\forall t \in \mathbb{R}, \ y''(t) + 2y'(t) + y(t) = 3\exp(-t).$$

8.
$$\forall t \in \mathbb{R}, \ y''(t) - 5y'(t) + 6y(t) = e^{2t}$$
.

9.
$$\forall t \in \mathbb{R}, y''(t) - 5y'(t) + 6y(t) = e^{2t}$$

et $y(0) = 0$ et $y'(0) = 1$.

10.
$$\forall t \in \mathbb{R}, \ y''(t) + 2y'(t) + 2y(t) = e^{-t}\cos(t).$$

Exercice 13. L'objectif de cet exercice est de calculer l'intégrale

$$I = \int_0^{\pi/4} \ln(1 + \tan(x)) dx$$

En posant $u = \pi/4 - x$, montrer que $I = \int_0^{\pi/4} \ln(2) dt - I$. En déduire la valeur de I.

Exercice 14 (Mouvement d'une particule chargée).

Le mouvement d'une particule chargée dans un champ magnétique dirigé suivant l'axe (Oz) est régi par un système différentiel de la forme :

$$\begin{cases} x''(t) = \omega y'(t) \\ y''(t) = -\omega x'(t) \\ z''(t) = 0 \end{cases}$$

où ω est une constante. On pose la fonction u = x' + iy'.

Déterminer une équation différentielle vérifiée par la fonction u, et la résoudre.

Puis, déterminer une expression des fonctions x, y et z.

Décrire le comportement de ces fonctions sur $[0, +\infty]$ selon les valeurs de ω .

Exercice 15 (Petites oscillations d'un pendule libre). Un pendule pesant de longueur l est placé dans un champs de pesanteur d'intensité g.

On suppose que l'angle $\theta(t)$ qu'il forme avec la verticale reste à chaque instant t petit de sorte que l'approximation $\sin(\theta(t)) \sim \theta(t)$ soit raisonnable.

La fonction θ vérifie alors l'équation : $\frac{d^2\theta}{dt^2} + \frac{g}{l}\theta(t) = 0$.

Résoudre l'équation différentielle, et déterminer une expression de $\theta(t)$.

Exercice 16 (Une équation fonctionnelle).

Déterminer l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$, dérivables sur \mathbb{R} , telles que :

$$\forall (x,y) \in \mathbb{R}^2, \quad f(x+y) = f(x)f(y).$$

On fixera y et on fera apparaître une équation différentielle en x dont f est une solution.

Exercice 17 (Calculs de périmètres, aires, volumes). Soient $(r, R) \in (\mathbb{R}_+^*)^2$.

- 1. Le périmètre du cercle $\mathcal{C}((0,0),r)$ vaut $P_r = \int_0^{2\pi} \|((r\cos(t))',(r\sin(t))')\|dt$, avec $\|(x,y)\| = \sqrt{x^2 + y^2}$. Déterminer P_r .
- 2. Le disque D((0,0),R) est la réunion disjointe des cercles $\mathcal{C}((0,0),r)$, pour tout $r \in [0,R]$. Son aire vaut $A_R = \int_0^R P_r dr$. Déterminer A_R .
- 3. La sphère S((0,0,0),r) est une surface obtenue par révolution de la courbe de $g: x \in [-r, r] \mapsto \sqrt{r^2 - x^2}$ selon l'axe Ox. Son aire vaut $S_r = \int_{-r}^r 2\pi g(t) \|(1, g'(t))\| dt$. Déterminer S_r .
- 4. La boule B((0,0,0),R) est la réunion disjointe des sphères S((0,0,0),r), pour tout $r \in [0, R]$. Son volume vaut $V_R = \int_0^R S_r dr$. Déterminer V_R .