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présentée et soutenue publiquement le 8 Mars 2021 par

Vidal AGNIEL

Dilatations d’opérateurs
et projections Lp

Directeur de thèse : Cătălin BADEA
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Cătălin BADEA Directeur
Frédéric BAYART Rapporteur
Emmanuel FRICAIN Examinateur
Sophie GRIVAUX Présidente du jury
Karl GROSSE-ERDMANN Examinateur
Andreas HARTMANN Rapporteur





Table des matières

Introduction (en français) 1
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Cette thèse ne serait pas ici sans l’encadrement apporté par Catalin Badea, qui a accepté
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et doctorants, avec qui je me suis plu à échanger.
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Introduction (en français)

Les objets phares de cette thèse sont les dilatations unitaires et les Lp-projections.

Dilatations unitaires. La théorie des dilatations est une collection de résultats, d’outils, et
de techniques en théorie des opérateurs et en algèbres d’opérateurs, qui sont regroupées sous
l’idée que l’on peut apprendre énormément d’un opérateur ou d’une famille d’opérateurs en les
interprétant comme la compression (i.e. ”un morceau de”) d’un autre opérateur, quant à lui
déjà bien connu. Historiquement, le premier résultat en théorie des dilatations a été obtenu par
Béla Sz.-Nagy en 1953 : toute contraction peut être dilatée (ainsi que ses puissances) en un
opérateur unitaire. En partant de ce résultat relativement élémentaire, toute une théorie des
opérateurs non-normaux fut développée, en prenant le nom suggestif d’analyse harmonique de
contractions sur des espaces de Hilbert. Une monographie conséquente du même titre fut publié
en 1970 by B. Sz.-Nagy et C. Foias ; une deuxième édition revue et complètement mise à jour
par Sz.-Nagy, Foias, H. Bercovici et L. Kérchy. a été publiée par Springer in 2010.

L’on connâıt de multiples applications à l’existence d’une dilatation unitaire (minimale) pour
une contraction sur un espace de Hilbert donnée. La première application, démontrée à nouveau
par Sz.-Nagy dans son article de 1953, est une nouvelle preuve de la renommée inégalité de von
Neumann. Ce résultat énonce que pour un opérateur T sur un espace de Hilbert, on a :

Si ‖T‖ ≤ 1 alors ‖P (T )‖ ≤ ‖P‖L∞(D) pour tout polynôme P ∈ C[Z].

La dilatation unitaire minimale peut aussi être utilisée pour définir un calcul fonction-
nel amélioré sur les contractions, peut servir à analyser des semi-groupes d’opérateurs à un
paramètre, et fournit un ”modèle fonctionnel” à travers duquel l’on peut analyser les contrac-
tions et les classifier, ce qui a amené à de considérables avancées dans l’études des sous-espaces
invariants pour certaines familles d’opérateurs.

Pour esquisser une des applications précédentes, intéressons-nous brièvement au calcul fonc-
tionnel pour les contractions sur un espace de Hilbert. On note H∞ = H∞(D) l’algèbre des
fonctions holomorphes bornées sur le disque unité ouvert D. Pour un opérateur T ∈ B(H) donné,
on souhaite définir un calcul fonctionnel f 7→ f(T ) pour tout f ∈ H∞. Si le spectre de T est
contenu dans D, on peut alors appliquer le calcul fonctionnel holomorphe à T pour obtenir un
morphisme d’algèbres f 7→ f(T ) défini sur l’algèbre Hol(D) des fonctions holomorphes sur D.
En fait, pour f ∈ Hol(D) et σ(T ) ⊂ D, on peut directement injecter T dans la décomposition en
série entière de f . Ainsi, on sait dans ce cas définit f(T ) pour toute fonction f ∈ H∞.

Maintenant, prenons T une contraction sont le spectre σ(T ) n’est pas contenu dans le disque
ouvert D. Pour une fonction holomorphe bornée f ∈ H∞, comment peut-on définir f(T ) ? Le
calcul fonctionnel holomorphe ne peut pas être utilisé car σ(T ) contient des points du cercle
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2 Introduction (français)

unité, là où certaines fonctions f ∈ H∞ ne se prolongent pas en une fonction holomorphe sur
un voisinage du disque unité fermé.

Un sous-cas que l’on peut traiter aisément est pour les fonctions f appartenant à l’algèbre du
disque A(D) ⊂ H∞, qui ’est l’algèbre des fonctions holomorphes bornées sur le disque unité qui
s’étendent continûment au disque unité fermé D. Ce cas peut être traité en utilisant l’inégalité
de von Neumann. Il n’est en effet pas trop difficile de montrer que les fonctions polynômiales
sont denses dans A(D) pour la norme infinie ‖f‖∞ = sup|z|≤1 |f(z)|. Si (Pn)n est une suite de

polynômes qui converge univormément sur D vers f , et si T est une contraction, alors l’inégalité
de von Neumann implique que Pn(T ) est une suite de Cauchy, ce qui permet de définir f(T )
comme limn Pn(T ). Il n’est pas difficile de montrer que le calcul fonctionnel ainsi défini sur A(D)
vérifie toutes les propriétés que l’on pourrait demander : c’est un morphisme d’algèbre étendant
le calcul fonctionnel holomorphe, il est continu, et il cöıncide avec le calcul fonctionnel continu
sur D si T est normal.

Traiter le cas de H∞ est plus délicat, mais les dilatations unitaires apportent une façon de
procéder. L’idée générale est de regarder la dilatation unitaire minimale U associée à T , et
d’utiliser la théorie spectrale pour analyser ce que l’on peut faire pour U . Si la mesure spectrale
associée à U est absolument continue par rapport à la mesure de Lebesgue du cercle unité,
alors il s’avère que l’on peut définir f(U) pour tout f ∈ H∞, et l’on peut simplement définir
f(T ) comme la compression de f(U) à H. Dans ce cas le calcul fonctionnel f 7→ f(T ) est un
morphisme d’algèbres qui étend le calcul fonctinnel holomorphe, qui est continu, et qui est en
accord avec le calcul fonctionnel Borélien lorsque T est normal. Bien entendu, cela n’est utile
que si l’on peut trouver des conditions garantissant que la dilatation unitaire minimale pour
T a une mesure spectrale absolument continue. Une contraction T est dite complètement non-
unitaire (c.n.u.) si elle ne possède aucun sous-espace stable F tel que la restriction T

∣∣
F

soit
unitaire. Toute contraction se décompose en une somme directe T = T0 ⊕ T1, où T1 is c.n.u. et
T0 est unitaire. Sz.-Nagy and Foias ont montré que si T est c.n.u., alors la mesure spectrale de
sa dilatation unitaire minimale est absolument continue.

Si la mesure spectrale pour U n’est pas absolument continue par rapport à la mesure de
Lebesgue, alors il existe une sous-algèbre H∞U de H∞ pour laquelle il existe un calcul fonctionnel
f 7→ f(U), que l’on peut alors comprimer pour obtenir f(T ) ; il a été montré que H∞U est
précisément la sous-algèbre des fonctions de H∞ pour lesquelles f 7→ f(T ) est un morphisme
bien défini. Voir [SNBFK10, Chapitre III] pour tous les détails nécessaires.

Ma contribution sur ce thème dans cette thèse est au sujet de dilatations sur l’étude de
plusieurs classes d’opérateurs généralisant le théorème de dilatation de Sz. Nagy’s. Un objet
d’étude central est la classe C(ρn) associée à une suite (ρn) de nombres complexes non-nuls
donnée. Par définition, T ∈ L(H) possède une (ρn)-dilation, ou de façon équivalente appartient
à la classe C(ρn), s’il existe un espace de Hilbert K et un opérateur unitaire U ∈ L(K) avec
H ⊂ K tels que Tn = ρnPHU

n|H pour tout n ≥ 1, où PH ∈ L(K) est la projection orthogonale
sur le sous-espace fermé H. Diverses propriétés spectrales sur les opérateurs appartenant à ces
classes sont étudiées dans cette thèse.

Lp-projections. La géométrie des espaces de Hilbert est, en un certain sens, celle qui est la
plus proche de la géométrie euclidienne en dimension finie. Tout sous-espace fermé d’un espace
de Hilbert possède un supplémentaire orthogonal, et toute décomposition de cette forme est
associée à une projection orthogonale. Les projections orthogonales sur les espaces de Hilbert
sont ainsi des objets d’étude de base dans la théorie des opérateurs sur un espace de Hilbert.
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Dans les espaces de Banach, différentes versions de ”projections orthogonales” ont été envisagées
: idempotents de norme 1, projections orthogonales, projections hermitiennes, etc. La notion
de Lp-projection a été introduite par Cunningham [Cun53] en 1953, la même année où Sz.-
Nagy prouva son théorème de dilatation. Une Lp-projections sur un espace de Banach X, pour
1 ≤ p ≤ +∞, est un opérateur idempotent P vérifiant ‖f‖X = ‖(‖P (f)‖X , ‖(I − P )(f)‖X)‖`p
pour tout f ∈ X. Ceci est une version Lp de l’égalité ‖f‖2 = ‖Q(f)‖2 + ‖(I −Q)(f)‖2, vérifiée
par les projections orthogonales sur un espace de Hilbert.

La motivation principale à l’introduction de cette notion vient du développement de certains
chapitres de géométrie des espaces de Banach qui peuvent maintenant être regroupés sous l’en-
tête ”structure Lp”. Soit X un espace de Banach et soit p avec 1 ≤ p ≤ +∞. Deux sous-espaces
fermés de X, J et J⊥, sont dits complémentaires Lp-sommants si X est la somme algébrique de
J et de J⊥ et si pour tous x ∈ J , x⊥ ∈ J⊥ on a

‖x+ x⊥‖p = ‖x‖p + ‖x⊥‖p ( si 1 ≤ p < +∞)

ou
‖x+ x⊥‖ = max

(
‖x‖, ‖x⊥

)
( si p = +∞).

Par conséquent les éléments de J et de J⊥ se comportent comme des éléments à support disjoint
dans un espace Lp. La projection de X sur J parallèlement à J⊥ est précisément une Lp-
projection.

Bien que les L1- and L∞-sommants et leurs projections associées ont été étudiés en premier
par Cunningham et d’autres chercheurs, le moment charnière dans l’histoire de la ”structure Lp”
fut l’article [AE72] (découpé en deux morceaux) d’Eric Alfsen et Edward G. Effros, publié dans
Annals of Mathematics. Les résultats probablement les plus importants de cet article concernent
la caractérisation des M -idéaux en utilisant une propriété d’intersection et via l’introduction
d’une topologie de structure. On rappelle que, par définition, un M -idéal est un sous-espace
fermé dont la décomposition polaire est un L1-sommant dans l’espace dual.

Les Lp-projections ont été étudiées, principalement pour p = 1 et p = +∞, dans les articles
[Cun53, Cun60, Cun67, CER73]. Le cas plus général 1 < p < +∞ fut étudié Alfsen-Effros dans
leur article mentionné précédemment [AE72], ainsi que par Sullivan [Sul70] et Fakhoury [Fak74].
Les principaux résultats de caractérisation, qui ont été obtenus en 1973-1976 par Alfsen-Effros,
Behrends, Fakhoury, Sullivan et d’autres, ont été compilés dans le livre [BDE+77, Ch.1,2,6].
Une caractérisation intéressante des espaces Lp réels via leur norme a été obtenue dans [Sul68]
: Sullivan a prouvé qu’un espace Lp réel X est caractérisé par des inégalités de Clarkson pour
X et son dual X∗ et par l’existence de suffisamment de Lp-projections.

On mentionne aussi que chaque Lp-projection est hermitienne. On rappelle (voir par exemple
[BS74]) qu’une projection Q est hermitienne si ‖eiαQ‖ = 1 pour tout α ∈ R et qu’une projection
Q est hermitienne si et seulement si Q + λ(I − Q) est une isométrie pour tout λ ∈ ∂D ou, de
façon équivalente, si λQ+ γ(I −Q) est une isométrie pour tous λ, γ ∈ ∂D. Pour voir qu’une Lp-
projection P est une projection hermitienne, on peut constater que la condition de Lp-projection
est équivalente à

‖f + g‖X = ‖(‖f‖, ‖g‖)‖`p , pour tout f ∈ Im(P ), g ∈ Ker(P ),

où Im et Ker sont respectivement l’image et le noyau de P . Ainsi, pour tous λ, γ ∈ ∂D, on a

‖λf + γg‖X = ‖(‖f‖, ‖g‖)‖`p = ‖f + g‖X , pour tous f ∈ Im(P ), g ∈ Ker(P ),
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ce qui montre que λP + γ(I − P ) est une isométrie sur X et ainsi que P est une projection
hermitienne.

Ma contribution sur ce sujet dans cette thèse porte sur l’étude des Lp-projections sur les sous-
espaces et les quotients d’espaces de Banach complexes. J’introduis une notion de p-orthogonalité
pour deux vecteurs x, y en demandant que Vect(x, y) admette une Lp-projection séparant x et
y. J’introduis aussi la notion de Lp-projection maximale pour X, c’est-à-dire une Lp-projection
sur un sous-espace G de X qui ne peut pas être étendue comme Lp-projection sur un sous-
espace plus large. Je démontre des résultats concernant les Lp-projections et la p-orthogonalité
sur des espaces de Banach généraux ainsi que que des espaces de Banach ayant des propriétés
supplémentaires. La généralisation de certains de ces résultats à des espaces Lp(Ω, X) ainsi que
des résultats au sujet de Lq-projections sur des sous-espaces de quotients de Lp(Ω) (p 6= q) sont
aussi présents.

Chapitre 1

Les classes Cρ ont été introduites par B. Sz-Nagy et C. Foias [SNF66] en 1966. Pour un espace
de Hilbert complexe H et un nombre réel ρ > 0, une application linéaire continue T ∈ L(H)
est dans la classe Cρ(H) si toutes les puissances de T peuvent être dilatées en les puissances
d’un opérateur unitaire sur un espace de Hilbert K, contenant H comme sous-espace fermé. Les
classes C(ρn) sont une généralisation des classes Cρ. Elles sont définies de la façon suivante :

Définition 1.2.1. (Classes C(ρn)) Soit (ρn)n≥1 une suite de nombres complexes non-nuls. Soit
H un espace de Hilbert complexe. On définit la classe

C(ρn)(H) := {T ∈ L(H) : il existe un Hilbert K et un opérateur unitaire U ∈ L(K)

avec H ⊂ K tels que Tn = ρnPHU
n|H , ∀n ≥ 1},

où PH ∈ L(K) est la projection orthogonale dans K sur le sous-espace fermé H.
On dit alors qu’un operateur T ∈ C(ρn)(H) possède une (ρn)-dilatation.

Ces classes apparaissent brièvement dans les articles [Rác74,Bad03], concernant des résultats
autour de la similitude à une contraction. Certaines propriétés des opérateurs dans ces classes
ont été étudiées dans [SZ16] pour ρn ∈ R∗+.

Ce premier chapitre commence en généralisant plusieurs résultats connus pour les classes
Cρ aux classes C(ρn), ce qui fournit des outils fort pratiques pour les étudier. L’outil le plus
central est une caractérisation de ces classes reposant sur la positivité d’opérateurs auto-adjoints
spécifiques.

Théorème 1.2.8. Soit (ρn)n ∈ (C∗)N∗ avec lim infn(|ρn|
1
n ) > 0. Soit T ∈ L(H).

Alors, les assertions suivantes sont équivalentes :

(i) T ∈ C(ρn);

(ii) r(T ) ≤ lim infn(|ρn|
1
n ) et, pour f(ρn)(zT ) :=

∞∑
n=1

2
ρn
znTn, on a

I + Re(f(ρn)(zT )) ≥ 0,∀z ∈ D.
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La fonction holomorphe f(ρn), et son rayon de convergence valant lim infn(|ρn|
1
n ), a un rôle

central dans la structure des classes C(ρn).
Ces classes sont aussi en lien avec la quantité suivante

Définition 1.2.11. ((ρn)-rayon) Soit H un espace de Hilbert, T ∈ L(H), et (ρn)n ∈ (C∗)N∗. Le
(ρn)-rayon de T est défini comme

w(ρn)(T ) := inf{u > 0 :
T

u
∈ C(ρn)(H)} ∈ [0,+∞].

Lorsque lim infn(|ρn|
1
n ) > 0, on montre que le (ρn)-rayon est une quasi-norme sur L(H) qui

est équivalente à ‖ · ‖, dont sa boule unité fermée est la classe C(ρn)(H). Par conséquent, on a

w(ρn)(T ) ≤ 1⇔ T ∈ C(ρn)(H).

Ainsi, plusieurs questions au sujet des classes C(ρn)(H) peuvent être reformulées à l’aide de leurs
rayons, offrant parfois un point de vue radicalement différent.

La section 1.3 se concentre sur le cas où la suite (ρn)n est constante et égale à ρ ∈ C∗. Dans
ce cadre, la plupart des caractérisations obtenues prennent une forme plus simple, ce qui permet
de relier ces classes aux classes Cτ pour τ > 0. Ce phénomène est mis en évidence par le résultat
principal de cette section.

Proposition 1.3.3. Soient ρ 6= 0 et α > 0. Soit T ∈ L(H).
Les assertions suivantes sont équivalentes :

(i) w(ρ)(T ) ≤ α;

(ii) ((ρ− 1)zT − ραI) est inversible et ‖(zT )((ρ− 1)zT − ραI)−1‖ ≤ 1, ∀z ∈ D;

(iii) ((ρ− 1)T − ρwI) est inversible et ‖T ((ρ− 1)T − ρwI)−1‖ ≤ 1, ∀|w| > α;

(iv) ‖T (h)‖ ≤ ‖(ρ− 1)T (h)− ρwh‖, ∀h ∈ H, ∀|w| > α.

Par conséquent, on a :
|ρ|w(ρ)(T ) = (1 + |ρ− 1|)w1+|ρ−1|(T ). (0.0.1)

Ainsi, la fonction ρ ∈ C∗ 7→ |ρ|w(ρ)(T ) est constante sur les cercles de centre 1, est continue sur
C∗, et peut être étendue continûment à 2w(2)(T ) en 0.

Ce résultat permet de calculer le (ρ)-rayon d’opérateurs T vérifiant T 2 = aT ou T 2 = bI,
et fournit plusieurs façons d’utiliser le (ρ)-rayon pour ρ complexe. Une expression du (ρ)-rayon
pour les opérateurs T vérifiant (T−aI)2 = 0 (Proposition 1.3.9) est aussi obtenue, ce qui agrandit
l’ensemble des matrices M ∈M2(C) pour lesquelles une expression de wρ(M) est connue (le cas
général étant encore ouvert).

La section 1.4 revient au cas général, en étudiant des propriétés supplémentaires des (ρn)-
rayons ainsi que des relations entre les (ρn) et (τn)n-rayons. La section précédente nous a
motivés à considérer les (zρn)-rayons, pour une suite (ρn) donnée et pour z ∈ C∗, afin de se
retrouver dans un contexte d’étude de familles à 1 paramètre. Un travail autour de la fonction
z 7→ w(zρn)(T ) a amené au résultat suivant.

Proposition 1.4.8. Soit T ∈ L(H). Soit (ρn)n ∈ (C∗)N∗ telle que lim infn(|ρn|
1
n ) > 0. On a :
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(i) z 7→ w(zρn)(T ) est uniformément continue sur C \ D(0, ε), pour tout ε > 0. Cette fonction

tend vers +∞ quand |z| → 0, et vers r(T )

lim infn(|ρn|
1
n )

quand |z| → +∞;

(ii) Pour tout t ∈ R, la fonction r 7→ w(reitρn)(T ) est log-convexe sur ]0,+∞[.

Il s’avère aussi que ces familles peuvent se comporter significativement différemment de la
famille des classes C(z), z ∈ C∗. On peut par exemple trouver des suites (ρn) et des opérateurs T
pour lesquels w(zρn)(T ) est constant lorsque |z| est suffisamment grand (see Proposition 1.4.16).
Il existe aussi des suites (ρn) pour lesquelles

⋃
r>0C(rρn) contient tous les opérateurs à puissances

bornées (see Corollary 1.4.18), alors que
⋃
ρ>0C(ρ) est strictement contenue dans l’ensemble des

opérateurs semblables à une contraction. Dans cette lignée, cette section se conclut par une
éude du (zρn)-rayon de I pour deux familles spécifiques, où la fonction f(ρn) est respectivement
liée à log et à exp.

Chapitre 2

Les classes CA sont une autre généralisation des classes Cρ qui ont été définies par H. Langer
(voir [SNBFK10, p.53] et ses références), puis étudiées ensuite par Suen [Sue98a] en 1998.

Définition 2.1.1. (Classes CA) Soit H un espace de Hilbert complexe. Soit A ∈ L(H) un
opérateur auto-adjoint positif inversible. On définit la classe CA(H) comme

CA(H) := {T ∈ L(H) : ∃K Hilbert et U ∈ L(K) unitaire avec

H ⊂ K tel que A−
1
2TnA−

1
2 = PHU

n|H , ∀n ≥ 1}

où PH est la projection orthogonale sur H. Lorsque l’espace de Hilbert sous-jacent H n’est pas
ambigu, les classes CA(H) peuvent être abrégées en CA.

De façon similaire au Chapitre 1, les résultats initiaux de ce second chapitre, qui peuvent
aussi être trouvés dans [Sue98a], et sont ensuite utilisés pour obtenir quelques améliorations (voir
Propositions 2.2.12 et 2.3.1), ainsi que de nouveaux résultats (du Lemme 2.3.3 à la Proposition
2.3.9). La structure des classes CA a beaucoup de points communs avec celle des classes C(ρn),
étant donné que les outils principaux pour les étudier sont les suivants.

Proposition 2.1.4. Soit H un espace de Hilbert. Soient A, T ∈ L(H) avec A > 0. Les asser-
tions suivantes sont équivalentes.

(i) T ∈ CA(H);

(ii) r(T ) ≤ 1 et I + Re(2
∑
n≥1

A−
1
2 (zT )nA−

1
2 ) ≥ 0, ∀z ∈ D;

(iii) r(T ) ≤ 1 et A+ Re(2
∑

n≥1(zT )n) ≥ 0, ∀z ∈ D;

(iv) r(T ) ≤ 1 et A− 2Re(z(A− I)T ) + |z|2T ∗(A− 2I)T ≥ 0, ∀z ∈ D;

Définition 2.2.1. Soient A, T ∈ L(H) avec A > 0. On définit

wA(T ) := inf({r > 0:
1

r
T ∈ CA(H)}),

le A-rayon de T .
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Proposition 2.2.4. Soit A ∈ L(H), avec A > 0. Alors wA est une quasi-norme qui est
équivalente à la norme d’opérateur ‖ · ‖, dont la boule unité fermée est la classe CA.

Ces outils sont utilisés pour déterminer le A-rayon de I (Proposition 2.2.12), pour améliorer
des résultats liant wA(CTC∗) and wA(T ) (Proposition 2.3.1), ainsi que pour donner des calculs
de wA(T ) lorsque T 2 = 0 dans certains contextes (Propositions 2.3.4 et 2.3.5).

Chapitre 3

Ce chapitre traite de deux objets différents. Sa première section étudie les opérateurs algébriques,
tandis que les deux suivantes se concentrent sur des classes de projections. Un opérateur
algébrique est défini comme suit.

Définition 3.1.3. (Opérateurs algébriques) Soit X un espace de Banach. Un opérateur T ∈
L(X) est algébrique s’il existe un polynôme Q ∈ C[Z] tel que Q(T ) = 0.

Dans la Section 3.1, nous nous concentrons sur l’étude d’opérateurs algébriques par rapport
à la similitude à une contraction ainsi qu’à des conditions plus faibles (polynomialement borné,
à puissances bornées,...). On prouve que la majorité de ces conditions sont équivalentes pour les
opérateurs algébriques. Cela fournit aussi des moyens pratiques pour déterminer si un opérateur
algébrique T donné est semblable à une contraction ou non.
Comme un opérateur algébrique possède une décomposition spectrale via ses projections car-
actéristiques, l’étude se déplace dans la Section 3.2 vers des classes de projections afin de voir
comment celles-ci se comportent les unes par rapport aux autres. Cela va de la classe des pro-
jections de norme 1 jusqu’aux classes de Lp-projections. Voici un détail des classes que l’on
considèrera.

Définition 3.2.1. (Classes de projections) Soit X un espace de Banach complexe. Soient X1, X2

des sous-espaces fermés de X en somme directe. Soit P ∈ L(X) la projection sur X1 par-
allèlement à X2. On définit les propriétés suivantes pour P .

(P1) ‖P‖ = 1;

(P2) ‖P‖ = ‖I − P‖ = 1;

(P3) P est bi-circulaire généralisée: Il existe λ ∈ ∂D\{1} tel que λP +(I−P ) est une isométrie
surjective.

(P4) P est hermitienne: Pour tout α ∈ R, eiαP est une isométrie surjective.

(P5) Pour tout λi ∈ C, tous xi ∈ Xi, 1 ≤ i ≤ 2, on a

‖λ1x1 + λ2x2‖ ≤ max
i

(|λi|)‖x1 + x2‖.

(P ′5) Pour tous λ ∈ ∂D, xi ∈ Xi, 1 ≤ i ≤ 2, on a

‖x1 + λx2‖ = ‖x1 + x2‖.
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(P6) Pour tous xi, yi ∈ Xi, 1 ≤ i ≤ 2, avec ‖x2‖ = ‖y2‖, on a

‖x1 + x2‖ = ‖x1 + y2‖.

(P7) Pour tous sous-espaces fermés Vi ⊂ Xi, tous Ci ∈ L(Xi), et tous xi ∈ Vi, 1 ≤ i ≤ 2, on a

‖C1(x1) + C2(x2)‖ ≤ max
i=1,2

( sup
yi∈Vi, ‖yi‖=1

(‖Ci(yi)‖))‖x1 + x2‖.

(P8) Pour tous xi ∈ Xi \ {0}, tous Ci ∈ L(Xi), 1 ≤ i ≤ 2, on a

‖C1(x1) + C2(x2)‖ ≤ max
i

(
‖Ci(xi)‖
‖xi‖

)‖x1 + x2‖.

(P ′8) Pour tous xi, yi ∈ Xi avec xi non nul, 1 ≤ i ≤ 2, on a

‖y1 + y2‖ ≤ max
i

(
‖yi‖
‖xi‖

)‖x1 + x2‖.

(P9) Pour tous xi, yi ∈ Xi avec ‖xi‖ = ‖yi‖, 1 ≤ i ≤ 2, on a

‖y1 + y2‖ = ‖x1 + x2‖.

(P10) Il existe 1 ≤ p ≤ +∞ tel que P est une Lp-projection: Pour tous xi ∈ Xi on a

‖x1 + x2‖ = ‖(‖x1‖, ‖x2‖)‖`p .

Comme les propriétés définissant certaines de ces classes concernent la norme de vecteurs
dans une somme directe de deux sous-espaces, il est possible de définir des généralisations pour
des sommes directes d’un nombre fini de sous-espaces, ce qui est abordé dans la Sous-section
3.3.B.

Définition 3.2.9. Soit X un espace de Banach, r ≥ 2, et X1, .., Xr des sous-espaces fermés tels
que X = X1 ⊕X2 ⊕ ...⊕Xr. On définit les propriétés suivantes :

(P8,r) Pour tous xi ∈ Xi et Ci ∈ L(Xi), 1 ≤ i ≤ r, on a

‖C1(x1) + ...+ Cr(xr)‖ ≤ max
i

(a(Ci, xi))‖x1 + ...+ xr‖,

où a(Ci, xi) :=

{
‖Ci(xi)‖
‖xi‖ si xi 6= 0

0 sinon

(P9,r) Pour tous xi, yi ∈ Xi avec ‖xi‖ = ‖yi‖, 1 ≤ i ≤ r, on a

‖x1 + ...+ xr‖ = ‖y1 + ...+ yr‖.

(P5,r) Pour tous xi ∈ Xi et λi ∈ C, 1 ≤ i ≤ r, on a

‖λ1xi + ...+ λrxr‖ ≤ max
i

(|λi|)‖x1 + ...+ xr‖.
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(P ′5,r) Pour tous xi ∈ Xi et λi ∈ ∂D, 1 ≤ i ≤ r, on a

‖λ1xi + ...+ λrxr‖ = ‖x1 + ...+ xr‖.

Travailler avec des sommes directes finies apporte des questions supplémentaires par rapport
à ces propriétés car certaines peuvent par exemple être vraies sur tout Xi ⊕ Xj mais pas sur
X1 ⊕ ...⊕Xr (voir Lemme 3.2.11).

La Section 3.3 regarde le cas spécifique où X est un Lp(Ω) ou un sous-espace fermé de Lp(Ω),
avec des projections qui sont soit hermitiennes, soit des Lp-projections. Ces projections peuvent
se définir avec une condition qui doit être vérifiée pour tout z ∈ C, ainsi nous cherchons à voir
si une condition plus faible (pour tout z ∈ ∂D, ou pour z = ±1) donnerait forcément les mêmes
objets. De même, les Lp-projections étant un cas particulier de projections hermitiennes, nous
essayons aussi de regarder comment seraient des sous-espaces de Lp sur lesquels toute projection
hermitienne est une Lp-projection, ou bien de trouver une condition qui assure l’existence de
contre-exemples.

Dans la Sous-section 3.3.B nous étudions le cas p = 2n, où la relation |f + g|2n = (f +
g)n(f + g)n nous permet d’obtenir une propriété supplémentaire assez utile.

Proposition 3.3.9. Soit (Ω,F , µ) un espace mesuré. Soit n ≥ 1. Soit X = L2n(Ω,F , µ).
Soient f, g ∈ X. Les assertions suivantes sont équivalentes.

(i) ‖f + λg‖2n = ‖f + g‖2n, ∀λ ∈ ∂D;

(ii) ‖f + zg‖2n = ‖f + |z|g‖2n, ∀z ∈ C;

(iii)
n−l∑
k=0

(
n
k

)(
n
l+k

) ∫
Ω

(gl|g|2kf̄ l|f |2(n−l−k))(x)dµ(x) = 0, ∀1 ≤ l ≤ n;

(iv) ‖f + zg‖2n2n =
∑n

k=0 |z|2k
(
n
k

)2 ∫
Ω

(|f |2(n−k)|g|2k)(x)dµ(x), ∀z ∈ C.

En utilisant cette proposition, nous avons pu facilement construire des sous-espaces de
l2n({0, .., n}) possédant une projection hermitienne qui n’est pas une L2n-projection (voir Propo-
sition 3.3.10), et étendre ce résultat à d’autres espaces L2n.

Chapitre 4

Le chapitre final de cette thèse porte sur la caractérisation et les propriétés des Lp-projections.
Ces opérateurs furent introduits par Cunningham [Cun53] en 1953.

Définition 4.1.1. (Lp-projections) Soit X un espace de Banach complexe, et soit 1 ≤ p ≤ +∞.
Une projection P (P 2 = P ) de L(X) est une Lp-projection si elle vérifie la condition

‖f‖X = ‖(‖P (f)‖, ‖(I − P )(f)‖)‖p, pour tout f ∈ X.

Cela équivaut à{
‖f‖pX = ‖P (f)‖pX + ‖(I − P )(f)‖pX , ∀f ∈ X quand 1 ≤ p < +∞.
‖f‖X = max(‖P (f)‖X , ‖(I − P )(f)‖X), ∀f ∈ X quand p = +∞.

On note Pp(X) l’ensemble des Lp-projections sur X.
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Les articles de Cunningham [Cun53,Cun60,Cun67,CER73] se sont principalement concentrés
sur les cas p = 1 et p = +∞, là où le cas général commença à être étudié par Alfsen-Effros
[AE72], Sullivan [Sul70] et Fakhoury [Fak74]. Les premiers résultats de caractérisation des Lp-
projections furent obtenus en 1973-1976 par Behrends, Greim & al, et sont compilés dans le livre
[BDE+77, Ch.1,2,6]. Les préliminaires de la Section 4.1 rappellent certains de ces résultats. Le
théorème fondamental que l’on utilisera fréquemment est le suivant.

Théorème 4.1.8. Soit X un espace de Banach, et 1 ≤ p ≤ +∞, p 6= 2. On a :

(i) Les éléments de Pp(X) commutent deux à deux.

(ii) L’ensemble Pp(X) est une algèbre de Boole commutative pour les opérations (P,Q) 7→ PQ,
(P,Q) 7→ P +Q− PQ et P 7→ (I − P ).

(iii) La relation P ≤ Q ⇔ PQ = P est une relation d’ordre sur Pp(X).

(iv) Lorsque p 6= +∞, toute famille totalement ordonnée (Pi)i∈I de Pp(X) admet un inf P =
infi∈I(Pi), vers lequel elle converge ponctuellement.

(v) Si p 6= +∞, l’algèbre de Boole Pp(X) est complète : Tout sous-ensemble {Pi, i ∈ I}
possède un infimum infi∈I(Pi) in Pp(X). De plus, Im(infi∈I(Pi)) =

⋂
i∈I Im(Pi).

Comme presque tous les énoncés de ce théorème sont valables pour 1 ≤ p ≤ +∞, p 6= 2, la
majorité de nos résultats dans ce chapitre seront vrais pour p 6= 2. Cependant les L∞-projections
ont une définition légèrement différente des autres Lp-projections et ne vérifient pas tous les
énoncés du Théorème 4.1.8 ; ainsi leur étude sera en partie traitée comme un cas particulier
(voir Sous-section 4.2.C). Enfin, comme nous considèrerons des quotients d’espaces de Banach
dans la seconde moitié de ce chapitre, les cas p = 1,+∞ seront exclus pour la majorité des
résultats de la Section 4.3 à cause de comportements gênants des normes L1 et L∞ par rapport
aux quotients d’espaces vectoriels.

Notre objectif initial était de caractériser les Lp-projections sur des sous-espaces, quotients,
et sous-espaces de quotients d’espaces Lp (aussi appelés espaces SQp). Nous avons travaillé
dans un cadre plus général afin de mieux entrevoir les résultats qu’il était possible d’obtenir sur
un espace de Banach X général ou bien sur un espace de Banach X possédant des propriétés
issues de celles des espaces Lp. A cet effet, nous avons commencé par définir une relation
d’orthogonalité liée aux Lp-projections, à savoir :

Propriété 4.2.1. (p-orthogonalité) Soit X un espace de Banach, et 1 ≤ p ≤ +∞. Soient
f, g ∈ X. Les vecteurs f et g sont dits p-orthogonaux, noté par f⊥pg, si{

‖f + zg‖p = ‖f‖p + |z|p‖g‖p, ∀z ∈ C, quand p < +∞;
‖f + zg‖ = max(‖f‖, |z|‖g‖), ∀z ∈ C, quand p = +∞.

Lorsque f 6= 0 et g 6= 0, cette condition est équivalente au fait que Vect(f, g) est de dimension 2
et que la projection sur Vect(f) parallèlement à Vect(g) dans Vect(f, g) est une Lp-projection.

Cette relation est symétrique, homogène, définie, mais pas linéaire en général. Elle nous per-
met aussi de définir le p-orthogonal d’un ensemble E de la même façon que les orthogonaux dans
le cas des espaces munis d’un produit scalaire. Cette relation a une caractérisation élémentaire
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dans les espaces Lp et sur les sous-espaces de Lp (voir Corollaire 4.2.3), ce qui permet alors
de caractériser aisément les Lp-projections sur les sous-espaces de Lp(Ω). Il s’avère que si l’on
considère un espace de Banach X vérifiant les deux propriétés suivantes

Propriété 4.2.7. (Extension de la p-orthogonalité à X) Pour tous f, g ∈ X tels que f⊥pg, il
existe P ∈ Pp(X) telle que P (f) = f et P (g) = 0.

Propriété 4.2.8. (Linearité de la p-orthogonality sur X) Pour tous f, g, h ∈ X tels que f⊥pg
et f⊥ph, on a f⊥p(g + h).

alors la description des comportements sur les sous-espaces de Lp(Ω) peut se généraliser aux
sous-espaces de X. Cela donne par exemple le résultat suivant.

Proposition 4.2.10. (Lp-projections sur des sous-espaces de X) Soit X un espace de Banach,
et 1 ≤ p < +∞, p 6= 2. Les assertions suivantes sont équivalentes.

(i) X vérifie la Propriété 4.2.7 pour p;

(ii) Pour tous sous-espaces E1, E2 de X, avec f⊥pg pour tous f ∈ E1, g ∈ E2, il existe
P ∈ Pp(X) telle que P (E1) = E1 et P (E2) = {0}.

De plus, si l’une d’entre elles est vraie, alors pour n’importe quel sous-espace F de X et pour
n’importe quelle Lp-projection P ∈ Pp(F ), il existe Q ∈ Pp(X) telle que P = Q|F .

Nous avons aussi dédié la Sous-section 4.2.B à des contre-exemples élémentaires montrant
des comportements différents lorsque les propriétés précédentes ne sont pas vérifiées par X.

Comme il s’avère que la majorité des sous-espaces de Lp(Ω) ne vérifie que la Propriété
Property 4.2.8, nous avons introduit un ensemble plus important de projections dans la Sous-
section 4.2.D.

Définition 4.2.30. (Lp-projections maximales) Soit X un espace de Banach, et 1 ≤ p ≤ +∞.
Soit F un sous-espace fermé de X, et soit P ∈ Pp(F ). La Lp-projection P est dite maximale
pour X s’il n’existe aucun sous-espace G ni aucune Lp-projection Q sur G tels que F ( G et
Q|F = P .
On définit alors α(F ) := Card({P : P est une Lp-projection maximale pour F}).

Ces Lp-projections maximales nous permettent d’étudier la structue de la relation de p-
orthogonalité sur le sous-espace F considéré. Nous donnons plusieurs résultats autour du com-
portement général des Lp-projections maximales, ainsi que leur comportement lorsque F est un
sous-espace d’un espace de Banach X vérifiant les Propriétés 4.2.7 et 4.2.8.

Nous nous intéressons aussi à déterminer un majorant du nombre de Lp-projections maxi-
males qu’un tel sous-espace F peut posséder lorsqu’il est de dimension finie. Nous avons d’abord
travaillé sur un exemple générique.

Proposition 4.2.44. Soient 1 ≤ p < +∞, p 6= 2, n ≥ 4 et X = `p(Cn). On note (ei)i la base
canonique X. Pour 1 ≤ i < n, soit fi = ei + ei+1. On prend F = Span(fi, 1 ≤ i < n). Alors,
on a dim(F ) = n− 1, et

α(F ) = Card({P : P est une Lp-projection maximale pour F}) = 2n − 2n.

Ainsi, pour n ≥ 5 il y a strictement plus de 2dim(F ) Lp-projections qui sont maximales pour F .
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Nos résultats pour ce sous-espace ainsi que dans un autre contexte précis (voir Proposition
4.2.46) nous ont amené à conjecturer un majorant pour le cas général (voir Conjecture 4.2.49 et
Proposition 4.2.50). Cette conjecture est malheureusement encore ouverte lors de la rédaction
de ce manuscrit.

Après une étude focalisée sur les Lp-projections dans les sous-espaces d’un espace de Banach
X, nous abordons en Section 4.3 ces projections dans les quotients et sous-espaces de quotients
d’un espace de Banach donné. La plupart des résultats obtenus reposent fortement sur ce lemme
clé.

Lemme 4.3.3. Soit 1 < p ≤ +∞. Soit X un espace de Banach et soit F un sous-espace fermé
de X. Soientt x ∈ X et G un sous-espace de X contenant F et x. Soit P ∈ Pp(G) telle que
P (x) = x. Les assertions suivantes sont équivalentes.

(i) infa∈F ‖x− a‖ = ‖x‖;

(ii) infa∈F ‖x− P (a)‖ = ‖x‖.

Si les projections métriques sur F et P (F ) sont bien définies, alors on a l’équivalence suivante.

(1) Proj(x, F ) = 0;

(2) Proj(x, P (F )) = 0.

Même avec ce résultat, la relation p-orthogonalité peut ne pas se comporter assez bien pour
mettre en lien les Lp-projections sur X avec celles sur un quotient de X. Nous introduisons à
cet effet la propriété suivante entre X et un sous-espace F .

Propriété 4.3.9. Pour tous x, y ∈ X/F tels que x⊥py, il existe x, y ∈ X des représentants de
x, y de norme minimale tels que x⊥py.

Ces éléments nous permettent alors de caractériser la p-orthogonalité ainsi que les Lp-
projections sur des sous-espaces de quotients de Lp, et de généraliser ces caractérisations à
une classe plus large d’espaces de Banach.

Nos résultats principaux concernant les Lp-projections sur un quotient d’un espace de Banach
sont les suivants.

Proposition 4.3.13. Soit X un espace de Banach, et soit 1 ≤ p < +∞, p 6= 2. Soit F un
sous-espace fermé de X, et soit P ∈ Pp(X) telle que P (F ) ⊂ F . Alors, on a :

(i) X/F ' P (X)/P (F )⊕p (I − P )(X)/(I − P )(F );
Si la projection métrique sur F est bien définie, alors

Rep(X/F ) = Rep(P (X)/P (F ))⊕p Rep((I − P )(X)/(I − P )(F )).

(ii) Il existe une Lp-projection P ′ sur X/F telle que P ′(x) = P (x);

(iii) P ′ est non triviale si et seulement si P (F ) 6= P (X) et (I − P )(F ) 6= (I − P )(X);

(iv) Soit PF ∈ Pp(X) la Lp-projection ayant la plus grande image telle que Im(PF ) ⊂ F . Alors,
X/F est isométriquement isomorphe à (I − PF )(X)/(I − PF )(F ).
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(v) On pose φ : P ∈ {Q ∈ Pp(X): Q(F ) ⊂ F} 7→ P ′ ∈ Pp(X/F ). Alors φ est un morphisme
d’algèbres de Boole commutatives, et Ker(φ) = Pp(X) ◦ PF . Ainsi, on a φ(P1) = φ(P2) si
et seulement si (I − PF )P1 = (I − PF )P2, et φ est injective si et seulement si PF = 0.
En général, on a Im(φ) = φ({Q ∈ Pp(X): QPF = 0, P (F ) ⊂ F}) et φ est injective sur
cet ensemble.

Proposition 4.3.16. Soit 1 < p < +∞, p 6= 2. Soit X un espace de Banach vérifiant la
Propriété 4.2.7. Soit F un sous-espace fermé de X tel que tout élément de X/F possède un
unique représentant de norme minimale. On suppose que la Propriété4.3.9 est vérifiée pour
X,F et p. On note φ : P ∈ {Q ∈ Pp(X): Q(F ) ⊂ F} 7→ φ(P ) ∈ Pp(X/F ) le morphisme

d’algèbres de Boole commutatives de la Proposition 4.3.13, avec φ(P ) vérifiant φ(P )(x) = P (x)
pour tout x ∈ X. Alors, on a :

(i) Le morphisme φ est surjectif ; toute Lp-projection de X/F peut être associée à une Lp-
projection P de X telle que P (F ) ⊂ F .

(ii) L’algèbre de Boole Pp(X/F ) est isomorphe à {P ∈ Pp(X): PPF = 0, P (F ) ⊂ F}.

(iii) On note PF la Lp-projection de X de plus grande image telle que Im(PF ) ⊂ F . Le quotient
X/F possède des Lp-projections non triviales si et seulement s’il existe des Lp-projections
P telles que PF < P < I et P (F ) ⊂ F .

Dans la Sous-section 4.3.B, ces résultats sont poursuivis vers la caractérisation de Lp-
projections sur des sous-espaces de quotients d’un espace de Banach X vérifiant les propriétés
4.2.7,4.2.8 et 4.3.9 (voir Proposition 4.3.19).

Nous terminons ce chapitre sur une Section où nous regardons des espaces Lp(Ω, X) pour
lesquels les résultats précédents s’appliquent (voir Sous-section 4.4.A), et où nous étudions
l’éventuelle existence de Lq-projections non-triviales sur un sous-espace, quotient, ou sous-espace
de quotient de Lp, pour q 6= p (voir Sous-section 4.4.B).
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Introduction (in English)

The main characters of this thesis are unitary dilations and Lp-projections.

Unitary dilations. Dilation theory is a collection of results, tools and techniques in operator
theory and operator algebras, that fall under the unifying idea that one can learn a lot about an
operator, or a family of operators, by viewing it as a compression of (i.e., “a part of”) another,
well understood operator. Historically, the first result of dilation theory was proved by Béla
Sz.-Nagy in 1953: every contraction can be (power) dilated to a unitary operator. Based on this
relatively simple fact an entire theory of non-normal operators has been developed, under the
suggestive name of harmonic analysis of Hilbert space contractions. An influential monograph
with the same title has been published in 1970 by B. Sz.-Nagy and C. Foias ; a fully updated and
revised second edition has been published by Springer in 2010 by Sz.-Nagy, Foias, H. Bercovici
and L. Kérchy.

There are several applications for the existence of a (minimal, power) unitary dilation for
a given Hilbert space contraction. The first application, proved again by Sz.-Nagy in his 1953
paper, is a new proof of the celebrated von Neumann inequality. This assertion says that for a
bounded linear operator T on a Hilbert space, we have:

If ‖T‖ ≤ 1 then ‖P (T )‖ ≤ ‖P‖L∞(D) for every polynomial P ∈ C[Z].

The minimal unitary dilation can also be used to define a refined functional calculus on
contractions, it can be employed to analyse one-parameter semigroups of operators, it provides
a “functional model” by which we can analyse contractions and by which they can be classified,
and it has led to considerable progress in the study of invariant subspaces.

To sketch just one of the above applications, let us briefly consider the functional calculus
for Hilbert space contractions. We let H∞ = H∞(D) denote the algebra of bounded analytic
functions on the open unit disc D. Given an operator T ∈ B(H), we wish to define a functional
calculus f 7→ f(T ) for all f ∈ H∞. If the spectrum of T is contained in D, then we can apply
the holomorphic functional calculus to T to define a homomorphism f 7→ f(T ) from the algebra
Hol(D) of analytic functions on D into B(H). In fact, if f ∈ Hol(D) and σ(T ) ⊂ D, then we can
simply plug T into the power series of f . Thus, in this case we know how to define f(T ) for all
f ∈ H∞.

Now, suppose that T is a contraction, but that σ(T ) is not contained in the open disc D.
Given a bounded analytic function f ∈ H∞, how can we define f(T )? Note that the holomorphic
functional calculus cannot be used, because σ(T ) contains points on the circle T = ∂D, while
not all f ∈ H∞ extend to a holomorphic function on a neighbourhood of the closed disc.

The first case that we can treat easily is the case when f belongs to the disc algebra A(D) ⊂
H∞, which is the algebra of all bounded analytic functions on the open unit disc that extend
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continuously to the closure D. This case can be handled using von Neumann’s inequality.
Indeed, it is not very hard to show that A(D) is the closure of the polynomials with respect to
the supremum norm ‖f‖∞ = sup|z|≤1 |f(z)|. If (Pn)n is a sequence of polynomials that converges

uniformly on D to f , and T is a contraction, then von Neumann’s inequality implies that Pn(T )
is a Cauchy sequence, so we can define f(T ) to be limn Pn(T ). It is not hard to show that the
functional calculus A(D) 3 f 7→ f(T ) has all the properties one wishes for: it is a homomorphism
extending the polynomial functional calculus, it is continuous, and it agrees with the continuous
functional calculus if T is normal.

Defining a functional calculus for H∞ is a more delicate matter, but here again the unitary
dilation leads to a resolution. The rough idea is that we can look at the minimal unitary dilation
U of T , and use spectral theory to analyse what can be done for U . If the spectral measure of U is
absolutely continuous with respect to Lebesgue measure on the unit circle, then it turns out that
we can define f(U) for all f ∈ H∞, and then we can simply define f(T ) to be the compression of
f(U) to H. In this case the functional calculus f 7→ f(T ) is a homomorphism that extends the
polynomial and holomorphic functional calculi, it is continuous in the appropriate sense, and it
agrees with the Borel functional calculus when T is normal. Of course, this only becomes useful
if one can find conditions that guarantee that the minimal unitary dilation of T has absolutely
continuous spectral measure. A contraction T is said to be completely non-unitary (c.n.u.) if it
has no reducing subspace M such that the restriction T

∣∣
M

is unitary. Every contraction splits
as a direct sum T = T0 ⊕ T1, where T1 is c.n.u. and T0 is unitary. Sz.-Nagy and Foias have
shown that if T is c.n.u., then the spectral measure of its minimal unitary dilation is absolutely
continuous.

If the spectral measure of U is not absolutely continuous with respect to Lebesgue measure,
then there exits a sub-algebra H∞U of H∞ for which there exists a functional calculus f 7→ f(U),
and then one can compress to get f(T ); it was shown that H∞U is precisely the sub-algebra of
functions in H∞ on which f 7→ f(T ) is a well defined homomorphism. See [SNBFK10, Chapter
III] for precise details.

Our contribution in this thesis is about skew dilations and the study of several classes of
operators generalizing Sz. Nagy’s dilation theorem. One central object of study is the class C(ρn)

associated with given a sequence (ρn) of complex numbers with ρn 6= 0 for each n. By definition,
T ∈ L(H) is said to possess a (ρn)-dilation, or that it belongs to the classe C(ρn), if there exists
a Hilbert space K and a unitary operator U ∈ L(K) with H ⊂ K and Tn = ρnPHU

n|H for
every n ≥ 1, where PH ∈ L(K) is the orthogonal projection from K onto its closed subspace H.
Several spectral properties of operators belonging to this class are studied in this thesis.

Lp-projections. The geometry of Hilbert spaces is, in a certain sense, the closest possible to
the usual one of a (finite dimensional) Euclidean space. Every closed subspace in Hilbert space
has an orthogonal complement, and all such decompositions lead to an orthogonal projection.
Orthogonal projections in Hilbert space are thus basic objects of study in Hilbert space operator
theory. In Banach spaces different versions of “orthogonal projections” have been considered:
idempotents of norm one, orthogonal projections, Hermitian projections, etc. The notion of Lp-
projection has been introduced by Cunningham [Cun53] in 1953, the same year that Sz.-Nagy
proved his dilation theorem. An Lp-projection on a Banach space X, for 1 ≤ p ≤ +∞, is an
idempotent operator P satisfying ‖f‖X = ‖(‖P (f)‖X , ‖(I − P )(f)‖X)‖`p for all f ∈ X. This is
an Lp version of the equality ‖f‖2 = ‖Q(f)‖2 + ‖(I −Q)(f)‖2, valid for orthogonal projections
on Hilbert spaces.
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The main motivation for the introduction of this notion came from the development of some
chapters of the geometry of Banach spaces which can now be grouped under the heading “Lp-
structure”. Let X be a real Banach space and let p be a real number with 1 ≤ p ≤ +∞. Two
closed subspaces, J and J⊥, of X are called complementary Lp-summands if X is the algebraic
sum of J and J⊥ and for every x ∈ J , x⊥ ∈ J⊥ we have

‖x+ x⊥‖p = ‖x‖p + ‖x⊥‖p ( if 1 ≤ p < +∞)

and
‖x+ x⊥‖ = max

(
‖x‖, ‖x⊥

)
( if p = +∞).

Therefore the elements of J and J⊥ behave like disjoints elements in an Lp-space. The projection
from X onto J corresponding to this decomposition is precisely an Lp-projection.

While L1- and L∞- summands and the corresponding projections have been first studied by
Cunningham and others, the turning point in the history of the “Lp-structure” theory was the
paper [AE72] (split in two parts) by Eric Alfsen and Edward G. Effros published in Annals of
Mathematics. Probably the most important results in [AE72] are the characterization of M -
ideals by means of the intersection property and the introduction of the structure topology. We
recall here that, by definition, an M -ideal is a closed subspace whose polar is an L1-summand
in the dual space.

Lp-projections were studied, mainly in the cases p = 1 and p = +∞, in the papers [Cun53,
Cun60, Cun67, CER73]. The general case 1 < p < +∞ has been studied by Alfsen-Effros in
the above-cited paper [AE72], Sullivan [Sul70] and Fakhoury [Fak74]. The main characteriza-
tion results, which were obtained in 1973-1976 by Alfsen-Effros, Behrends, Fakhoury, Sullivan
and others, were compiled in the book [BDE+77, Ch.1,2,6]. An interesting norm characteriza-
tion of real Lp-spaces has been obtained in [Sul68]: Sullivan proved that a real Lp space X is
characterized by Clarkson’s inequalities for X and its dual X∗ and by the existence of enough
Lp-projections.

We also mention that every Lp-projection is Hermitian. We recall (see for instance [BS74])
that a projection Q is Hermitian if ‖eiαQ‖ = 1 for each α ∈ R and that a projection Q is
Hermitian if and only if Q + λ(I − Q) is an isometry for every λ ∈ ∂D or, equivalently, if
λQ+ γ(I −Q) is an isometry, for any λ, γ ∈ ∂D. To see that an Lp-projection P is Hermitian,
we note that the Lp-projection condition is also equivalent to

‖f + g‖X = ‖(‖f‖, ‖g‖)‖`p , for all f ∈ Ran(P ), g ∈ Ker(P ),

where Ran and Ker denote the range and respectively the kernel. Hence, for any λ, γ ∈ ∂D, we
have

‖λf + γg‖X = ‖(‖f‖, ‖g‖)‖`p = ‖f + g‖X , for all f ∈ Ran(P ), g ∈ Ker(P ).

Therefore, λP+γ(I−P ) is an isometry on X, and the Lp-projection P is a Hermitian projection.
Our contribution in this thesis is to study Lp-projections on subspaces and quotients of

complex Banach spaces. We introduce a notion of p-orthogonality for two elements x, y by
requiring that Span(x, y) admits an Lp-projection separating x and y. We also introduce the
notion of maximal Lp-projections for X, that is Lp-projections defined on a subspace G of X
that cannot be extended to Lp-projections on larger subspaces. We prove results concerning Lp-
projections and p-orthogonality on general Banach spaces or on Banach spaces with additional
properties. Generalizations of some results to spaces Lp(Ω, X) as well as some results about
Lq-projections on subspaces of Lp(Ω) are also discussed.
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Chapter 1

Classes Cρ have been introduced by B. Sz-Nagy and C. Foias [SNF66] in 1966. For a complex
Hilbert space H and a real number ρ > 0, a bounded linear operator T ∈ L(H) is said to be
in the class Cρ(H) if all powers of T can be skew-dilated to powers of a unitary operator on a
Hilbert space K, containing H as a closed subspace. Classes C(ρn) are a generalization of these
classes Cρ. They are defined as follows.

Definition 1.2.1. (Classes C(ρn)) Let (ρn)n≥1 be a sequence of complex numbers, with ρn 6= 0
for each n. Let H be a complex Hilbert space. We define the class

C(ρn)(H) := {T ∈ L(H) : there exists a Hilbert space K and a unitary operator U ∈ L(K)

with H ⊂ K and Tn = ρnPHU
n|H , ∀n ≥ 1},

where PH ∈ L(K) is the orthogonal projection from K onto its closed subspace H.
An operator T ∈ C(ρn)(H) is said to possess a (ρn)-dilation.

These classes appeared briefly in [Rác74,Bad03], in results about similarity to a contraction.
Some of the properties of operators in these classes were studied in [SZ16] for ρn ∈ R∗+.

This first chapter starts by generalizing many results known for classes Cρ to classes C(ρn),
which provides useful tools for their study. The main such useful tool is a characterization of
these classes using the positivity of some self-adjoint operators.

Theorem 1.2.8. Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Let T ∈ L(H).

Then, the following assertions are equivalent:

(i) T ∈ C(ρn);

(ii) r(T ) ≤ lim infn(|ρn|
1
n ) and, for f(ρn)(zT ) :=

∞∑
n=1

2
ρn
znTn, we have

I + Re(f(ρn)(zT )) ≥ 0,∀z ∈ D.

The holomorphic map f(ρn), and its convergence radius of lim infn(|ρn|
1
n ), has a central role

in the structure of the class C(ρn).
These classes are also related to the following quantity

Definition 1.2.11. ((ρn)-radius) Let H be a Hilbert space, T ∈ L(H), and (ρn)n ∈ (C∗)N∗. The
(ρn)-radius of T is defined as

w(ρn)(T ) := inf{u > 0:
T

u
∈ C(ρn)(H)} ∈ [0,+∞].

When lim infn(|ρn|
1
n ) > 0, we prove that the (ρn)-radius is a quasi-norm on L(H) which is

equivalent to ‖ · ‖, and its closed unit ball is the class C(ρn)(H). Therefore, we have

w(ρn)(T ) ≤ 1⇔ T ∈ C(ρn)(H).

Hence many questions regarding classes C(ρn)(H) can be reformulated using their radii, some-
times giving a completely different point of view.

Section 1.3 focuses on the case where the sequence (ρn)n is constant and equal to ρ ∈ C∗.
In this context many characterizations take a simpler form, allowing us to link these classes to
classes Cτ for τ > 0. This behaviour is emphasized by the main result of this section.
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Proposition 1.3.3. Let ρ 6= 0 and α > 0 be two scalars. Let T ∈ L(H).
The following assertions are equivalent:

(i) w(ρ)(T ) ≤ α;

(ii) ((ρ− 1)zT − ραI) is invertible and ‖(zT )((ρ− 1)zT − ραI)−1‖ ≤ 1, ∀z ∈ D;

(iii) ((ρ− 1)T − ρwI) is invertible and ‖T ((ρ− 1)T − ρwI)−1‖ ≤ 1, ∀|w| > α;

(iv) ‖T (h)‖ ≤ ‖(ρ− 1)T (h)− ρwh‖, ∀h ∈ H, ∀|w| > α.

Furthermore, we have:
|ρ|w(ρ)(T ) = (1 + |ρ− 1|)w1+|ρ−1|(T ). (0.0.2)

Hence, the map ρ ∈ C∗ 7→ |ρ|w(ρ)(T ) is constant on circles of center 1, is continuous on C∗ and
can be extended continuously to 2w(2)(T ) at 0.

This result allows for computations of (ρ)-radii for operators T satisfying T 2 = aT or T 2 = bI,
and provides several ways to use (ρ)-radii for complex ρ. We also obtain a computation of (ρ)-
radii for operators T satisfying (T − aI)2 = 0 (Proposition 1.3.9).

Section 1.4 goes back to the general case, studying additional properties of (ρn)-radii as well
as relationships between (ρn) and (τn)n-radii. The previous section inspired us into considering
(zρn)-radii, for a given sequence (ρn) and for z ∈ C∗, in order to bring back the study to
1-parameter families. Looking at the map z 7→ w(zρn)(T ) leads to the following result.

Proposition 1.4.8. Let T ∈ L(H). Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0. We

have:

(i) z 7→ w(zρn)(T ) is uniformly continuous on C \ D(0, ε), for all ε > 0. This maps tends to

+∞ as |z| → 0, and to r(T )

lim infn(|ρn|
1
n )

as |z| → +∞;

(ii) For any t ∈ R, the map r 7→ w(reitρn)(T ) is log-convex on ]0,+∞[.

It also turns out that these families can behave differently from the family of classes C(z),
z ∈ C∗. We can for example find sequences (ρn) and operators T for which w(zρn)(T ) is constant
when |z| is large enough (see Proposition 1.4.16). There are also sequences (ρn) for which⋃
r>0C(rρn) contains all power-bounded operators (see Corollary 1.4.18), whereas

⋃
ρ>0C(ρ) is

strictly included in the set of operators similar to a contraction. In this regard, we end this
section with a study of the (zρn)-radius of I for two families, where the map f(ρn) is respectively
related to log and to exp.

Chapter 2

Classes CA are a different generalization of classes Cρ that were defined by H. Langer (see
[SNBFK10, p.53] and its references), and then studied by Suen [Sue98a] in 1998.

Definition 2.1.1. (Classes CA) Let H be a Hilbert space. Let A ∈ L(H) be a self-adjoint positive
operator that is invertible. We define the class CA(H) as

CA(H) := {T ∈ L(H): ∃K Hilbert and U ∈ L(K) unitary such that

H ⊂ K and A−
1
2TnA−

1
2 = PHU

n|H , ∀n ≥ 1}
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where PH is the orthogonal projection onto H. When the underlying Hilbert space H is not
ambiguous, classes CA(H) will be abbreviated as CA.

Similarly to Chapter 1, the initial results of this second chapter, that can also be found in
[Sue98a], are then used to obtain a few improvements (see Propositions 2.2.12 and 2.3.1), as
well as new results (from Lemma 2.3.3 to Proposition 2.3.9). The structure of classes CA also
shares many similarities with classes C(ρn), as the two main tools to study these classes are the
following ones.

Proposition 2.1.4. Let H be a Hilbert space. Let A, T ∈ L(H) be such that A > 0. The
following are equivalent

(i) T ∈ CA(H);

(ii) r(T ) ≤ 1 and I + Re(2
∑
n≥1

A−
1
2 (zT )nA−

1
2 ) ≥ 0, ∀z ∈ D;

(iii) r(T ) ≤ 1 and A+ Re(2
∑

n≥1(zT )n) ≥ 0, ∀z ∈ D;

(iv) r(T ) ≤ 1 and A− 2Re(z(A− I)T ) + |z|2T ∗(A− 2I)T ≥ 0, ∀z ∈ D;

Definition 2.2.1. Let A, T ∈ L(H) be such that A > 0. We define

wA(T ) := inf({r > 0:
1

r
T ∈ CA(H)}),

which is called the A-radius of T .

Proposition 2.2.4. Let A ∈ L(H), with A > 0. Then wA is a quasi-norm that is equivalent to
the operator norm ‖ · ‖, and whose closed unit ball is the class CA.

These tools are used to compute the A-radius of I (Proposition 2.2.12), to improve results
linking wA(CTC∗) and wA(T ) (Proposition 2.3.1), and to give computations of wA(T ) when
T 2 = 0 in some contexts (Propositions 2.3.4 and 2.3.5).

Chapter 3

This chapter deals with two different objects. Its first section studies algebraic operators, while
the two others study classes of projections. An algebraic operator is defined as follows.

Definition 3.1.3. (Algebraic operators) Let X be a complex Banach space. An operator T ∈
L(X) is said to be algebraic if there exists a polynomial Q ∈ C[Z] such that Q(T ) = 0.

In Section 3.1 we focus on the study of algebraic operators regarding similarity to a contrac-
tion and weaker conditions (polynomially bounded, power-bounded,...). We prove that most of
these conditions are equivalent for algebraic operators. This also gives useful ways to determine
if a given algebraic operator T is similar to a contraction or not.
With the use of the kernel lemma and minimal polynomials, an algebraic operator possesses a
spectral decomposition through its characteristic projections. This fact led our study to shift in
Section 3.2 to classes of projections in order to see how they behave with respect to each other.
They range from the class of norm one projections to classes of Lp-projections. Here are the
classes we will be considering.
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Definition 3.2.1. (Classes of projections) Let X be a complex Banach space. Let X1, X2 be
closed subspaces of X that are in direct sum. Let P ∈ L(X) be the projection onto X1 parallel
to X2. We define the following properties for P :

(P1) ‖P‖ = 1;

(P2) ‖P‖ = ‖I − P‖ = 1;

(P3) P is generalized bicircular: There is λ ∈ ∂D \ {1} such that λP + (I − P ) is a surjective
isometry.

(P4) P is Hermitian: For every α ∈ R, eiαP is a surjective isometry.

(P5) For every λi ∈ C, every xi ∈ Xi, 1 ≤ i ≤ 2, we have

‖λ1x1 + λ2x2‖ ≤ max
i

(|λi|)‖x1 + x2‖.

(P ′5) For every λ ∈ ∂D, xi ∈ Xi, 1 ≤ i ≤ 2, we have

‖x1 + λx2‖ = ‖x1 + x2‖.

(P6) For every xi, yi ∈ Xi, 1 ≤ i ≤ 2, with ‖x2‖ = ‖y2‖, we have

‖x1 + x2‖ = ‖x1 + y2‖.

(P7) For every closed subspaces Vi ⊂ Xi, every Ci ∈ L(Xi), and every xi ∈ Vi, 1 ≤ i ≤ 2, we
have

‖C1(x1) + C2(x2)‖ ≤ max
i=1,2

( sup
yi∈Vi, ‖yi‖=1

(‖Ci(yi)‖))‖x1 + x2‖.

(P8) For every xi ∈ Xi \ {0}, every Ci ∈ L(Xi), 1 ≤ i ≤ 2, we have

‖C1(x1) + C2(x2)‖ ≤ max
i

(
‖Ci(xi)‖
‖xi‖

)‖x1 + x2‖.

(P ′8) For every xi, yi ∈ Xi with xi non-zero, 1 ≤ i ≤ 2, we have

‖y1 + y2‖ ≤ max
i

(
‖yi‖
‖xi‖

)‖x1 + x2‖.

(P9) For every xi, yi ∈ Xi with ‖xi‖ = ‖yi‖, 1 ≤ i ≤ 2, we have

‖y1 + y2‖ = ‖x1 + x2‖.

(P10) There exists 1 ≤ p ≤ +∞ such that P is a Lp-projection: For every xi ∈ Xi we have

‖x1 + x2‖ = ‖(‖x1‖, ‖x2‖)‖`p .

As the properties defining some of these classes are mainly about the norm of vectors in a
direct sum of two subspaces, we make some generalizations for direct sums of a finite number of
subspaces in Subsection 3.3.B.
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Definition 3.2.9. Let X be a Banach space, r ≥ 2, and X1, .., Xr be closed subspaces such that
X = X1 ⊕X2 ⊕ ...⊕Xr. We define the following properties

(P8,r) For every xi ∈ Xi and Ci ∈ L(Xi), 1 ≤ i ≤ r, we have

‖C1(x1) + ...+ Cr(xr)‖ ≤ max
i

(a(Ci, xi))‖x1 + ...+ xr‖,

where a(Ci, xi) :=

{
‖Ci(xi)‖
‖xi‖ if xi 6= 0

0 else

(P9,r) For every xi, yi ∈ Xi such that ‖xi‖ = ‖yi‖, 1 ≤ i ≤ r, we have

‖x1 + ...+ xr‖ = ‖y1 + ...+ yr‖.

(P5,r) For every xi ∈ Xi and λi ∈ C, 1 ≤ i ≤ r, we have

‖λ1xi + ...+ λrxr‖ ≤ max
i

(|λi|)‖x1 + ...+ xr‖.

(P ′5,r) For every xi ∈ Xi and λi ∈ ∂D, 1 ≤ i ≤ r, we have

‖λ1xi + ...+ λrxr‖ = ‖x1 + ...+ xr‖.

Working with direct sums brings additional questions regarding these new properties as some
may be true for every Xi ⊕Xj but not for X1 ⊕ ...⊕Xr for example (see Lemma 3.2.11).

Section 3.3 looks at the specific case where X is equal to Lp(Ω) or to some subspace of
Lp(Ω), for projections that are either Hermitian or Lp-projections. These projections come with
a property that must be satisfied for every z ∈ C, hence we try to see if a weaker condition
(for every z ∈ ∂D, for z = ±1) would give the same results. As Lp-projections are a specific
case of Hermitian projections, we also try to look at subspaces of Lp for which every Hermitian
projection is an Lp-projections, or at conditions that ensure the contrary.

In Subsection 3.3.B we study the case p = 2n, where the relationship |f+g|2n = (f+g)n(f+
g)n allows us to obtain a useful additional property.

Proposition 3.3.9. Let (Ω,F , µ) be a measure space. Let n ≥ 1. Let X = L2n(Ω,F , µ). Let
f, g ∈ X. The following are equivalent

(i) ‖f + λg‖2n = ‖f + g‖2n, ∀λ ∈ ∂D;

(ii) ‖f + zg‖2n = ‖f + |z|g‖2n, ∀z ∈ C;

(iii)
n−l∑
k=0

(
n
k

)(
n
l+k

) ∫
Ω

(gl|g|2kf̄ l|f |2(n−l−k))(x)dµ(x) = 0, ∀1 ≤ l ≤ n;

(iv) ‖f + zg‖2n2n =
∑n

k=0 |z|2k
(
n
k

)2 ∫
Ω

(|f |2(n−k)|g|2k)(x)dµ(x), ∀z ∈ C.

Using this Proposition we are easily able to build subspaces of l2n({0, .., n}) possessing a
Hermitian projection that is not a L2n-projection (see Proposition 3.3.10), and extend this
result to many other L2n spaces.
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Chapter 4

The final chapter in this thesis deals with the characterization and properties of Lp-projections.
These operators were introduced by Cunningham [Cun53] in 1953.

Definition 4.1.1. (Lp-projections) Let X be a complex Banach space, and let 1 ≤ p ≤ +∞.
A projection P (P 2 = P ) in L(X) is an Lp-projection if it satisfies the condition

‖f‖X = ‖(‖P (f)‖, ‖(I − P )(f)‖)‖p, for all f ∈ X.

This means that{
‖f‖pX = ‖P (f)‖pX + ‖(I − P )(f)‖pX , ∀f ∈ X when 1 ≤ p < +∞.
‖f‖X = max(‖P (f)‖X , ‖(I − P )(f)‖X), ∀f ∈ X when p = +∞.

We denote by Pp(X) the set of Lp-projections on X.

Cunningham’s papers [Cun53,Cun60,Cun67,CER73] mainly focused on the cases p = 1 and
p = +∞, and the general case was first studied by Alfsen-Effros [AE72], Sullivan [Sul70] and
Fakhoury [Fak74]. The main characterization results for Lp-projections were obtained in 1973-
1976 by Behrends, Greim & al, and are compiled in the book [BDE+77, Ch.1,2,6]. These results
are recalled in the Preliminaries of Section 4.1. The main theorem that we will frequently use
is the following one.

Theorem 4.1.8. Let X be a Banach space, and 1 ≤ p ≤ +∞, p 6= 2. We then have

(i) All elements of Pp(X) commute with each other.

(ii) The set Pp(X) is a commutative Boolean algebra for the operations (P,Q) 7→ PQ, (P,Q) 7→
P +Q− PQ and P 7→ (I − P ).

(iii) The relationship P ≤ Q ⇔ PQ = P is an order relationship on Pp(X).

(iv) When p 6= +∞, every decreasing filtrating net (Pi)i∈I in Pp(X) is pointwise convergent to
an Lp-projection P , with P = infi∈I(Pi).

(v) When p 6= +∞, the Boolean algebra Pp(X) is complete: Every subset {Pi, i ∈ I} admits
an infimum infi∈I(Pi) in Pp(X). Furthermore, Ran(infi∈I(Pi)) =

⋂
i∈I Ran(Pi).

As almost all the statements of this theorem are valid for 1 ≤ p ≤ +∞, p 6= 2, most of our
results in this chapter will be true for p 6= 2. As the L∞-projections have a slightly different
definition from other Lp-projections and do not satisfy every statement in Theorem 4.1.8, we will
need to study them as a special case (see Subsection 4.2.C). Lastly, as we will be considering
quotients of Banach spaces, the cases p = 1,+∞ will be dropped for most of the results in
Section 4.3 due to some hindering behaviours of L1 and L∞ norms regarding quotients.

Our initial goal was to characterize Lp-projections on subspaces and quotients of Lp spaces
(also called SQp spaces). We first worked on a larger frame in order to clear out the results we
could get on any Banach space X. For that matter, we first defined an orthogonality relationship
related to Lp-projections, that is
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Property 4.2.1. (p-orthogonality) Let X be a Banach space, and 1 ≤ p ≤ +∞. Let f, g ∈ X.
The elements f and g are said to be p-orthogonal, denoted by f⊥pg, if{

‖f + zg‖p = ‖f‖p + |z|p‖g‖p, ∀z ∈ C, when p < +∞;
‖f + zg‖ = max(‖f‖, |z|‖g‖), ∀z ∈ C, when p = +∞.

When f 6= 0 and g 6= 0, this condition is equivalent to the fact that Span(f, g) has dimension 2
and that the projection on Span(f) parallel to Span(g) is an Lp-projection on Span(f, g).

This relationship is symmetric, homogeneous, definite, but not linear in general. It also allows
us to define the p-orthogonal of a set E similarly to orthogonals in the case of inner product
spaces. This relationship has an easy characterization on Lp spaces and on subspaces of Lp

(see Corollary 4.2.3), which allows in turn to easily characterize Lp-projections on subspaces of
Lp(Ω). It turned out that if we take any Banach space X satisfying the two following properties,
namely

Property 4.2.7. (Extension of p-orthogonality to X) For every f, g ∈ X such that f⊥pg, there
exists P ∈ Pp(X) such that P (f) = f and P (g) = 0.

Property 4.2.8. (Linearity of p-orthogonality on X) For every f, g, h ∈ X such that f⊥pg and
f⊥ph, we have f⊥p(g + h).

then we are able to generalize the behaviours we can find on Lp(Ω) and its subspaces. This gives
for example the following result.

Proposition 4.2.10. (Lp-projections on subspaces of X) Let X be a Banach space, and 1 ≤
p < +∞, p 6= 2. The following are equivalent

(i) X satisfies Property 4.2.7 for p;

(ii) For any subsets E1, E2 of X, such that f⊥pg for every f ∈ E1, g ∈ E2, there exists
P ∈ Pp(X) such that P (E1) = E1 and P (E2) = {0}.

Furthermore, if one of them is true, then for any subspace F of X and for any P ∈ Pp(F ), there
exists Q ∈ Pp(X) such that P = Q|F .

We also dedicated Subsection 4.2.B to elementary counter-examples showing different be-
haviour when the previous properties are not true for X.

As it turns out that most of the subspaces of Lp(Ω) only satisfy Property 4.2.8, we introduced
a larger class of projections in Subsection 4.2.D.

Definition 4.2.30. (Maximal Lp-projections) Let X be a Banach space, and 1 ≤ p ≤ +∞. Let
F be a closed subspace of X, and let P ∈ Pp(F ). The Lp-projection P is said to be maximal for
X if there exists no subspaces G and Lp-projection Q on G such that F ( G and Q|F = P .
We also define α(F ) := Card({P : P is a maximal Lp-projection for F}).

These maximal Lp-projections allow us to study the structure of the p-orthogonality on the
subspace F . We give several results about the main behaviour of maximal Lp-projections, as
well as their behaviour when F is a subspace of a Banach space X satisfying Properties 4.2.7
and 4.2.8.

We also focus on giving an upper bound to the number of maximal Lp-projections such a
subspace F can possess when it has a finite dimension. We first worked out on a generic example.
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Proposition 4.2.44. Let 1 ≤ p < +∞, p 6= 2, n ≥ 4 and X = `p(Cn). Denote (ei)i the
canonical basis of X. For 1 ≤ i < n, denote fi = ei + ei+1. Take F = Span(fi, 1 ≤ i < n).
Then, we have dim(F ) = n− 1, and

α(F ) = Card({P : P is a maximal Lp-projection for F}) = 2n − 2n.

Thus, for n ≥ 5, there is strictly more than 2dim(F ) Lp-projections that are maximal for F .

Our findings in this case and in another specific context (see Proposition 4.2.46) led us to
consider a conjecture for the general case (see Conjecture 4.2.49 and Proposition 4.2.50). This
conjecture is unfortunately open as the time of this writing.

With this thorough study of Lp-projections for subspaces of a Banach space, we went in
Section 4.3 into considering quotients and subspaces of quotients of Banach spaces. Most of the
results rely heavily on the following key lemma.

Lemma 4.3.3. Let 1 < p ≤ +∞. Let X be a Banach space and let F be a closed subspace of
X. Let x ∈ X, let G be a subspace of X containing F and x, and let P ∈ Pp(G) be such that
P (x) = x. Then the following assertions are equivalent

(i) infa∈F ‖x− a‖ = ‖x‖;

(ii) infa∈F ‖x− P (a)‖ = ‖x‖.

If the metric projections on F and P (F ) are well-defined, then we also have the equivalence :

(1) Proj(x, F ) = 0;

(2) Proj(x, P (F )) = 0.

Even with this result, the p-orthogonality does not behave well enough for some results,
which require the following additional property on a Banach space X with a subspace F .

Property 4.3.9. For every x, y ∈ X/F such that x⊥py, there exists x, y ∈ X representatives of
x, y of minimal norm such that x⊥py.

With these elements we are able to characterize the p-orthogonality relationship as well as
the Lp-projections on subspaces of quotients of Lp and to generalize this characterization to a
broader class of Banach spaces.

Our main results for Lp-projections on a quotient of a Banach space are the following

Proposition 4.3.13. Let X be a Banach space and let 1 < p < +∞, p 6= 2. Let F be a closed
subspace of X, and let P ∈ Pp(X) be such that P (F ) ⊂ F . Then,

(i) X/F ' P (X)/P (F )⊕p (I − P )(X)/(I − P )(F );
If the metric projection on F is well-defined, then

Rep(X/F ) = Rep(P (X)/P (F ))⊕p Rep((I − P )(X)/(I − P )(F )).

(ii) There exists an Lp-projection P ′ on X/F such that P ′(x) = P (x);

(iii) P ′ is non-trivial if and only if P (F ) 6= P (X) and (I − P )(F ) 6= (I − P )(X);
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(iv) Let PF ∈ Pp(X) be the maximal Lp-projection such that Ran(PF ) ⊂ F . Then X/F is
isometrically isomorphic to (I − PF )(X)/(I − PF )(F ).

(v) Denote φ : P ∈ {Q ∈ Pp(X): Q(F ) ⊂ F} 7→ P ′ ∈ Pp(X/F ). Then φ is a morphism of
commutative Boolean algebras, and Ker(φ) = Pp(X) ◦ PF . Hence, φ(P1) = φ(P2) if and
only if (I − PF )P1 = (I − PF )P2, and φ is injective if and only if PF = 0.
In general, Ran(φ) = φ({Q ∈ Pp(X): QPF = 0, P (F ) ⊂ F}) and φ is injective on this
set.

Proposition 4.3.16. Let 1 < p < +∞, p 6= 2. Let X be a Banach space satisfying Property
4.2.7. Let F be a closed subspace of X such that every element of X/F admits a unique rep-
resentative of minimal norm. Suppose that Property 4.3.9 is satisfied for X,F and p. Denote
φ : P ∈ {Q ∈ Pp(X): Q(F ) ⊂ F} 7→ φ(P ) ∈ Pp(X/F ) the morphism of commutative Boolean

algebras from Proposition 4.3.13, with φ(P ) satisfying φ(P )(x) = P (x) for every x ∈ X. Then,

(i) The morphism φ is surjective, every Lp-projection of X/F can be associated to an Lp-
projection P on X such that P (F ) ⊂ F ;

(ii) The Boolean algebra Pp(X/F ) is isomorphic to {P ∈ Pp(X): PPF = 0, P (F ) ⊂ F};

(iii) Denote PF the maximal Lp-projection of X such that Ran(PF ) ⊂ F . The space X/F
admits non-trivial Lp-projections if and only if there exist Lp-projections P such that PF <
P < I and P (F ) ⊂ F .

In Subsection 4.3.B we refine these results by characterizing Lp-projections on subspaces of
quotients of a Banach space X that satisfies Properties 4.2.7,4.2.8 and 4.3.9 (see Proposition
4.3.19).

We end this chapter on a Section where we look at spaces Lp(Ω, X) for which the previous
results would apply (see Subsection 4.4.A) and where we try to see if a subspace, quotient, or
subspace of quotient of Lp can possess non-trivial Lq-projections for any q 6= p (see Subsection
4.4.B).



Chapter 1

Hilbert space operators with unitary
skew-dilations: Classes C(ρn)

The aim of this chapter is to study, for a given sequence (ρn)n≥1 of complex numbers, the

class of Hilbert space operators possessing (ρn)-unitary dilations. This is the class of bounded

linear operators T acting on a Hilbert space H, whose iterates Tn can be represented as

Tn = ρnPHU
n|H , n ≥ 1, for some unitary operator U acting on a larger Hilbert space,

containing H as a closed subspace. Here PH is the projection from this larger space onto H.

The case when all ρn’s are equal to a positive real number ρ leads to the class Cρ introduced

in the 1960s by Foias and Sz.-Nagy, while the case when all ρn’s are positive real numbers has

been previously considered by several authors. Some applications and examples of operators

possessing (ρn)-unitary dilations, showing a different behaviour from the classical case, are

given in this chapter.

In Section 1.1 and 1.2 we introduce our classes and lay out the main results that allow us to
characterize them and work with them. For each class C(ρn), we also define a (ρn)-radius map
from L(H) to [0,+∞]. This map turns out to be a quasi-norm that is equivalent to the operator
norm, and whose closed unit ball is the class C(ρn). The multiple properties of the (ρn)-radii
allow us to obtain additional information on the classes C(ρn).
For Section 1.3 we focus on the case where the sequence (ρn)n is constant and equal to ρ ∈ C∗.
In this context many characterizations take a simpler form, allowing us to link these classes to
classes Cτ for τ > 0. This allows us to generalize the computations of (ρ)-radii for operator T
satisfying either T 2 = aI or T 2 = bT . We were also able go further and compute the (ρ)-radii
of operators T satisfying (T − aI)2 = 0 (see Prop.1.3.9).
Section 1.4 goes back to the general case by studying additional properties of (ρn)-radii as well
as relationships between (ρn) and (τn)n-radii. The previous section inspired us into considering
(zρn)-radii, for a given sequence (ρn) and for z ∈ C∗, in order to bring back the study to 1-
parameter families. Looking at the map z 7→ w(zρn)(T ) leads to maps that can behave differently
from what can be seen with classes C(z), z ∈ C∗. We can for example find sequences (ρn) and
operators T for which w(zρn)(T ) is constant when |z| is large enough (see Proposition 1.4.16).
There are also sequences (ρn) for which

⋃
r>0C(rρn) contains all power-bounded operators (see

Corollary 1.4.18), whereas
⋃
ρ>0C(ρ) is strictly included in the set of operators similar to a

contraction. In this regard, we end this section with a study of the (zρn)-radius of I for two
families, where the map f(ρn) is respectively related to log and to exp.

27
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1.1 Introduction

Classes Cρ have been introduced by B. Sz-Nagy and C. Foias [SNF66] in 1966. For a complex
Hilbert space H and a real number ρ > 0, a bounded linear operator T ∈ L(H) is said to be
in the class Cρ(H) if all powers of T can be skew-dilated to powers of a unitary operator on a
Hilbert space K, containing H as a closed subspace. This means that

Tn = ρPHU
n|H , for all n ≥ 1,

where U ∈ L(K) is a suitable unitary operator, and PH ∈ L(K) denotes the orthogonal pro-
jection onto H. Such an operator T is called a ρ-contraction, while the unitary operator U is
called a ρ-dilation, or a ρ-unitary dilation, of T .

The famous Sz.-Nagy dilation theorem (see [SNF66]) shows that C1(H) is exactly the class
of all Hilbert space contractions i.e., operators of norm no greater than one. It is also known
(see [BS67]) that the class C2(H) coincides with the class of all operators T with numerical
range W (T ) included in the closed unit disk; equivalently, those T satisfying w(T ) ≤ 1. Here
the numerical range W (T ) and the numerical radius w(T ) of T are defined by

W (T ) = {〈Tx, x〉 : ‖x‖ = 1} ; w(T ) = sup{|λ| : λ ∈W (T )}.

Let T be an operator in the class Cρ. Then

(i) T is power-bounded. More precisely, we have ‖Tn‖ ≤ max(1, ρ), for all n ≥ 0. In
particular, the spectral radius r(T ) of T satisfies r(T ) ≤ 1;

(ii) T k is in Cρ(H) for every k ≥ 1;

(iii) For a closed subspace, F , of H which is stable by T (i.e., T (F ) ⊂ F ), the restriction T |F
is in Cρ(F );

(iv) The functional calculus map f 7→ f(T ) that sends a polynomial f into f(T ) can be
extended in a well-defined manner to the disk algebra A(D) := C0(D) ∩ Hol(D). It is a
morphism of Banach algebras, and satisfies

‖f(T )‖ ≤ max(1, ρ)‖f‖L∞(D);

(v) T is similar to a contraction: there exists an invertible operator L ∈ L(H) such that
‖LTL−1‖ ≤ 1.

We refer the reader to [Hol68,Hol71,SNBFK10,Rác74,AO75] for proofs of these results, which
mainly use several characterizations of classes Cρ(H). We record the principal ones in the
following theorem.

Theorem. — Let T be an operator in L(H) and let ρ > 0. The following are equivalent:

(i) T ∈ Cρ(H);

(ii) r(T ) ≤ 1 and, for all z ∈ D, we have (1− 2
ρ)I + 2

ρRe((I − zT )−1) ≥ 0;

(iii) For all z ∈ D and all h ∈ H we have (2
ρ − 1)‖zTh‖2 + (2− 2

ρ)〈zTh, h〉 ≤ ‖h‖2.
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We remark that these characterization can be expressed in terms of classes of operator-
valued holomorphic functions. For instance, (ii) says that the map z 7→ (1− 2

ρ)I + 2
ρ(I − zT )−1

is in the Caratheodory class of operator-valued holomorphic functions on D, having all real
parts positive-definite operators. Item (iii) can be equivalently expressed by the membership
of z 7→ zT ((ρ− 1)zT − ρI)−1 to the Schur class of holomorphic maps f : D→ L(H) having all
norms no greater than one (i.e., ‖f(z)‖ ≤ 1 for every z ∈ D).

J.A.R. Holbrook [Hol68] and J.P. Williams [Wil68] introduced the notion of ρ-radius of an
operator T ∈ L(H) as follows:

wρ(T ) := inf{u > 0:
1

u
T ∈ Cρ(H)}.

This ρ-radius is a quasi-norm on the Banach space L(H), equivalent to the operator norm, whose
closed unit ball is exactly Cρ(H). Recall ([Kal03]) that a quasi-norm satisfies all properties of
a norm, except that the triangular inequality holds true up to a multiplicative constant. For
ρ > 2, the quasi-norm wρ satisfies ([SNBFK10,AO76])

wρ(T1 + T2) ≤ ρ (wρ(T1) + wρ(T2)) .

Therefore the ρ-contractions are exactly the contractions for the ρ-radius, and many relationships
between classes Cρ can be expressed more easily using the associated ρ-radii. The ρ-radius is a
usual Banach-space norm for 0 < ρ ≤ 2.

Some generalizations of classes Cρ have been studied, like classes CA(H) introduced by
H. Langer (see [SNBFK10, p.53] and its references, and [Sue98a]), or the classes C(ρn)(H)
considered by several authors (see [Rác74, Bad03, SZ16]). This latter generalization will be the
main topic of study in this chapter, with the novelty that we consider the general case when
the ρn’s are non-zero complex scalars. This will lead to classes of operators with several new
features and different behaviour.

1.2 Hilbert Space Operators with (ρn)-Dilations

1.2.A Definition and first properties.

In light of the preceding discussion we introduce the following definition.

Definition 1.2.1 (Classes C(ρn)). — Let (ρn)n≥1 be a sequence of complex numbers, with

ρn 6= 0 for each n. We write (ρn)n≥1 ∈ (C∗)N∗ . Let H be a complex Hilbert space. Define now

C(ρn)(H) := {T ∈ L(H) : there exists a Hilbert space K and a unitary operator U ∈ L(K)

with H ⊂ K and Tn = ρnPHU
n|H , ∀n ≥ 1}.

Here PH ∈ L(K) is the orthogonal projection from K onto its closed subspace H. We say in
this case that T possesses (ρn)-dilations.

In other words, an operator T is in the class C(ρn)(H) if and only if all its powers admit
dilations of the form ρnU

n for a certain unitary operator U acting on a larger Hilbert space.
For the rest of this chapter, we will suppose that the Hilbert space H on which T acts is fixed.
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If there is no ambiguity, C(ρn)(H) will be abbreviated as C(ρn). Note also that the sequence
(ρn) = (ρn)n≥1 starts at n = 1: for n = 0 we have of course T 0 = IH = PHU

0|H .

In the papers [Rác74,Bad03,SZ16], the case when the ρn’s are non-negative real numbers is
considered. We went for a broader choice of sequences as the main ideas do not rely heavily on
the fact that ρn are in R∗+ and as this eventually allows for some interesting new phenomena for
the classes C(ρn). One first difference is recorded in the following remark.

Remark 1.2.2. — The definition of C(ρn) easily gives that T ∈ C(ρn) if and only if T ∗ ∈ C(ρn).
Therefore, when the ρn are real scalars, the class C(ρn) is stable under the adjoint map T 7→ T ∗.
This is no longer true in the general case. This may be one of the main reasons explaining the
previous interest about the real positive case.

Remark 1.2.3. — As another basic remark, we note that if T is in C(ρn), then we have ‖Tn‖ ≤
|ρn|. Thus, r(T ) ≤ lim infn(|ρn|

1
n ). This relationship implies that two different cases appear in

the study of the classes C(ρn):

(i) 0 < lim infn(|ρn|
1
n ) ≤ +∞;

(ii) lim infn(|ρn|
1
n ) = 0.

Although many of the proofs below work the same way in both cases, most of the results
will be stated in the case (i). The study of the case (ii) is more problematic. Indeed, in case
(ii), the class C(ρn) will only contain quasi-nilpotent operators, that is operators whose spectra
reduce to {0}.
We also note that when lim infn(|ρn|

1
n ) = +∞, we trivially have r(T ) < lim infn(|ρn|

1
n ) for every

operator T . We also note that the condition lim infn(|ρn|
1
n ) = +∞ leads to small changes in the

proofs below: the main difference between this condition and lim infn(|ρn|
1
n ) < +∞ in case (i)

is the fact that the quantity 1

lim infn(|ρn|
1
n )

, which exists when lim infn(|ρn|
1
n ) ∈]0,+∞[, has to be

replaced by 0 when lim infn(|ρn|
1
n ) = +∞. This motivates the following convention.

Convention. For the rest of this chapter, we assume that

1

lim infn(|ρn|
1
n )

= 0 whenever lim inf
n

(|ρn|
1
n ) = +∞. (1.2.1)

One of the main tools to characterize the classes C(ρn) is the following Herglotz-type theorem.

Theorem 1.2.4. — Let H a Hilbert space. Let F : D→ H be an analytic function such that:

(i) F (0) = I

(ii) Re(F (z)) ≥ 0, ∀z ∈ D.

Then, there exists a Hilbert space K containing H and U ∈ L(K) an unitary operator such that

F (z) = PH(I + zU)(I − zU)−1|H , ∀z ∈ D

A proof of this theorem can be found in [Fil70, p.65-69]. This theorem is the key element
that allows us to obtain a very useful characterization for classes C(ρn) in terms of positivity of
certain operators.
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Definition 1.2.5. — For (ρn)n ∈ (C∗)N∗ and for w in a complex Banach algebra, f(ρn) denotes

the entire series given by f(ρn)(w) =
∑

n≥1
2wn

ρn
.

For a ∈ R, we denote Re≥a the half-plane {z ∈ C, Re(z) ≥ a}, while Re>a is the half-plane
{z ∈ C, Re(z) > a}.

Proposition 1.2.6. — Let (ρn)n ∈ (C∗)N∗ and let T ∈ L(H). The following are equivalent:

(i) T ∈ C(ρn);

(ii) The series

f(ρn)(zT ) =
∞∑
n=1

2

ρn
znTn

is absolutely convergent in L(H) and

I + Re(f(ρn)(zT )) ≥ 0, for all z ∈ D.

Proof. (i) ⇒ (ii) Let U be an unitary operator on a Hilbert space K, with K containing H as
a closed subspace, such that

Tn = ρnPHU
n|H , ∀n ≥ 1.

For every polynomial P (X) = a0 + · · ·+ anX
n and every z ∈ D, we have

a0I +
a1

ρ1
zT + · · ·+ an

ρn
(zT )n = PH(a0I + a1zU + · · ·+ an(zU)n)|H = PH P (zU)|H .

Since the series 1 +
∑

n≥1 2wn converges absolutely to f(w) = 1+w
1−w for all w ∈ D, and since U

is unitary, the series I +
∑

n≥1 2(zU)n converges in norm to

f(zU) = (I + zU)(I − zU)−1, for all z ∈ D.

Thus, as

‖T
n

ρn
‖ = ‖PHUn|H‖ ≤ ‖Un‖ ≤ 1,

the series IH+
∑

n≥1
2
ρn

(zT )n is absolutely convergent and converges to PH [(I+zU)(I−zU)−1]|H
for all z ∈ D. As U is unitary, f(zU) is normal, so the closure of its numerical range W (f(zU))
is the convex hull of its spectrum. We have

σ(f(zU)) = f(σ(zU)) ⊂ f(D) ⊂ Re>0.

Thus,
W ((I + zU)(I − zU)−1) = W (f(zU)) ⊂ Hull(σ(f(zU))) ⊂ Re≥0.

Furthermore, W (PHf(zU)|H) ⊂W (f(zU)), so the numerical range of IH +f(ρn)(zT ) is included
in Re≥0. This is equivalent to Re(IH + f(ρn)(zT )) ≥ 0, so (ii) is true.
- (ii) ⇒ (i) We define F (z) := IH + f(ρn)(zT ). Thus, F is analytic on D, F (0) = IH , and
Re(F (z)) ≥ 0 for all z ∈ D. By applying Theorem 1.2.4, we obtain a Hilbert space K and a
unitary operator U ∈ L(K), such that F (z) = PH(I + zU)(I − zU)−1|H , for all z ∈ D. By
developing both analytic expressions in entire series, and identifying their coefficients, we obtain
2
ρn
Tn = 2PHU

n|H for all n ≥ 1. Therefore T ∈ C(ρn).
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We will obtain most of the following results by applying Proposition 1.2.6. We can directly
see by applying this proposition that any class C(ρn) contains 0, the null operator, so none of
these classes is empty.

One remark is in order. We did not consider the case where ρn = 0 for some n in Definition
1.2.1. Indeed, this condition does not behave well with computations similar to the ones in the
proof of Proposition 1.2.6. Having ρn = 0 implies Tn = 0, but it does not give any information
on PHU

n|H . This prevents us from showing that certain sums of powers of T and T ∗ are positive,
which is a crucial tool when dealing with operators in the class C(ρn).

If we were to denote m := inf({n: ρn = 0}), then any operator T in C(ρn) would need to
be nilpotent of order at most m. The following Corollary treats this nilpotent case and gives a
characterization that was the one we expected in the case ρm = 0. See also [BC02, Proposition
6.1] for another use of the positivity condition (ii) below.

Corollary 1.2.7. — Let (ρn)n ∈ (C∗)N∗ and m ≥ 1. Let T ∈ L(H) be such that Tm = 0.
Then, the following are equivalent:

(i) T ∈ C(ρn);

(ii) I + Re(
m−1∑
n=1

zn 2
ρn
Tn) ≥ 0 for all z ∈ D.

Thus, for any sequence (τn) such that ρk = τk, for all 1 ≤ k < m, we have T ∈ C(τn) if and only
if T ∈ C(ρn).

Proof. A direct application of Proposition 1.2.6 with the extra condition Tm = 0 gives the
equivalence.

Now we come back to Proposition 1.2.6. When lim infn(|ρn|
1
n ) > 0, we can see that the

series
∞∑
n=1

2
ρn
znTn is absolutely convergent if and only if |z|r(T ) < lim infn(|ρn|

1
n ). We can thus

reformulate Proposition 1.2.6 as follows.

Theorem 1.2.8. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Let T ∈ L(H).

Then, the following assertions are equivalent:

(i) T ∈ C(ρn);

(ii) r(T ) ≤ lim infn(|ρn|
1
n ) and, for f(ρn)(zT ) :=

∞∑
n=1

2
ρn
znTn, we have

I + Re(f(ρn)(zT )) ≥ 0,∀z ∈ D.

Remark 1.2.9. — Replacing the condition of absolute convergence of a series by a condition
concerning the spectral radius of T is useful in several instances. We can first notice that if
we take v > 0 small enough, then vT will satisfy the spectral radius condition. However, if

lim infn(|ρn|
1
n ) = 0, this condition must be replaced by lim supn(‖T

n‖
|ρn|

1
n ) ≤ 1, which can only

be satisfied by certain quasi-nilpotent operators. Hence, aside from nilpotent operators and
Corollary 1.2.7, knowing which operators can be ”near” operators belonging to a class C(ρn) is
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a difficult problem. In this case, the map f(ρn) also has convergence radius 0, so we cannot use
analytic or geometric properties related to the images of certain disks by f(ρn).

Many of the following results, related to specific operators or to f(ρn) will have no meaning
in this case, but others will be true under the additional condition

lim sup
n

(
‖Tn‖
|ρn|

) 1
n

≤ 1.

We look now at the closure of the class C(ρn) for the operator norm.

Corollary 1.2.10. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Then the class C(ρn) is

closed for the operator norm: if (Tm)m is a sequence of operators converging in L(H) to T , such
that Tm ∈ C(ρn), then T ∈ C(ρn).

Proof. Let (Tm)m be a sequence of operators converging to T such that Tm ∈ C(ρn). We have

‖Tn‖ = lim
m

(‖Tnm‖) ≤ |ρn|, so r(T ) ≤ lim inf
n

(|ρn|
1
n ).

Thus, for any z ∈ D, the series f(ρn)(zT ) converges absolutely and f(ρn)(zT ) = limm f(ρn)(zTm).
Hence, for any h ∈ H, we have

Re(〈(I + f(ρn)(zT ))h, h〉) = Re[lim
m
〈(I + f(ρn)(zTm))h, h〉] ≥ 0.

This implies that I + Re(f(ρn)(zT )) ≥ 0, and the proof is complete by using Theorem 1.2.8.

1.2.B Operator radii.

The condition in Theorem 1.2.8 will be useful when studying the (ρn)-radius, which is introduced
in the following definition.

Definition 1.2.11. — Let (ρn)n ∈ (C∗)N∗ . Let T ∈ L(H). We define the (ρn)-radius of T as:

w(ρn)(T ) := inf{u > 0:
T

u
∈ C(ρn)} ∈ [0,+∞].

The definition of the (ρn)-radius is similar to the definition of the ρ-radius that can be found
in [Hol68, AL10, AO97, AN73]. As the classes C(ρn) and Cρ share the same type of definition,
the (ρn)-radius and the ρ-radius will share the same role with some slight different variations.

We will for now focus on properties of the (ρn)-radius.

Lemma 1.2.12. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Then, the map T 7→ w(ρn)(T )

takes values in [0,+∞[, is a quasi-norm, is equivalent as a quasi-norm to the operator norm
‖ · ‖, and its closed unit ball is the class C(ρn).
We also have

w(ρn)(T ) ≥
(
‖Tm‖
|ρm|

) 1
m

for every m ≥ 1, and w(ρn)(T ) ≥ r(T )

lim infn(|ρn|
1
n )
.
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Proof. We start off by obtaining the inequalities concerning the (ρn)-radius, to then show its
finiteness while obtaining its equivalence with the operator norm ‖ · ‖. Let T ∈ L(H). If
w(ρn)(T ) = +∞ then the inequalities of Lemma 1.2.12 are true. Else, let u > 0 be such that
T
u ∈ C(ρn). For any m ≥ 1, we have ‖T

m‖
um ≤ |ρm|, that is

u ≥
(
‖Tm‖
|ρm|

) 1
m

.

Therefore, by taking the infimum over u such that T
u ∈ C(ρn), we get

w(ρn)(T ) ≥
(
‖Tm‖
|ρm|

) 1
m

.

For m = 1 we obtain w(ρn)(T ) ≥ (‖T‖|ρ1| ). If we also take the lim sup of the right-hand side
quantity, we get

w(ρn)(T ) ≥ r(T )

lim infn(|ρn|
1
n )
.

Let us now prove the finiteness of w(ρn)(T ). Let r < lim infn(|ρn|
1
n ). Therefore, the series

f(|ρn|)(rz) :=
∞∑
n=1

2
|ρn|r

nzn is absolutely convergent for all z ∈ D, thus analytic on D. Since

f(|ρn|)(0) = 0, there is a radius r0, with 1 > r0 > 0, such that |f(|ρn|)(r0w)| ≤ 1 for all |w| ≤ r.

Let u > 0 be such that ‖T‖u < r0r. Thus, we have

r(
T

u
) < r0r < lim inf

n
(|ρn|

1
n ),

and for all z ∈ D we have

‖f(ρn)(z
T

u
)‖ ≤

∞∑
n=1

2

|ρn|
|z|n(

‖T‖
u

)n ≤
∞∑
n=1

2

ρn
|z|n(r0r)

n = |f(|ρn|)(r0|z|r)| ≤ 1.

We recall that for any B ∈ L(H) we have

Re(B) ≥ −‖Re(B)‖I = −‖B +B∗

2
‖I ≥ −‖B‖I.

Thus, for any z ∈ D, f(ρn)(z
T
u ) converges absolutely and we have

I + Re(f(ρn)(z
T

u
)) ≥ I − ‖f(ρn)(z

T

u
)‖I ≥ 0.

This means that T
u ∈ C(ρn) according to Proposition 1.2.6, so w(ρn)(T ) ≤ u < +∞. Furthermore,

since T
u ∈ C(ρn) for every u such that u > ‖T‖

r0r
, we get w(ρn)(T ) ≤ ‖T‖r0r

. Hence, we have

‖T‖
|ρ1|

≤ w(ρn)(T ) ≤ ‖T‖
r0r

.

With these inequalities we immediately get

w(ρn)(T ) = 0⇔ T = 0.
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These inequalities also imply that, for S, T ∈ L(H), we have

w(ρn)(S + T ) ≤ ‖S + T‖
r0r

≤ ‖S‖+ ‖T‖
r0r

≤ |ρ1|
r0r

(w(ρn)(S) + w(ρn)(T )).

In order to show that w(ρn)(·) is a quasi-norm, we still have to show that it is homogeneous,
that is w(ρn)(zT ) = |z|w(ρn)(T ) for any z ∈ C. Let z ∈ C. The cases z = 0 and T = 0 have
been treated, so we now consider z = eit|z| 6= 0 and T 6= 0. Let u ≥ w(ρn)(zT ) be such that
zT
u ∈ C(ρn). Denote u′ = u

|z| . We can see that r( zTu ) = r( Tu′ ) and that f(ρn)(w
zT
u ) = f(ρn)(e

itw T
u′ )

for any w ∈ D. Thus, the series f(ρn)(e
itw T

u′ ) converges absolutely and I+Re(f(ρn)(e
itw T

u′ )) ≥ 0,

for any w ∈ D. Hence T
u′ ∈ C(ρn), so

u′ =
u

|z|
≥ w(ρn)(T ).

Thus, by taking the infimum for u ≥ w(ρn)(zT ), we get

w(ρn)(zT ) ≥ |z|w(ρn)(T ).

Applying the same result to T ′ = zT and z′ = 1
z , we obtain

w(ρn)(T ) = w(ρn)(z
′T ′) ≥ |z′|w(ρn)(T

′) =
1

|z|
w(ρn)(zT ),

which proves the desired equality.
We will now prove that the closed unit ball for the (ρn)-radius is exactly C(ρn). Notice again

that w(ρn)(T ) = 0 reduces to T = 0. If T ∈ C(ρn), then w(ρn)(T ) ≤ 1
1 = 1. Conversely, suppose

that w(ρn)(T ) ≤ 1 and let (um)m be a sequence, with um > 0, converging to w(ρn)(T ) such that
T
um
∈ C(ρn). Using the fact that the class C(ρn) is closed for the operator norm, as proved in

Corollary 1.2.10, we get T
w(ρn)(T ) ∈ C(ρn). Therefore, we have

r(T ) ≤ r( T

w(ρn)(T )
) ≤ lim inf

n
(|ρn|

1
n )

and

I + Re(f(ρn)(zT )) ≥ 0, for every z with |z| ≤ 1

w(ρn)(T )
.

Since 1
w(ρn)(T ) ≥ 1, we can conclude that T ∈ C(ρn). The proof is now complete.

Remark 1.2.13. In the case when lim infn(|ρn|
1
n ) = 0, we have w(ρn)(T ) = +∞ unless T is

quasi-nilpotent and the sequence of ‖Tn‖
1
n decreases to 0 fast enough.

Remark 1.2.14. Since the (ρn)-radius is homogeneous and

w(ρn)(T ) ≤ 1⇔ T ∈ C(ρn),

whenever T 6= 0, we have

{u > 0:
T

u
∈ C(ρn)} = [w(ρn)(T ),+∞[.



36 CHAPTER 1. Classes C(ρn)

Corollary 1.2.15. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Let T ∈ L(H). We have

(i) For any z 6= 0, 1
|z|w(ρn)(T ) = w(ρn)(

1
zT ) = w(znρn)(T );

(ii) If T ∈ C(ρn)(H), then T k ∈ C(ρkn)(H), for all k ≥ 1;

(iii) w(ρkn)n(T k) ≤ w(ρn)(T )k, for all k ≥ 1;

(iv) w(ρn)(T ) = w(ρn)(T
∗).

Proof. (i) The left-hand equality is given by the homogeneity of w(ρn)(·). For the right-hand
one, we can see that

(
T

z
)n = ρnPHU

n|H if and only if Tn = znρnPHU
n|H .

Thus T
z ∈ C(ρn) if and only if T ∈ C(znρn). Lemma 1.2.12 implies that

w(ρn)(
1

z
T ) = w(znρn)(T ).

- (ii) By definition of the class C(ρn), if T ∈ C(ρn), then

(T k)m = ρkmPH(Uk)m|H ,

so T k ∈ C(ρkn)(H).

- (iii) The result is true when T = 0. When T 6= 0, consider T ′ = T
w(ρn)(T ) . By homogeneity of

w(ρn)(·), we have w(ρn)(T
′) = 1, so T ′ ∈ C(ρn) according to Lemma 1.2.12. Thus, for any k ≥ 1,

(T ′)k ∈ C(ρkn)(H). Using again the homogeneity of the (ρn)-radius, we obtain

w(ρkn)n(T k)

w(ρn)(T )k
= w(ρkn)((T

′)k) ≤ 1.

This completes the proof.
- (iv) We use Remark 1.2.2 and Lemma 1.2.12 to obtain the equivalence

w(ρn)(T ) ≤ 1⇔ w(ρn)(T
∗) ≤ 1.

Since the (ρn)-radii are homogeneous, these quantities must be equal.

Corollary 1.2.16. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Let T ∈ L(H). The

following assertions are true:

(i) Let F be an invariant closed subspace of T . Then w(ρn)(T |F ) ≤ w(ρn)(T );

(ii) For any isometry V we have w(ρn)(V TV
∗) ≤ w(ρn)(T ), with equality if V is unitary;

(iii) For a Hilbert space K we have w(ρn)(T ⊗ IK) = w(ρn)(T );

(iv) For Tm ∈ L(Hm), with supm(‖Tm‖) < +∞, we have

w(ρn)(⊕m≥1Tm) = sup
m≥1

(w(ρn)(Tm));
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(v) If T (∞) denotes the countable orthogonal sum T ⊕ T ⊕ · · · , then w(ρn)(T
(∞)) = w(ρn)(T ).

Proof. - (i) We have r(T |F ) ≤ r(T ). If I + Re(f(ρn)(zT )) is positive, then I + Re(f(ρn)(zT |F ))
is positive too. Thus, by using Lemma 1.2.12 we obtain

w(ρn)(T ) ≤ 1⇒ w(ρn)(T |F ) ≤ 1.

The homogeneity of the (ρn)-radius gives the result.
- (ii) We have r(V TV ∗) ≤ r(T ) and (V TV ∗)n = V TnV ∗. Thus, f(ρn)(zV TV

∗) = V f(ρn)(zT )V ∗.
Hence, for any h ∈ H and any z ∈ D, we have

Re(〈(I + f(ρn)(zV TV
∗))h, h〉) = Re(〈(I + f(ρn)(zT ))V ∗h, V ∗h〉).

By applying Theorem 1.2.8 and Lemma 1.2.12, we get

w(ρn)(T ) ≤ 1⇒ w(ρn)(V TV
∗) ≤ 1.

The homogeneity of the (ρn)-radii gives the desired inequality. When the isometry V is also
invertible, the converse inequality is true, so both quantities are equal.
- (iii) Since ‖Tn‖ = ‖(T ⊗ IK)n‖, we have r(T ) = r(T ⊗ IK). Let u > 0 be such that

u ≥ r(T )

lim infn(|ρn|
1
n )

. Thus the series f(ρn)(z
T⊗IK
u ) is absolutely convergent for all z ∈ D, and

f(ρn)(z
T⊗IK
u ) = f(ρn)(z

T
u )⊗ IK . Since for any h1 ⊗ k1, h2 ⊗ k2 ∈ H ⊗K we have

〈h1 ⊗ k1, h2 ⊗ k2〉 = 〈h1, h2〉〈k1, k2〉,

we can see that the condition

〈(I + Re(f(ρn)(z
T ⊗ IK
u

)))(h⊗ k), h⊗ k〉 ≥ 0, ∀h⊗ k ∈ H ⊗K,

is equivalent to

〈(I + Re(f(ρn)(z
T

u
)))(h), h〉 ≥ 0, ∀h ∈ H.

Hence, T⊗IK
u ∈ C(ρn)(H ⊗ K) is equivalent to T

u ∈ C(ρn)(H), which implies that w(ρn)(T ) =
w(ρn)(T ⊗ IK).
- (iv) Since supm(‖Tm‖) < +∞, the linear map T = ⊕m≥1Tm is bounded on the Hilbert space
H = ⊕m≥1Hm, and ‖T‖ = supm(‖Tm‖). Thus, r(T ) = supm(r(Tm)). Let u > 0 be such that

u ≥ r(T )

lim infn(|ρn|
1
n )

. We have

r(
Tm
u

) ≤ r(T
u

) ≤ lim inf
n

(|ρn|
1
n ).

Thus, the series f(ρn)(z
T
u ) and f(ρn)(z

Tm
u ) are absolutely convergent for all z ∈ D, and

f(ρn)(z
T

u
) = ⊕m≥1f(ρn)(z

Tm
u

).

Since for any h = (hm)m ∈ H, we have

[I + Re(f(ρn)(z
T

u
))](h) = ((I + Re(f(ρn)(z

Tm
u

)))(hm))m,
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this implies that

〈(I + Re(f(ρn)(z
T

u
)))(h), h〉 ≥ 0, ∀h ∈ H,

is equivalent to

〈(I + Re(f(ρn)(z
Tm
u

)))(hm), hm〉 ≥ 0, ∀hm ∈ Hm, ∀m ≥ 1.

Hence, the assertion T
u ∈ C(ρn)(H) is equivalent to Tm

u ∈ C(ρn)(Hm), ∀n ≥ 1, which implies that
w(ρn)(T ) = supm(w(ρn)(Tm)).
- (v) The proof is a consequence of item (iii) and [BC02, Remark 1.1].

The items (i) and (ii) of this Corollary show that the classes C(ρn) are unitarily invariant,
and stable under the restriction to an invariant closed subspace. The item (iv) is a generalization
of a known property of direct sums of operators in the class C(ρ). Items (i), (ii) and (v) show
that, under the condition of Corollary 1.2.16, the radius w(ρn) is an admissible radius in the
terminology of [BC02, Definition 1.1]. Thus, all the results proved in [BC02] for admissible radii

are valid for w(ρn) when lim infn(|ρn|
1
n ) > 0. In particular, the following result is true.

Corollary 1.2.17. — Let T ∈ L(H), with ‖T‖ ≤ 1 and Tn = 0 for some n ≥ 2. Then, for
each polynomial P ∈ C[X], we have

w(ρn)(P (T )) ≤ w(ρn)(P (Sn)).

Here Sn is the nilpotent Jordan cell on Cn

Sn =


0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0


Some other consequences of the condition lim infn(|ρn|

1
n ) > 0 are proved in the next Propo-

sition.

Proposition 1.2.18. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. The following assertions

are true:

(i) We have

w(ρn)(I) = min({r ≥ lim inf
n

(|ρn|
1
n )−1: f(ρn)(D(0,

1

r
)) ⊂ Re≥−1});

(ii) For any T ∈ L(H), we have w(ρn)(T ) ≥ r(T )w(ρn)(I);

(iii) If T is normal, then w(ρn)(T ) = ‖T‖w(ρn)(I).

Proof. (i) Take u = w(ρn)(I) such that I
u ∈ C(ρn). We have r( Iu) ≤ lim infn(|ρn|

1
n ), so 1

u is no

greater than the convergence radius of f(ρn). For any z ∈ D, we have f(ρn)(z
I
u) = f(ρn)(

z
u)I.

Thus, I + Re(f(ρn)(z
I
u)) ≥ 0 for any z ∈ D if and only if f(ρn)(D(0, 1

u)) ∈ Re≥−1.
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- (ii) Let T ∈ L(H). There is nothing to prove if T = 0 or r(T ) = 0. Otherwise, let u = w(ρn)(T )

be such that T
u ∈ C(ρn) (cf. Lemma 1.2.12). Since I + Re(f(ρn)(z

T
u )) ≥ 0, the spectrum of

I + f(ρn)(z
T
u ) lies in Re≥0. This spectrum is the set {1 + f(ρn)(zw), w ∈ σ(Tu )}. The union of

these spectra, when z describes D, is {1 + f(ρn)(w), |w| < r(T )
u }. Since r(T )

u > 0, we obtain from
item (i) that u

r(T ) ≥ w(ρn)(I). Hence w(ρn)(T ) ≥ r(T )w(ρn)(I).

- (iii) Let T be a normal operator with T 6= 0. For u = ‖T‖.w(ρn)(I), we have

r(
T

u
) =
‖T‖
u

=
1

w(ρn)(I)
≤ lim inf

n
(|ρn|

1
n ).

Thus, we obtain that

⋃
z∈D

σ(I + f(ρn)(z
T

u
)) = {1 + f(ρn)(w), |w| < 1

w(ρn)(I)
}.

Item (i) of this Proposition tells us that this set is included in Re≥0. As T is normal, I+f(ρn)(z
T
u )

is also normal, so

W (I + f(ρn)(z
T

u
)) ⊂ Hull(σ(I + f(ρn)(z

T

u
))) ⊂ Re≥0, ∀z ∈ D.

Hence, I + Re(f(ρn)(z
T
u )) ≥ 0, and T

u ∈ C(ρn). By Lemma 1.2.12, we then have

w(ρn)(T ) ≤ u = ‖T‖w(ρn)(I).

The inequality of item (ii) provides the desired equality.

Remark 1.2.19. Since we also have

w(ρn)(I) ≥ 1

lim infn(|ρn|
1
n )
,

the inequality in Proposition 1.2.18 is better than the last one of Lemma 1.2.12. Thus, if there
is T such that w(ρn)(T ) = r(T )

lim infn(|ρn|
1
n )

, the same must be true for the identity operator I. In

the case when ρn = ρ, ρ > 0, this can only happen when ρ ≥ 1.

1.3 Classes C(ρ) for ρ 6= 0

In this section, we will focus on the case where ρn = ρ, for some ρ ∈ C∗. This is an intermediate
class between the classical case considered by Sz.-Nagy and Foias (classes Cτ for τ > 0) and
the general C(ρn)-classes. Thus the obtained results are already known when ρ > 0, but the
generalization to the case ρ ∈ C∗ seems to be new. Nevertheless, we acknowledge the influence
of [SNBFK10,AL10,AN73,AO76] for the results of this section. The results obtained here will
turn out to be useful when we will look again at C(ρn)-classes in the next section.



40 CHAPTER 1. Classes C(ρn)

1.3.A Some characterizations.

Lemma 1.3.1. — Let ρ 6= 0 and ρn = ρ, ∀n ≥ 1. Let T ∈ L(H).
The following are equivalent:

(i) T ∈ C(ρ)(H);

(ii) r(T ) ≤ 1 and Re((1− 2
ρ)I + 2

ρ(I − zT )−1) ≥ 0, ∀z ∈ D;

(iii) r(T ) ≤ 1 and Re(2
ρ(I − zT )) + Re(1− 2

ρ)(I − zT )∗(I − zT ) ≥ 0, ∀z ∈ D;

(iv) Re(2
ρ(I − zT )) + Re(1− 2

ρ)(I − zT )∗(I − zT ) ≥ 0, ∀z ∈ D.

Proof. (i)⇔ (ii) We have lim infn(|ρn|
1
n ) = 1. When r(T ) ≤ 1, for z ∈ D, we have

I +
∑
n≥1

2

ρ
(zT )n = (1− 2

ρ
)I +

2

ρ
(I − zT )−1.

Apply now Proposition 1.2.6.
- (ii)⇔ (iii) We will use several times the known fact that for A,B ∈ L(H), with A invertible,

Re(B) ≥ 0⇔ Re(A∗BA) ≥ 0.

We obtain the equivalence (ii)⇔ (iii) by choosing

A = (I − zT ), B = (1− 2

ρ
)I +

2

ρ
(I − zT )−1

and by rearranging the expression, using that (I−zT )∗(I−zT ) is a positive self-adjoint operator
and Re(A∗) = Re(A).
- (iii)⇒ (iv) is immediate.
- (iv) ⇒ (iii) Suppose that r(T ) > 1. Thus, there exists γ ∈ C such that |γ| = r(T ) > 1, and
there is a sequence (hn) of vectors hn ∈ H such that ‖hn‖ = 1 and ‖(T −γI)hn‖ → 0 as n→∞.
Let 0 < ε < |γ| − 1 and set gn := (T − γI)hn. Let also η = εeit, for some t that will be chosen

later on. Let z := 1+η
γ . Then, |z| < 1+(|γ|−1)

|γ| = 1. Furthermore, we have

(I − zT )hn = (I − 1

γ
T )hn −

η

γ
Thn + ηhn − ηhn = −zgn − ηhn.

Thus, we obtain

Re(〈[ 2
ρ

(I − zT ) + (1− 2

ρ
)(I − zT )∗(I − zT )]hn, hn〉) ≥ 0

⇒Re(
2

ρ
[−η.‖hn‖2 − 〈zgn, hn〉] + (1− 2

ρ
)‖(I − zT )hn‖2) ≥ 0

⇒Re(
2

ρ
[−η − 〈zgn, hn〉] + (1− 2

ρ
)[|η|2 + 2Re(〈zgn, hn〉) + |z|2‖gn‖2]) ≥ 0

Hence, by taking the limit as n→ +∞, we obtain

Re(
2

ρ
(−η) + (1− 2

ρ
)|η|2) = Re(

−2

ρ
eit)ε+ Re(1− 2

ρ
)ε2 ≥ 0.
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We can then choose t ∈ R depending on arg(ρ) and sgn(Re(1− 2
ρ)) to obtain

either
−2

|ρ|
ε+ |Re(1− 2

ρ
)|ε2 ≥ 0 or

2

|ρ|
ε− |Re(1− 2

ρ
)|ε2 ≥ 0.

But since −2
|ρ| < 0, there is some ε > 0 such that −2

|ρ| + |Re(1− 2
ρ)|ε is strictly negative, which is

impossible. This contradiction shows that r(T ) ≤ 1, which concludes the proof.

Lemma 1.3.2. — Let ρ 6= 0 and α > 0 be two scalars. Let T ∈ L(H).
The following assertions are equivalent:

(i) w(ρ)(T ) ≤ α;

(ii) r(T ) ≤ α, ((ρ− 1)zT − ραI) is invertible and ‖(zT )((ρ− 1)zT − ραI)−1‖ ≤ 1, ∀z ∈ D;

(iii) r(T ) ≤ α, ((ρ− 1)T − ρwI) is invertible and ‖T ((ρ− 1)T − ρwI)−1‖ ≤ 1, ∀|w| > α.

Proof. (i) ⇒ (ii) When replacing T with T
α , all expressions in (i) and (ii) are reduced to the

case α = 1. Now, as w(ρn)(T ) ≤ α = 1, we use Lemma 1.3.1 to have r(T ) ≤ 1 and

Re((1− 2

ρ
)I +

2

ρ
(I − zT )−1) ≥ 0, ∀z ∈ D.

We denote Cz := (1− 2
ρ)I + 2

ρ(I − zT )−1, for z ∈ D. We recall that since Re(Cz) ≥ 0, we have
(Cz + I) invertible and

‖(Cz − I)(Cz + I)−1‖ ≤ 1.

A computation gives

Cz − I =
2

ρ
zT (I − zT )−1 and Cz + I = [2I + (

2

ρ
− 2)zT ](I − zT )−1.

Thus,

(Cz− I)(Cz + I)−1 =
1

ρ
zT [I + (

1

ρ
− 1)zT ]−1 = zT [ρI + (1− ρ)zT ]−1 = −zT [−ρI + (ρ− 1)zT ]−1.

This means that all the conditions of (ii) are fulfilled.
- (ii) ⇒ (i) We again reduce to the case α = 1. We denote Dz = zT [ρI − (ρ − 1)zT ]−1, for
z ∈ D. Since ‖Dz‖ ≤ 1, we have Dz ∈ C(1) so r(Dz) ≤ 1 and Re((I + wDz)(I − wDz)

−1) ≥ 0,
for all w ∈ D. We obtain:

I + wDz = [ρI + (w + 1− ρ)zT ][ρI − (ρ− 1)zT ]−1

and
I − wDz = [ρI + (−w + 1− ρ)zT ][ρI − (ρ− 1)zT ]−1.

Thus,
(I + wDz)(I − wDz)

−1 = [ρI + (w + 1− ρ)zT ][ρI + (−w + 1− ρ)zT ]−1.

Since r(T ) ≤ 1, (I− zT ) is invertible so [ρI+ (−w+ 1−ρ)zT ]−1 converges to 1
ρ(I− zT )−1 when

w tends to 1, by continuity of the inverse map. Thus,

lim
w→1, w∈D

(I + wDz)(I − wDz)
−1 =

1

ρ
(ρI + (2− ρ)zT )(I − zT )−1 = Cz.

Hence, Re(Cz) ≥ 0 for all z ∈ D and r(T ) ≤ 1, so T ∈ C(ρ).
- (ii) ⇔ (iii) For z 6= 0, we take w = α

z to obtain the result. The converse gives the result for
all z ∈ D, z 6= 0, which extends to D by continuity.
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1.3.B Reducing to the case ρ > 0.

With this characterization of C(ρ) classes, we are now able to obtain the main relationship
between (ρ)-radii and (τ)-radii, ρ ∈ C∗, τ > 0. This relationship extends the ”symmetric”
relationship

τw(τ)(T ) = (2− τ)w(τ)(T ), 0 < τ < 2,

that was already known (see [AN73, Thm.3]).

Proposition 1.3.3. — Let ρ 6= 0 and α > 0 be two scalars. Let T ∈ L(H).
The following assertions are equivalent:

(i) w(ρ)(T ) ≤ α;

(ii) ((ρ− 1)zT − ραI) is invertible and ‖(zT )((ρ− 1)zT − ραI)−1‖ ≤ 1, ∀z ∈ D;

(iii) ((ρ− 1)T − ρwI) is invertible and ‖T ((ρ− 1)T − ρwI)−1‖ ≤ 1, ∀|w| > α;

(iv) ‖T (h)‖ ≤ ‖(ρ− 1)T (h)− ρwh‖, ∀h ∈ H, ∀|w| > α.

Furthermore, we have:
|ρ|w(ρ)(T ) = (1 + |ρ− 1|)w1+|ρ−1|(T ). (1.3.1)

Hence, the map ρ ∈ C∗ 7→ |ρ|w(ρ)(T ) is constant on circles of center 1, is continuous on C∗ and
can be extended continuously to 2w(2)(T ) at 0.

Proof. Using the results of Lemma 1.3.2, we can see that conditions (ii) and (iii) are equivalent
and that condition (i) implies condition (ii). We can also see that the implication (iii) ⇒ (iv)
is immediate.
- (iv) ⇒ (iii) Let w ∈ C with |w| > α. We need to show that ((ρ − 1)T − ρwI) is invertible.
If ρ = 1 this operator is equal to −ρwI which is invertible. Suppose that ρ 6= 1. Let λ ∈ σ(T )
such that |λ| = r(T ). We then have hn ∈ H such that ‖hn‖ = 1 and T (hn) − λhn →n→+∞ 0.
Then,

0 ≤ |‖(ρ− 1)T (hn)− ρwhn‖ − | − ρw + (ρ− 1)λ| |
= |‖(ρ− 1)T (hn)− ρwhn‖ − ‖ − ρwhn + (ρ− 1)λhn‖|
≤ ‖(ρ− 1)T (hn)− (ρ− 1)λhn‖ →n→+∞ 0.

Condition (iv) gives us ‖T (hn)‖ ≤ ‖(ρ− 1)T (hn)− ρwhn‖. As the left-hand term converges to
|λ| and as the right-hand term converges to | − ρw + (ρ− 1)λ|, we obtain

r(T ) = |λ| ≤ |(ρ− 1)λ− ρw|, ∀w ∈ C, |w| > α.

Thus, we cannot have r(T ) ≥ |ρ|α
|ρ−1| > 0 as the previous inequality would imply

r(T ) = |λ| ≤ inf{|(ρ− 1)λ− ρw|, |w| > α} = 0,

which contradicts the fact that r(T ) > 0. Hence, we have r(T ) < |ρ|α
|ρ−1| , so ((ρ − 1)T − ρwI) is

invertible for every w with |w| > α.
- (ii)⇒ (i) We only need to show that item (ii) implies r(T ) ≤ α. We can reduce the proof to
the case α = 1 by considering T

α instead of T . We also recall that if ρ > 0, the result is valid
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(see [Sta82, Thm.1] or [Dav70] for a proof). Let ρ 6= 0. We denote S = 1+|ρ−1|
|ρ| T . Suppose

that [(ρ − 1)zT − ρI]−1 exists and that ‖zT [(ρ − 1)zT − ρI]−1‖ ≤ 1, for all z ∈ D. With
ρ− 1 = |ρ− 1|eit, ρ = |ρ|eis and w = z.e−is+it we then have

‖zT [(ρ− 1)zT − ρI]−1‖ ≤ 1

⇔‖zT [|ρ− 1|eitzT − |ρ|eisI]−1‖ ≤ 1

⇔‖ze−iseite−itT [|ρ− 1|ze−iseitT − |ρ|I]−1‖ ≤ 1.

⇔|e−it|‖wT [|ρ− 1|wT − |ρ|I]−1‖ ≤ 1

⇔‖wT [(1 + |ρ− 1| − 1)wT − |ρ|I]−1‖ ≤ 1

⇔‖w1 + |ρ− 1|
|ρ|

T [(1 + |ρ− 1| − 1)w
1 + |ρ− 1|
|ρ|

T − (1 + |ρ− 1|)I]−1‖ ≤ 1

⇔‖wS[(1 + |ρ− 1| − 1)wS − (1 + |ρ− 1|)I]−1‖ ≤ 1.

Since w describes D when z does, this is true for all w ∈ D. Therefore w(1+|ρ−1|)(S) ≤ 1 as
1 + |ρ− 1| > 0 (see the beginning of the proof and Lemma 1.3.2). Thus, r(S) ≤ 1, which implies

r(T ) ≤ |ρ|
1+|ρ−1| ≤ 1.

Now that we have showed that the condition about the spectral radius of T is not necessary,
we can see that the equivalences in the previous computations give

w(ρ)(T ) ≤ 1 ⇔ w(1+|ρ−1|)

(
1 + |ρ− 1|
|ρ|

T

)
≤ 1.

By homogeneity of the (ρn)-radii, this is equivalent to

|ρ|w(ρ)(T ) = (1 + |ρ− 1|)w(1+|ρ−1|)(T ).

- The properties of the map ρ ∈ C∗ 7→ |ρ|w(ρ)(T ) can now be obtained from its restriction to
[1,+∞[, which is known to be continuous (see [AN73, Cor.2] for example ).

Equation (1.3.1) gives a simple geometric understanding of a formula that was previously
known only for real numbers ρ between 0 and 2. It also implies the following relationship between
Cρ classes.

Corollary 1.3.4. — We have

C(ρ) =
1 + |ρ− 1|
|ρ|

C(1+|ρ−1|).

We conclude that complex (ρ)-radii of an operator T can be expressed in terms of the real
positive ones.

Corollary 1.3.5. — Let ρ 6= 0 and let T ∈ L(H). We have:

(i) w(ρ)(I) = 1+|ρ−1|
|ρ| , ∀ρ 6= 0;

(ii) If T is normal, then w(ρ)(T ) = ‖T‖1+|ρ−1|
|ρ| ;

(iii) If T 2 = 0, then w(ρn)(T ) = w(ρ1)(T ) = 2w(T )
|ρ1| = ‖T‖

|ρ1| ;
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(iv) If T 2 = bI, b ∈ C, then |ρ|w(ρ)(T ) = w(T ) +
√
w2(T )2 + |b|(|ρ− 1|2 − 1);

(v) If T 2 = aT , a ∈ C, then |ρ|wρ(T ) = 2w(T ) + |a|(|ρ− 1| − 1) = ‖T‖+ |a||ρ− 1|.

Proof. - (i) It is known that w(ρ)(I) = 1 when 1 ≤ ρ. The relationship of Proposition 1.3.3 gives
the result.
- (ii) When T is normal, we have w(ρn)(T ) = ‖T‖w(ρn)(I).

- (iii) If T 2 = 0, then T ∈ C(ρn) if and only if I + Re( 2
ρ1
zT ) ≥ 0 for all z ∈ D. By Corollary

1.2.7, this is equivalent to T
|ρ1| ∈ C(1), to 2T

|ρ1| ∈ C(2) and to T ∈ C(ρ1). Thus, Lemma 1.2.12 and
the following facts

w(2)(T ) = w(T ) and w(1)(T ) = ‖T‖

imply that

w(ρn)(T ) = w(ρ1)(T ) =
2w(T )

|ρ1|
=
‖T‖
|ρ1|

.

- (iv), (v) We can reduce these cases to T 2 = I (respectively T 2 = T ) by taking δ to be a square
root of b (respectively a) and looking at T

δ (respectively T
δ2 ). Then, [AN73, Theorem 6] gives

the result when ρ > 0, and we extend it to ρ ∈ C∗ by using Proposition 1.3.3.

1.3.C Computations and some applications.

For the next auxiliary result we need some notation. For an operator T acting on H and for
h ∈ H, define

Vh := Span(Tn(h), n ≥ 0) and Th := T |Vh ∈ L(Vh).

We recall here that for a family S of vectors, Span(S) is the smallest vector space containing S,
so it may not be closed.

Lemma 1.3.6. — Let T ∈ L(H). Let ρ 6= 0. Then, with the previous notation, we have

w(ρ)(T ) = sup
h∈H

(w(ρ)(Th)).

If we also have P (T ) = 0 for some P ∈ C[X] with deg(P ) = n, then Th can be identified as
some matrix S ∈ Mn(C) such that P (S) = 0, and the computation of w(ρ)(Th) can be obtained
from the computation of w(ρ)(S).

Proof.
Let h ∈ H. We already proved in Corollary 1.2.16 that w(ρ)(Th) ≤ w(ρ)(T ). Conversely, for
1
u = sup

h∈H
(w(ρ)(Th)), (I − z Tu ) is invertible as (I − z Thu ) is invertible for all h ∈ H and we have

Re(〈(I+f(ρ)(z
T
u ))g, g〉) ≥ 0 for all g ∈ H. Thus T

u ∈ C(ρ), which implies sup
h∈H

(w(ρ)(Th)) ≥ w(ρ)(T )

and concludes the proof.

Lemma 1.3.7. Let ρ ≥ 1. For a, b, c ∈ C, denote T =

(
a c
0 b

)
. Then,

(i) wρ(T ) is the largest r > 0 such that there exists t ∈ [0, 2π[ for which we have

|c|2r2 = [(ρ− 2)|a|2 − 2(ρ− 1)rRe(aeit) + ρr2][(ρ− 2)|b|2 − 2(ρ− 1)rRe(beit) + ρr2].
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(ii) for ρ = 2, we have

w2(T ) = max
t∈[0,2π[

Re((a+ b)eit) +
√

Re((a− b)eit)2 + |c|2
2

.

Proof. (i) Let ρ ≥ 1. We can see that the map ‖w 7→ T [(ρ−1)T−ρwI]−1‖ satisfies the maximum

principle as a sub-harmonic map on {w: |w| > r(T )(ρ−1)
ρ }. Hence, using equivalence (i) ⇔ (iii)

of Proposition 1.3.3 for α = wρ(T ) tells us that wρ(T ) is the modulus of the largest in modulus

z such that ‖T [(ρ− 1)T − ρzI]−1‖ = 1, with |z| > r(T )(ρ−1)
ρ .

Let z ∈ C such that |z| > r(T )(ρ−1)
ρ ≥ r(T )(ρ− 1). Then (ρ− 1)T − zI is invertible. By denoting

Sz = [(ρ− 1)T − ρzI]−1, we have

Sz =

(
1

(ρ−1)a−ρz
−c(ρ−1)

((ρ−1)a−ρz)((ρ−1)b−ρz)
0 1

(ρ−1)b−ρz

)
.

Since the matrix (TSz)(TSz)
∗ is self-adjoint, its norm is one of its eigenvalues and we have

‖(TSz)(TSz)∗‖ = ‖TSz‖2. Hence, we can see that

‖TSz‖ = 1 ⇔ ‖(TSz)(TSz)∗‖ = 1 ⇔ Tr((TSz)(TSz)
∗) = 1 + |det(TSz)|2.

Writing the coefficients in the right-hand side equation, and multiplying each side by

1

|det(Sz)|2
= |((ρ− 1)a− ρz)((ρ− 1)b− ρz)|2

gives the following equation:

|a|2|(ρ− 1)b− ρz|2 + |b|2|(ρ− 1)a− ρz|2 + |c|2ρ2|z|2 = |((ρ− 1)a− ρz)((ρ− 1)b− ρz)|2 + |ab|2.

Thus wρ(T ) is the modulus of the largest in modulus z that satisfies this equation.
Write z = re−it, with r > 0. We then have

|a|2|(ρ− 1)b− ρz|2 + |b|2|(ρ− 1)a− ρz|2 + |c|2ρ2|z|2 = |((ρ− 1)a− z)(ρ− 1)b− z)|2 + |ab|2

⇔|c|2ρ2r2 = (|(ρ− 1)b− ρz|2 − |b|2)(|(ρ− 1)a− ρz|2 − |a|2)

⇔|c|2ρ2r2 = [|b|2ρ(ρ− 2)− 2ρ(ρ− 1)rRe(beit) + ρ2r2][|a|2ρ(ρ− 2)− 2ρ(ρ− 1)rRe(aeit) + ρ2r2]

⇔|c|2r2 = [|b|2(ρ− 2)− 2(ρ− 1)rRe(beit) + ρr2][|a|2(ρ− 2)− 2(ρ− 1)rRe(aeit) + ρr2],

which gives the desired equation.
- (ii) Let ρ = 2, r > 0 and t ∈ [0, 2π[. We have

|c|2r2 = [|b|2(ρ− 2)− 2(ρ− 1)rRe(beit) + ρr2][|a|2(ρ− 2)− 2(ρ− 1)rRe(aeit) + ρr2]

⇔|c|2r2 = (−2rRe(beit) + 2r2)(−2rRe(aeit) + 2r2)

⇔|c|2 = 4(−Re(beit) + r)(−Re(aeit) + r)

⇔0 = 4r2 − 4rRe((a+ b)eit) + 4Re(aeit)Re(beit)− |c|2.

The discriminant of this polynomial in r is equal to

∆ = 16(Re(aeit) + Re(beit))2 + 4|c|2 − 16Re(aeit)Re(beit)

= 16(Re((a− b)eit)2 + |c|2).
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As this discriminant is always positive, the largest root of this polynomial is equal to

rt =
4Re((a+ b)eit) +

√
16(Re((a− b)eit)2 + |c|2)

8

=
Re((a+ b)eit) +

√
Re((a− b)eit)2 + |c|2
2

.

Using item (i) tells us that w2(T ) is then equal to the largest possible rt, that is w2(T ) =
supt∈[0,2π[(rt), which concludes the proof.

Remark 1.3.8. — The idea at the beginning of the proof of Lemma 1.3.7 comes from [AN73],
who used it to compute wρ(T ) when a = 0 and when b = −a.
Similar inequalities appear in Theorem 3 and Corollary 7 of [CZ07]. These results give a condi-
tion on c in order to have wρ(T ) ≤ 1. Hence, by looking at every u > 0 such that wρ(

T
u ) ≤ 1,

we can use the inequality of Theorem 3 to obtain the equation in item (i) of Lemma 1.3.7. The
inequalities in Corollary 7 allow us to obtain similar equations while removing the parameter t
in the cases |a| = |b| and ab ∈ R. In both cases wρ(T ) can still only be expressed implicitly as
the largest root of a degree 4 polynomial.

In the following proposition, we compute the value of wρ(T ) depending on w2(T ) in the case
a = b.

Proposition 1.3.9. Let H be a Hilbert space. Let a ∈ C and let T ∈ L(H) such that (T−aI)2 =
0. Let ρ ∈ C∗. Then,

(i) For ρ ∈ [1,+∞[, we have

ρwρ(T ) = w2(T ) + |a|(ρ− 2) +
√

(w2(T ) + |a|(ρ− 2))2 − |a|2ρ(ρ− 2).

(ii) If T 6= 0, then

‖T‖ = w2(T )− |a|+
√

(w2(T )− |a|)2 + |a|2 and w2(T ) = |a|+ ‖T‖
2 − |a|2

2‖T‖
.

(iii) For ρ 6= 0, we have

|ρ|wρ(T ) = w2(T ) + |a|(|ρ− 1| − 1) +
√

(w2(T ) + |a|(|ρ− 1| − 1))2 − |a|2(|ρ− 1|2 − 1).

Proof. (i) Let ρ ∈ [1,+∞[. Let h ∈ H that is non-zero. Since T is an algebraic operator with a
minimal polynomial of degree at most 2, the subspace Vh = Span(Tn(h), n ≥ 0) has a dimension
of 1 or 2. Denote Th := T |Vh .
If dim(Vh) = 1 we then have T (h) = ah, so Th = aI and wρ(Th) = |a|. Hence, we have

ρwρ(Th) = |a|ρ = |a|(ρ− 1) + |a|

= |a|(ρ− 1) +
√
|a|2(ρ− 1)2 − ρ(ρ− 2)

= w2(Th) + |a|(ρ− 2) +
√

(w2(Th) + |a|(ρ− 2))2 − |a|2ρ(ρ− 2).

If dim(Vh) = 2, then up to taking a suitable orthonormal basis of Vh, the operator Th can be

represented as the matrix M =

(
a c
0 a

)
, for some c ∈ C that depends on h.
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Since we have wρ(Th) = wρ(M), we can use Lemma 1.3.7 to compute wρ(Th).
According to this lemma, wρ(M) is the largest r > 0 such that there exists t ∈ [0, 2π[ for which
we have

|c|2r2 = [(ρ− 2)|a|2 − 2(ρ− 1)rRe(aeit) + ρr2][(ρ− 2)|a|2 − 2(ρ− 1)rRe(beit) + ρr2].

Let r > 0 and t ∈ [0, 2π[. We have

|c|2r2 = [(ρ− 2)|a|2 − 2(ρ− 1)rRe(aeit) + ρr2]2

⇔0 = [(ρ− 2)|a|2 − 2(ρ− 1)rRe(aeit) + ρr2 − |c|r][(ρ− 2)|a|2 − 2(ρ− 1)rRe(aeit) + ρr2 + |c|r]
⇔0 = (ρ− 2)|a|2 − 2(ρ− 1)rRe(aeit) + ρr2 ± |c|r

The discriminant of such a polynomial in r is

∆ = (−2(ρ− 1)Re(aeit)± |c|)2 − 4|a|2ρ(ρ− 2).

Let t0 such that Re(aeit0) = |a|. Since we have −|a| ≤ Re(aeit) ≤ |a|, we can see that

inf
t

(−2(ρ− 1)Re(aeit)− |c|) = −(2(ρ− 1)|a|+ |c|),

sup
t

(−2(ρ− 1)Re(aeit)− |c|)2 = (2(ρ− 1)|a|+ |c|)2,

and that these extrema are both attained when t = t0.
When t = t0 we have

∆ = (2(ρ− 1)a|+ |c|)2 − 4|a|2ρ(ρ− 2)

= |a|2(4(ρ− 1)2 − 4ρ(ρ− 2)) + 4(ρ− 1)|a||c|+ |c|2

= 4|a|2 + 4(ρ− 1)|a||c|+ |c|2 ≥ 0,

so the polynomial we are considering possesses real roots in this situation.
As we also have

−2(ρ− 1)Re(aeit) + |c| ≥ −2(ρ− 1)|a| − |c|,
(−2(ρ− 1)Re(aeit) + |c|)2 ≤ (2(ρ− 1)|a|+ |c|)2,

we can see that the largest root for this family of polynomials is then

r′ =
2(ρ− 1)|a|+ |c|+

√
(2(ρ− 1)|a|+ |c|)2 − 4|a|2ρ(ρ− 2)

2ρ
.

Therefore, item (i) of Lemma 1.3.7 tells us that

wρ(Th) =
2(ρ− 1)a|+ |c|+

√
(2(ρ− 1)a|+ |c|)2 − 4|a|2ρ(ρ− 2)

2ρ

⇒ρwρ(Th) = (ρ− 1)|a|+ |c|
2

+

√
(2(ρ− 1)|a|+ |c|)2 − 4|a|2ρ(ρ− 2)

2
.

For ρ = 2 we obtain

w2(Th) =
2|a|+ |c|+

√
(|c|+ 2|a|)2

4
= |a|+ |c|

2
.
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For ρ = 1 we obtain

‖T‖ =
|c|+

√
|c|2 + 4|a|2
2

.

As we have |c| = 2(w2(Th)− |a|), we can now give an expression wρ(Th) depending on w2(Th):

ρwρ(Th) = (ρ− 1)|a|+ |c|
2

+

√
(2(ρ− 1)|a|+ |c|)2 − 4|a|2ρ(ρ− 2)

2

⇒ρwρ(Th) = (ρ− 1)|a|+ w2(Th)− |a|+
√

(2(ρ− 1)|a|+ 2(w2(Th)− |a|))2 − 4|a|2ρ(ρ− 2)

2

⇒ρwρ(Th) = (ρ− 2)|a|+ w2(Th) +

√
4((ρ− 2)|a|+ w2(Th))2 − 4|a|2ρ(ρ− 2)

2

⇒ρwρ(Th) = (ρ− 2)|a|+ w2(Th) +
√

((ρ− 2)|a|+ w2(Th))2 − 4|a|2ρ(ρ− 2).

Hence, if we denote f : x 7→ (ρ − 2)|a| + x +
√

(x+ |a|(ρ− 1))2 − |a|2ρ(ρ− 2), we proved that
for every h ∈ H that is non-zero, we have ρwρ(Th) = f(w2(Th)).
For every x ≥ |a| we have

(x+ |a|(ρ− 1))2 − |a|2ρ(ρ− 2) ≥ |a|2((ρ− 1)2 − ρ(ρ− 2)) = |a|2 ≥ 0,

so we can see that f is well-defined on [|a|,+∞[, and that f is continuous and increasing on
[|a|,+∞[. As we have w2(Th) ≥ |a| for every h ∈ H \ {0}, using Lemma 1.3.6 gives us

ρwρ(T ) = sup
h∈H

ρwρ(Th) = sup
h∈H

f(w2(Th)) = f(sup
h∈H

w2(Th)) = f(w2(T )),

which gives the desired formula.
- (ii) We already obtained in item (i) that ‖T‖ = w2(T )−|a|+

√
(w2(T )− |a|)2 + |a|2. Suppose

now that T 6= 0. We have

‖T‖ − w2(T ) + |a| =
√

(w2(T )− |a|)2 + |a|2

⇒(‖T‖ − w2(T ) + |a|)2 = (w2(T )− |a|)2 + |a|2

⇒‖T‖2 + 2‖T‖(|a| − w2(T )) + (|a| − w2(T ))2 = (w2(T )− |a|)2 + |a|2

⇒‖T‖2 + 2‖T‖|a| − 2‖T‖w2(T ) = |a|2

⇒w2(T ) =
‖T‖2 + 2|a|‖T‖ − |a|2

2‖T‖
= |a|+ ‖T‖

2 − |a|2

2‖T‖
,

which gives the desired result.
- (iii) Let ρ 6= 0. Using Proposition 1.3.3 we obtain

|ρ|wρ(T ) = (1 + |ρ− 1|)w1+|ρ−1|(T )

= w2(T ) + |a|(|ρ− 1| − 1)

+
√

(w2(T ) + |a|(|ρ− 1| − 1))2 − |a|2(|ρ− 1|+ 1)(|ρ− 1| − 1)

= w2(T ) + |a|(|ρ− 1| − 1) +
√

(w2(T ) + |a|(|ρ− 1| − 1))2 − |a|2(|ρ− 1|2 − 1),

which concludes the proof.
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Remark 1.3.10. For H a Hilbert space, ρ ∈ [1,+∞[, and T ∈ L(H) such that T is the zero of a
polynomial P of degree 2, we do not know yet a general formula that gives an explicit expression
of wρ(T ) depending on w2(T ) and on the coefficients of P . We can see that the formulas we
obtained in Corollary 1.3.5 and Proposition 1.3.9 give wρ(T ) as the zero of a degree 2 (or 1)
polynomial depending on w2(T ) and on the coefficients of P . Indeed:

• If T 2 + cT + 0 = 0, then ρwρ(T ) = w2(T ) + |c|(ρ− 2) +
√
w2(T )2 + 0;

• If T 2 + 0 + bI = 0, then ρw(ρ)(T ) = w2(T ) + 0 +
√
w2(T )2 + |b|ρ(ρ− 2);

• If T 2+2aT+a2I = 0, then ρwρ(T ) = w2(T )+|a|(ρ−2)+
√

(w2(T ) + |a|(ρ− 2))2 − |a|2ρ(ρ− 2).

Using Proposition 1.3.3, we can also generalize some results of [AL10] about characterizing
unitary operators through their ρ-radii.

Proposition 1.3.11. — Let T ∈ L(H) be invertible. Then

(i) T is unitary if and only if there exists ρ ∈ C∗ such that

w(ρ)(T ) ≤ w(ρ)(I) and w(ρ)(T
−1) ≤ w(ρ)(I).

(ii) T = ‖T‖U for U unitary if and only if there exists ρ ∈ C∗ and m > 0 such that

w(ρ)(T
−m)

w(ρ)(I)
=

(
w(ρ)(T )

w(ρ)(I)

)−m
.

Proof. - (i) The formula of Proposition 1.3.3 can be rewritten as w(ρ)(S) = w(ρ)(I)w(1+|ρ−1|)(S).
It allows us to obtain the same relationship between T and I for w(1+|ρ−1|), and we can then
apply [AL10, Theorem 2.3] to get the result.
- (ii) The formula of Proposition 1.3.3 allows us to obtain the same relationship for w(1+|ρ−1|),
which simplifies into:

w1+|ρ−1|(T
−m) = w1+|ρ−1|(T )−m.

We can now apply [AL10, Theorem 1.1], and the proof is complete.

Proposition 1.3.12. — Let ρ 6= 0 be a complex number. Then

(i) The ρ-radius w(ρ)(·) is a norm on L(H) if and only if |ρ− 1| ≤ 1;

(ii) If |ρ− 1| > 1, then, for all operators T1 and T2 in L(H), we have

wρ(T1 + T2) ≤ (1 + |ρ− 1|) (wρ(T1) + wρ(T2)) .

Proof. For two operators T1, T2, we have w(ρ)(T1 + T2) ≤ C
(
w(ρ)(T1) + w(ρ)(T2)

)
if and only if

the same is true for w(1+|ρ−1|). It is known [SNBFK10, AO76] that for τ > 0, w(τ) is a norm
if and only if 0 < τ ≤ 2. We conclude that w(ρ)(·) is a norm if and only if ρ lies in the closed
circle of center 1 and radius 1. Moreover, when τ > 2, w(τ) is a quasi-norm with multiplicative
constant (also called the modulus of concavity of the quasi-norm [Kal03]) lower or equal to τ .
We thus obtain (ii).



50 CHAPTER 1. Classes C(ρn)

For the next proposition we recall that for r > 0 the disc algebra over the disc D(0, r),
A(D(0, r)), is the set of holomorphic functions on D(0, r) that are continuous on D(0, r).

Proposition 1.3.13. — Let ρ 6= 0 be a complex number. Let T ∈ C(ρ). Then the functional
calculus map f 7→ f(T ) that sends a polynomial f into f(T ) can be extended continuously to the
disk algebra A(D(0, 1

w(ρ)(I)
)). It is a morphism of Banach algebras, and satisfies

‖f(T )‖ ≤ (1 + |ρ− 1|)‖f‖L∞(D(0, 1
w(ρ)(I)

)).

Furthermore, for f ∈ A(D(0, 1
w(ρ)(I)

)) such that f(0) = 0, we have

w(ρ)(f(T )) ≤ w(ρ)(I)‖f‖L∞(D(0, 1
w(ρ)(I)

)).

If f ∈ A(D) with f(0) = 0, we also have

w(ρ)(f(T )) ≤ ‖f‖L∞(D).

The constants in these three inequalities are optimal.

Proof. We notice first that T ∈ C(ρ) is equivalent to w(ρ)(T ) ≤ 1, which is equivalent to

w(1+|ρ−1|)(T ) ≤ |ρ|
1 + |ρ− 1|

=
1

w(ρ)(I)
≤ 1.

Hence, w(ρ)(I)T lies in C(1+|ρ−1|), so there exists a Hilbert space K and an unitary operator U
over K such that

(w(ρ)(I)T )n = (1 + |ρ− 1|)PHUn|H , ∀n ≥ 1.

Therefore, if we denote V := U
w(ρ)(I)

, for any polynomial P we get

P (T ) = PH [(1 + |ρ− 1|)P (V )− |ρ− 1|P (0)I]|H .

Since V is a normal operator with spectral radius 1
w(ρ)(I)

, we then have

‖P (T )‖ ≤ ‖(1 + |ρ− 1|)P (V )− |ρ− 1|P (0)I‖ ≤ ‖(1 + |ρ− 1|)P − |ρ− 1|P (0)‖L∞(D(0, 1
w(ρ)(I)

)).

As the polynomials are dense in the algebra A(D(0, 1
w(ρ)(I)

)), the morphism of algebras P 7→ P (T )

extends continuously on A(D(0, 1
w(ρ)(I)

)).

Let us estimate the norm of this map. For f in the algebra we denote g(z) := f( z
w(ρ)(I)

).

Hence, g ∈ A(D), and we have f(T ) = g(w(ρ)(I)T ). Applying a reformulation of Theorem 2 in
[AO75] by Ando and Okubo, we obtain

‖f(T )‖ = ‖g(w(ρ)(I)T )‖ ≤ max(1, 1 + |ρ− 1|)‖g‖L∞(D) = (1 + |ρ− 1|)‖f‖L∞(D(0, 1
w(ρ)(I)

)).

We will now prove the two remaining inequalities. The fact that V is normal implies that
f 7→ f(V ) is well defined and bounded on A(D(0, 1

w(ρ)(I)
)). Therefore

f(T ) = PH [(1 + |ρ− 1|)f(V )− |ρ− 1|f(0)I]|H , ∀f ∈ A(D(0,
1

w(ρ)(I)
)).
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We now suppose that f satisfies f(0) = 0. If f ≡ 0, then f(T ) = 0 and the statements are true.
Otherwise, up to dividing f by its norm, we may assume that ‖f‖L∞(D(0, 1

w(ρ)(I)
)) = 1. For a

fixed n ≥ 1, we get

f(T )n = fn(T ) = (1 + |ρ− 1|)PHfn(V )|H = (1 + |ρ− 1|)PHf(V )n|H .

As we have ‖f(V )‖ ≤ ‖f‖L∞(D(0, 1
w(ρ)(I)

)) = 1, the operator f(V ) lies in C(1) which in turn implies

that f(V ) can be dilated on a larger Hilbert space as follows

f(V )m = PKW
m|K , ∀m ≥ 1,

with W a suitable unitary operator. Combining the two dilations, we obtain

f(T )n = (1 + |ρ− 1|)PHWn|H , ∀n ≥ 1.

Therefore f(T ) lies in C(1+|ρ−1|), which is equivalent to w(1+|ρ−1|)(f(T )) ≤ 1. This inequality is in
turn equivalent to w(ρ)(f(T )) ≤ w(ρ)(I), which proves the second inequality of this Proposition.
Lastly, if f ∈ A(D) with f(0) = 0, we can use the Schwarz lemma to obtain

‖f‖L∞(D(0, 1
w(ρ)(I)

)) ≤
1

w(ρ)(I)
‖f‖L∞(D),

which in turn gives w(ρ)(f(T )) ≤ ‖f‖L∞(D).
For the optimality of these inequalities, let us take T such that T 2 = 0 and ‖T‖ = |ρ|, and
f(z) = z. We then have

w(ρ)(T ) =
‖T‖
|ρ|

= 1 = w(ρ)(I)‖f‖L∞(D(0, 1
w(ρ)(I)

)) = ‖f‖L∞(D)

and
‖f(T )‖ = |ρ| = (1 + |ρ− 1|)‖f‖L∞(D(0, 1

w(ρ)(I)
)).

The proof is complete.

When ρ does not lie in [1,+∞[, the algebra where the functional calculus is defined strictly
contains the disc algebra A(D). For 0 < ρ < 1, the norm of this map is then 2− ρ. This result
differs from [AO75, Theorem 2] as Ando and Okubo looked in [AO75] at the map f 7→ f(T ) on
A(D) and not on a larger algebra.

A generalization of classes C(ρn) to Banach spaces

The statements of Proposition 1.3.3 can be generalized to classes C(ρn) using the same ideas.

Proposition 1.3.14. Let T ∈ L(H). Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. The following

are equivalent:

(i) T ∈ C(ρn);

(ii) r(T ) ≤ lim infn(|ρn|
1
n ), 2I + f(ρn)(zT ) is invertible for every z ∈ D, and

‖f(ρn)(zT )(2I + f(ρn)(zT ))−1‖ ≤ 1, ∀z ∈ D;
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(iii) r(T ) ≤ lim infn(|ρn|
1
n ), 2I + f(ρn)(zT ) is invertible for every z ∈ D, and

‖f(ρn)(zT )(h)‖ ≤ ‖2h+ f(ρn)(zT )(h)‖, ∀h ∈ H, ∀z ∈ D;

(iv) r(T ) ≤ lim infn(|ρn|
1
n ), and

‖f(ρn)(zT )(h)‖ ≤ ‖2h+ f(ρn)(zT )(h)‖, ∀h ∈ H, ∀z ∈ D;

Proof. (i) ⇒ (ii) Let T ∈ C(ρn). We have r(T ) ≤ lim infn(|ρn|
1
n ) and Re(I + f(ρn)(zT )) ≥ 0

for every z ∈ D. Let z ∈ D. Denote Cz = I + f(ρn)(zT ). Since Re(Cz) ≥ 0, then Cz + I =
2I + f(ρn)(zT ) is invertible and we have

‖(Cz − I)(Cz + I)−1‖ = ‖f(ρn)(zT )(2I + f(ρn)(zT ))−1‖ ≤ 1.

- (ii)⇒ (i) Let z ∈ D. Then Dz = f(ρn)(zT )(2I + f(ρn)(zT ))−1 is well-defined. As ‖Dz‖ ≤ 1, for
every w ∈ D we have Re((I+wDz)(I−wDz)

−1) ≥ 0. When w tends to 1, (I+wDz)(I−wDz)
−1

converges to Cz = I + f(ρn)(zT ). Thus, we have Re(I + f(ρn)(zT )) ≥ 0, which implies in turn
that T ∈ C(ρn).
- (ii)⇔ (iii) is immediate as 2I + f(ρn)(zT ) is invertible. (iii)⇒ (iv) is also immediate.
- (iv) ⇒ (i) Let z ∈ D. Denote Sz = f(ρn)(zT ) and let λ ∈ ∂σ(Sz). Hence λ lies in the
approximate spectrum of Sz: there exists hn ∈ H such that ‖hn‖ = 1 and gn = Sz(hn)−λhn → 0.
We have

0 ≤ |‖2hn + Sz(hn)‖ − |2 + λ|| = |‖2hn + Sz(hn)‖ − ‖2hn + λhn|| ≤ ‖Sz(hn)− λhn‖ → 0.

By hypothesis we have ‖Sz(hn)‖ ≤ ‖(2I + Sz)(hn)‖. The quantity on the left converges to |λ|
while the one on the right converges to |2 + λ|. Thus we have |λ| ≤ |2 + λ|, which implies

|λ| ≤ |2 + λ|
⇒|λ|2 ≤ |2 + λ|2

⇒Re(λ)2 ≤ (Re(λ) + 2)2

⇒− 1 ≤ Re(λ).

Therefore we have ∂σ(Sz) ⊂ Re≥−1, so σ(Sz) ⊂ Re≥−1. This is equivalent to Re(I + Sz) ≥ 0.
Hence, we have T ∈ C(ρn).

Remark 1.3.15. Following the ideas developed by Carrot in [Car05], we can use conditions (ii)
or (iv) of Proposition 1.3.14 in order to define classes C(ρn) of operators on any Banach space
X, as these conditions do not require any structure related to Hilbert spaces (unitary operators
or self-adjoint operators). Using this we could generalize most of the results that Carrot gener-
alized for classes Cρ.
We do note however that conditions (ii) and (iv) of Proposition 1.3.14 for (ρn) are less manage-
able than conditions (ii) and (iv) of Proposition 1.3.3 for ρ due to two constraints: they always
require a condition on the spectral radius of T in order for f(ρn)(zT ) to be well-defined, and the
expression in condition (ii) of Proposition 1.3.14 cannot be simplified any further due to the
general form of f(ρn)(zT ). These constraints would induce additional work in proofs regarding
classes C(ρn) and (ρn)-radii on general Banach spaces, and some results in [Car05] may not
generalize to this case due to them.
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1.4 Inequalities and Parametrizations for (ρn)-Radii

1.4.A Operator radii of products and tensor products.

A useful tool, used to study the behaviour of a product or sum of double-commuting operators,
is the following result, proved in [Hol68, Thm.4.2].

Proposition 1.4.1. — Let Tn, Sn ∈ L(H), n ∈ Z, be such that for all 0 ≤ r < 1, t ∈ R, the
series

∑∞
n=−∞ r

|n|eintTn and
∑∞

n=−∞ r
|n|eintSn converge absolutely and have self-adjoint non-

negative sums. If, moreover, we have TnSm = SmTn, ∀m,n ∈ Z, then the series
∑∞

n=−∞ r
|n|eintTnSn

converges absolutely and has a self-adjoint non-negative sum, for all 0 ≤ r < 1, t ∈ R.

Using Proposition 1.4.1 we can easily obtain the following auxiliary result.

Lemma 1.4.2. — Let T, S ∈ L(H) be two operators that are double-commuting (i.e., TS = ST ,

TS∗ = S∗T ). Let (ρn)n, (τn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0 and lim infn(|τn|

1
n ) > 0. Then,

we have
w(ρnτn)(ST ) ≤ w(ρn)(S)w(τn)(T ).

Proof. If S = 0 or T = 0, then ST = 0 and both sides of the inequality are equal to zero. If
S 6= 0 and T 6= 0, then, up to dividing S and T by their respective radius, we can consider that
w(ρn)(S) = w(τn)(T ) = 1 . Thus, we need to prove that w(ρnτn)(ST ) ≤ 1. We define

Sm :=


1
ρm
Sm if m ≥ 1

I if m = 0
1

ρ|m|
(S∗)|m| if m ≤ −1.

, Tm :=


1
τm
Tm if m ≥ 1

I if m = 0
1

τ|m|
(T ∗)|m| if m ≤ −1

The condition w(ρn)(S) = w(τn)(T ) = 1, together with Lemma 1.2.12 and Proposition 1.2.6,
ensure us that the conditions of Proposition 1.4.1 are fulfilled, since I + Re(f(ρn)(re

itS)) =∑
m∈Z r

|m|eimtSm, for all 0 ≤ r < 1, t ∈ R and since the same is truc for (Tm)m. Applying 1.4.1

gives us that
∑

m∈Z r
|m|eimtSmTm converges absolutely, is self-adjoint, and has a positive sum,

for all 0 ≤ r < 1, t ∈ R. This implies that the series∑
n≥1

2

ρnτn
(reitST )n = f(ρnτn)(re

itST )

is absolutely convergent and that I + Re(f(ρnτn)(re
itST )) ≥ 0 for all 0 ≤ r < 1, t ∈ R. Thus

ST ∈ C(ρnτn) and w(ρnτn)(ST ) ≤ 1, which concludes the proof.

Corollary 1.4.3. — Let T, S ∈ L(H) and let (ρn)n, (τn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0

and lim infn(|τn|
1
n ) > 0.

(i) If T and S double-commute, then

w(ρn)(ST ) ≤ w(1)(S)w(ρn)(T ) ≤ |τ1|w(τn)(S)w(ρn)(T ).

This inequality is optimal when dim(H) ≥ 4.

(ii) We have
w(1)(ST ) ≤ w(1)(S)w(1)(T ) ≤ |τ1||ρ1|w(τn)(S)w(ρn)(T ).

This inequality is optimal when dim(H) ≥ 2.
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(iii) For R ∈ L(H ′), we have

w(ρnτn)(T ⊗R) ≤ w(ρn)(T )w(τn)(R).

Proof. - (i) We use Lemma 1.4.2 for S, T and (1)n, (ρn)n to get the left-hand side inequality.

The right-hand side inequality comes from the fact w(τn)(S) ≥ ‖S‖
|τ1| (cf. Lemma 1.2.12). By

taking

S =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , T =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 such that ST =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,

some computation show that S and T double-commute, and that

‖S‖ = ‖T‖ = ‖ST‖, S2 = T 2 = (ST )2 = 0.

Corollary 1.3.5,(iii), shows that all three quantities are equal to ‖ST‖|ρ1| .

- (ii) The inequality on the right-hand side follows again from Lemma 1.2.12, while the left-hand
one is the operator norm multiplicative inequality. By taking

S =

(
0 1
0 0

)
, T =

(
0 0
1 0

)
such that ST =

(
1 0
0 0

)
,

we have

‖S‖ = ‖T‖ = ‖ST‖ = 1, S2 = T 2 = 0, and ST is self-adjoint.

Thus, w(τn)(S) = w(ρn)(T ) = 1
ρ and w(1)(ST ) = 1, so all quantities are equal to 1.

- (iii) As IH , T double-commute and IH′ , R double-commute too, we can apply Lemma 1.4.2 to
(T ⊗ IH′)(IH ⊗R) = T ⊗R. We then apply item (iii) of Corollary 1.2.16.

Although these inequalities are optimal for some operators, they tend to lose a good part of
the information in the general case. For example, we have w(3)(I) = 1 ≤ w(−1)(I)w(−3)(I) = 5.
Such a loss of information on the radius of the identity operator I also impacts almost every
estimate of radii for other operators in L(H).

Corollary 1.4.4. — Let (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0. Then,

‖T‖
|ρ1|

≤ w(ρn)(T ) ≤ ‖T‖w(ρn)(I).

Furthermore, the coefficients in this equivalence of quasi-norms are optimal.

Proof. The left-hand side inequality ‖T‖|ρ1| ≤ w(ρn)(T ) has been obtained in Lemma 1.2.12. The

equality case is obtained for T such that T 2 = 0, as seen in Corollary 1.3.5. The right-hand side
inequality comes from Lemma 1.4.2, with S = I and τn = 1. It is an improvement of the one
that was obtained in Lemma 1.2.12. The equality case is obtained for any T normal of norm
1.
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1.4.B Operator radii as 1-parameter families.

To better understand the behaviour of the associated radii associated with classes of operators,
it is useful to look at (ρn)-radii as 1-parameter families. This is obtained by studying the map
z 7→ w(zρn). We will present results for the real parameter case (r ∈]0,+∞[) and for the complex
one (z ∈ C∗).

The two main ingredients we are using are the double-commuting inequality of Lemma 1.4.2
for T, I and (ρn)n,(1)1, and the fact that f(zρn) = 1

zf(ρn).

Proposition 1.4.5. — Let T ∈ L(H) and consider (ρn)n ∈ (C∗)N∗ with lim infn(|ρn|
1
n ) > 0.

(i) For all z 6= 0, we have:

|z|
1 + |z − 1|

w(zρn)(T ) ≤ w(ρn)(T ) ≤ w(zρn)(T )(|z|+ |z − 1|).

(ii) The map z 7→ w(zρn)(T ) is continuous on C∗, and r 7→ w(r.eitρn)(T ) is continuous and
decreasing on ]0,+∞[, for all t ∈]− π, π].

(iii) We have
1

3
w(zρn)(T ) ≤ w(|z|ρn)(T ) ≤ 3w(zρn)(T ),

and these inequalities are optimal.

Proof. - (i) We use Lemma 1.4.2 to obtain

w(zρn)(T ) ≤ w(z)(I)w(ρn)(T ) and w(ρn)(T ) ≤ w(z−1)(I)w(zρn)(T ).

As w(z)(I) = 1+|z−1|
|z| and w(z−1)(I) = |z|+ |z − 1|, we obtain the desired inequalities.

- (ii) Up to changing (ρn)n by (wρn)n, the continuity must only be shown at the point w = 1,
that is when z → 1. As we have

w(ρn)(T ) ≤ w(zρn)(T )(|z|+ |z − 1|) ≤ w(ρn)(T )(|z|+ |z − 1|)1 + |z − 1|
|z|

and as (|z|+ |z − 1|),1+|z−1|
|z| both tend to 1 from above as z → 1, we obtain

lim
z→1

w(zρn)(T ) = w(ρn)(T ).

For any t ∈ R and 0 < r < R, we have

w(Reitρn)(T ) ≤ w(Rr−1)(I)w(reitρn)(T ) = w(reitρn)(T ).

Thus, r 7→ w(reitρn)(T ) is decreasing on ]0,+∞[.

- (iii) We use item (i) as well as the fact that w(eit)(I) = 1 + |eit− 1| has a maximum of 3 when

eit = −1 to get the desired inequalities. The equality case for the inequality on the left-hand
side is attained at T = I, ρn = 1 and z = −1, whereas the equality case for the one on the
right-hand side is attained at T = I, ρn = −1, z = −1.
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Since r 7→ w(rρn)(T ) is decreasing, the classes C(rρn) are increasing (for the usual order of
inclusion of sets), for r ∈]0,+∞[. By using nilpotent operators of order 2, and item (iii) of
Corollary 1.3.5, we can also immediately show that these inclusions are always strict.

For the following propositions, we recall that 1

lim infn(|ρn|
1
n )

= 0 if lim infn(|ρn|
1
n ) = +∞.

Proposition 1.4.6. — Let (ρn)n ∈ (C∗)N∗ and T ∈ L(H) be such that lim infn(|ρn|
1
n ) > r(T ) ≥

0. Then, there is r > 0 such that for all z with |z| = r,

r(T )

lim infn(|ρn|
1
n )
≤ w(zρn)(T ) ≤ 1.

Proof. Let s > 1 be such that r(sT ) < lim infn(|ρn|
1
n ). As

lim sup
n→∞

(
2sn‖Tn‖
|ρn|

) 1
n

=
r(sT )

lim infn(|ρn|
1
n )

< 1,

there is B > 0 such that 2sn‖Tn‖
|ρn| ≤ B. Thus, for all w ∈ D, we have

‖f(zρn)(wT )‖ ≤
∑
n≥1

2‖Tn‖
|z||ρn|

≤
∑
n≥1

B

|z|sn
=

1

|z|
sB

s− 1
< +∞.

By taking |z| large enough, we have ‖f(zρn)(wT )‖ < 1, which implies that

I + Re(f(zρn)(wT )) ≥ 0, ∀w ∈ D.

Thus w(zρn)(T ) ≤ 1. The left-hand side inequality comes from items (i) and (ii) of Proposi-
tion 1.2.18: we have

w(zρn)(T ) ≥ r(T )w(zρn)(I) and w(zρn)(I) ≥ 1

lim infn(|zρn|
1
n )
.

Proposition 1.4.7. — Let T ∈ L(H) and let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0.

Then

lim
|z|→+∞

(w(zρn)(T )) =
r(T )

lim infn(|ρn|
1
n )
.

Proof. According to Proposition 1.4.5 and Proposition 1.2.18, the map r 7→ w(reitρn)(T ) is
decreasing on ]0,+∞[ and

w(ρn)(T ) ≥ r(T )w(ρn)(I) ≥ r(T )

lim infn(|ρn|
1
n )
.

We will show that w(zρn)(T ) is as close to this lower bound as we want, when z is large enough.

Let ε > 0. If r(T ) = 0, then r(1
εT ) = 0, so Proposition 1.4.6 implies the existence of r > 0 such

that w(zρn)(
T
ε ) ≤ 1 for all z with |z| = r. Thus, w(zρn)(T ) ≤ ε.

If r(T ) 6= 0, for 0 < R < lim infn(|ρn|
1
n ) we have

r

(
RT

(1 + ε)r(T )

)
< lim inf

n
(|ρn|

1
n ).
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Thus, by Proposition 1.4.6, there exists r > 0 such that w(zρn)

(
RT

(1+ε)r(T )

)
≤ 1 for all z with

|z| = r. Hence,
r(T )

lim infn(|ρn|
1
n )
≤ w(zρn)(T ) ≤ (1 + ε)r(T )

R
.

We then obtain the result by taking R = lim infn(|ρn|
1
n )(1 − ε) if lim infn(|ρn|

1
n ) is finite, or

R = 1
ε if lim infn(|ρn|

1
n ) = +∞.

Proposition 1.4.8. — Let T ∈ L(H). Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0.

We have:

(i) z 7→ w(zρn)(T ) is uniformly continuous on C \ D(0, ε), for all ε > 0. This maps tends to

+∞ as |z| → 0, and to r(T )

lim infn(|ρn|
1
n )

as |z| → +∞;

(ii) For any t ∈ R, the map r 7→ w(reitρn)(T ) is log-convex on ]0,+∞[.

Proof. - (i) On the closed set C \ D(0, ε), the function

z 7→ w(zρn)(T )

is continuous, decreasing on every half-line of the form eit[ε,+∞[, and converges to

r(T )

lim infn(|ρn|
1
n )

as |z| → +∞. Thus, a standard argument (considering two cases, ε ≤ |z| ≤ R and |z| ≥ R)
shows that this map is uniformly continuous. One can also use the double-commuting inequality
of Lemma 1.4.2 for T and IH , as well as the uniform continuity of the map z 7→ w(z)(I) on
C \ D(0, η), in order to prove the uniform continuity of z 7→ w(zρn)(T ). The limit as |z| → +∞
has been obtained in Proposition 1.4.7, while the limit as |z| → 0 comes from the fact that

w(zρn)(T ) ≥ ‖T‖
|z||ρ1| , as remarked in Lemma 1.2.12.

- (ii) Let t ∈ R. Denote G′(z) := −e−itf(ρn)(zT ). For any α > 0, we have w(reitρn)(T ) ≤ α

if and only if f(eitρn)(z
T
α ) is analytic on D and I + Re(1

rf(eitρn)(z
T
α )) ≥ 0, for all z ∈ D. By

taking w = z
α , this is equivalent to G′(w) being analytic on D(0, 1

α) and Re(G′(w)) ≤ rI, for
all w ∈ D(0, 1

α). The result is then obtained by mimicking the proof of [AN73, Theorem 1] by
Ando and Nishio and replacing G with G′.

Even though the expression of f(zρn) is more complex than f(z)(w) = 2
z

w
1−w , the main regu-

larity properties remain valid due to its analyticity.

Proposition 1.4.9. — Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0. If one of the

following assertions is true

(i) lim infn(|ρn|
1
n ) < 1;

(ii) |ρn| < 1 for some n ≥ 1;

(iii) w(ρn)(I) > 1;
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(iv) ρn = M + xn, (xn)n ∈ `2(C),

then all operators in C(ρn)(H) are similar to contractions.
If, on the contrary, we have:

(i’) w(ρn)(I) < 1,

then C(ρn)(H) contains operators that are not similar to contractions.
Both statements remain true if the conditions are only fulfilled for the subsequence (ρkn)n, for
some fixed k ≥ 1.

Proof. - (i), (ii), (iii) We can see that (i)⇒ (ii)⇒ (iii). If (iii) is true, then for T ∈ C(ρn), we
have

r(T ) ≤
w(ρn)(T )

w(ρn)(I)
< 1,

so T is similar to a contraction.
- (iv) It has been shown in [Rác74, Ch.2] (see also [Bad03, Cor 5.2.1]) that when ρn = M + xn,
(xn)n ∈ `2(C), all operators in C(ρn) are similar to contractions.

- (i′) On the contrary, when w(ρn)(I) < 1, 1
w(ρn)(I)

I ∈ C(ρn) and this operator is not similar to a

contraction.
The last assertion of the theorem follows from two facts. The first one is that T ∈ C(ρn) implies

T k ∈ C(ρkn). The second one is that T k is similar to a contraction if and only if T is similar to a
contraction: see [Hal70, Problem 6,(ii)] for a proof when k = 2 that extends to any k by taking
((f, g)) :=

∑k−1
j=1〈Ajf,Ajg〉.

Proposition 1.4.10. — Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0.

(i) If lim infn(|ρn|
1
n ) = +∞, then

⋃
r>0C(rρn)(H) = L(H).

(ii) If lim infn(|ρn|
1
n ) < +∞, then we have

{T : r(T ) < lim inf
n

(|ρn|
1
n )} ⊂

⋃
r>0

C(rρn)(H) ⊂ {T : r(T ) ≤ lim inf
n

(|ρn|
1
n )}.

(iii) Moreover, we have

{T : r(T ) < lim inf
n

(|ρn|
1
n )} =

⋃
r>0

C(rρn)(H)

if and only if

w(rρn)(lim inf
n

(|ρn|
1
n )I) > 1, ∀r > 0.

Proof. - (i) By using Proposition 1.4.6, for any T there exists r > 0 such that w(rρn)(T ) ≤ 1.
- (ii) We use again Proposition 1.4.6 in order to obtain the left-hand side inclusion. The other
inclusion follows from Proposition 1.2.6.
- (iii) Suppose that there is a number r > 0 and an operator T with r(T ) = lim infn(|ρn|

1
n ) such

that w(rρn)(T ) ≤ 1. Then

1 ≥ w(rρn)(T ) ≥ r(T )w(rρn)(I) ≥ r(T )

lim infn(|ρn|
1
n )

= 1.
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Thus all inequalities are equalities, and w(rρn)

(
lim infn(|ρn|

1
n ).I

)
= 1. Conversely, if for some

r > 0 we have

w(rρn)

(
lim inf

n
(|ρn|

1
n ).I

)
= 1,

then the union of all C(rρn) contains lim infn(|ρn|
1
n )I, so this set is not equal to {T : r(T ) <

lim infn(|ρn|
1
n )}. Using the left-hand inclusion of item (ii) concludes the proof.

Remark 1.4.11. — Replacing (ρn)n by (eitρn)n leaves unchanged the quantity lim infn(|ρn|
1
n ).

However, the union of all classes C(rρn) can become a different set.

With ρn = ρ, we have lim infn(|ρn|
1
n ) = 1 and w(ρ)(I) = 1 if and only if ρ ∈ [1,+∞[. Thus,⋃

r>0

C(reit)n(H) = {T : r(T ) < 1} if t 6= 0 [2π].

This is not an equality if t = 0 (look at the identity operator I). However, the set
⋃
r>0C(r)(H)

does not contain all operators with spectral radius one. Indeed, it has been proven in [Rác74,
Ch.2] (see also [Bad03, Cor 5.2.1]) that all operators contained in this union are all similar to
contractions. Furthermore, all operators similar to a contraction are not in this union. For a
counterexample, any non-orthogonal projection T (that is T 2 = T and ‖T‖ > 1) is not in this

union since Corollary 1.4.3,(v), says that w(ρ)(T ) = ‖T‖+|ρ−1|
|ρ| > 1.

- For a sequence (ρn)n that satisfies α = lim infn(|ρn|
1
n ) ∈]0,+∞[, we can go back to the case

lim infn(|ρn|
1
n ) = 1 by considering the sequence ( ρnαn )n. As this normalization is equivalent to a

dilation by a factor 1
α on the class C(ρn), we can then try to see if in this case the class C(ρn) is

always included in the set of operators that are similar to contractions. This question is moti-
vated by Properties 1.4.10 and 1.4.9. The answer is true when w(ρn)(I) > 1, but Corollary 1.4.18
will give a negative answer in many remaining cases, even if we consider the inclusion in the set
of power-bounded operators.

At this point we would like to mention that, for every k ≥ 2, there is ([Găv08]) a Hilbert
space operator T /∈ ∪ρ>0Cρ but with T k belonging to C(τ) for every τ ≥ 1. Related results are
given in the next proposition.

Proposition 1.4.12. — Let (ρn)n ∈ (C∗)N∗ be such that lim infn(|ρn|
1
n ) > 0. Let H a Hilbert

space of dimension at least 2.

(i) For T ∈ L(H) with T 2 = 0 and ‖T‖ > |ρ1|, T k is in the class C(ρn) for every k ≥ 2, but
T is not.

(ii) If lim infn(|ρn|
1
n ) > 1, then T k ∈

⋃
r>0C(rρn) for some k ≥ 2 implies that T ∈

⋃
r>0C(rρn).

(iii) If lim infn(|ρn|
1
n ) < 1, then there exists T ∈ L(H) such that T k lies in

⋃
r>0C(rρn) for

every k ≥ 2 whereas T does not.

(iv) If lim infn(|ρn|
1
n ) = 1 and I /∈

⋃
r>0C(rρn), then T k ∈

⋃
r>0C(rρn) for some k ≥ 2 implies

that T ∈
⋃
r>0C(rρn).



60 CHAPTER 1. Classes C(ρn)

Proof. - (i) As we have ‖T‖ > |ρ1|, T cannot lie in C(ρn), whereas T k = 0 does.

- (ii) Let T be such that T k ∈
⋃
r>0C(rρn) for some k ≥ 2. Then, r(T k) ≤ lim infn(|ρn|

1
n ).

Hence,

r(T ) ≤ lim inf
n

(|ρn|
1
n )

1
k < lim inf

n
(|ρn|

1
n ),

that is T ∈
⋃
r>0C(rρn) according to Proposition 1.4.10, (i) and (ii).

- (iii) Take r > 0 such that

lim inf
n

(|ρn|
1
n ) < r < lim inf

n
(|ρn|

1
n )

1
2 ,

and denote T = rI. Thus, using item (ii) of Proposition 1.4.10, we can see that since for every
k ≥ 2 we have

r(T k) ≤ r(T 2) < lim inf
n

(|ρn|
1
n ) < r(T ),

T doesn’t lie in
⋃
r>0C(rρn) whereas T k does.

- (iv) If T k ∈
⋃
r>0C(rρn), then r(T k) < 1 according to item (iii) of Proposition 1.4.10. This

implies that r(T ) < 1, which implies in turn that T ∈
⋃
r>0C(rρn).

Remark 1.4.13. — As the classes C(rρn) are increasing for the inclusion of sets, the assertion
T ∈

⋃
r>0C(rρn) is equivalent to the existence of R > 0 such that T ∈ C(rρn) for every r ≥ R.

When lim infn(|ρn|
1
n ) = 1 and I ∈

⋃
r>0C(rρn), which is the case when ρn = ρ > 0, we do not

know if the result of Găvruţa [Găv08] stays true, as the type of operators he used in his proof
is not suited in this setting: since there are sequences (ρn) such that

⋃
r>0C(rρn) contains all

power-bounded operators (see Corollary 1.4.18), taking a T such that T k = I will not work.

Example 1.4.14. — For ρn = 2(n!), we have I+f(ρn)(zT ) = exp(zT ), and a quick computation

gives w(2(n!))(I) = 2
π < 1 (see item (iv) of Example 1.4.20 for another proof). Therefore π

2 I ∈
C(2(n!))(H) and this class contains an operator not similar to a contraction.

We can also try to obtain some relationships between the (γnρn)-radii of an operator, for
sequences (γn)n ∈ ∂DN∗ , in order to see for which sequences (γn)n the maximal or minimal radii
are attained. The following Lemma answers the question for the maximal radii when T = I.

Lemma 1.4.15. — Let (ρn)n ∈ (C∗)N∗ be such that α = lim infn(|ρn|
1
n ) > 0. If we have

limx→α− f(|ρn|)(x) > 1, then f(|ρn|)(x) = 1 has a unique solution, r1, on ]0, α[. Otherwise, denote
r1 = α. We then have:

(i) w(−|ρn|)(I) = 1
r1

;

(ii) w(−|ρn|)(I) ≥ w(γnρn)(I) ≥ 1
α , for any (γn)n ∈ ∂DN∗;

(iii) The condition

w(rγnρn)(I) =
1

α
, ∀r ≥ 1, ∀γn ∈ ∂D

is equivalent to
lim
x→α−

f(|ρn|)(x) ≤ 1

and to

w(−|ρn|)(I) =
1

α
.
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Proof. - (i), (ii) The right-hand side inequality of (ii) is the last inequality of Lemma 1.2.12.
For any z ∈ D(0, α) and γn ∈ ∂D, we have

|f(γnρn)(z)| ≤
∑
n≥1

2|z|n

|ρn|
= f(|ρn|)(|z|).

Also, the map x 7→ f(|ρn|)(x) is strictly increasing on ]0, α[, as f(|ρn|) is non-constant with positive
Taylor coefficients, so if limx→α− f(|ρn|)(x) > 1 the real number r1 is indeed unique. Let u > 0

be such that u ≥ 1
r1
≥ 1

α . Then 1
u ≤ r1 and

lim
x→ 1

u

−
f|ρn|(x) ≤ 1.

Since we have

f(γnρn)(D(0,
1

u
)) ⊂ D(0, lim

x→ 1
u

−
f(|ρn|)(x)) ⊂ D,

Proposition 1.2.18 implies that w(γnρn)(I) ≤ u As this is true for every u ≥ 1
r1

, we obtain

w(γnρn)(I) ≤ 1
r1

. When γn = − ρn
|ρn| , we have

f(γnρn)(x) = f(−|ρn|)(x) = −f(|ρn|)(x).

Thus, the negative number lim
x→ 1

u

−(−f(|ρn|)(x)) lies in the closure of f(−|ρn|)(D(0, 1
u)), and the

smallest u ≥ 1
α such that

f(−|ρn|)(D(0,
1

u
)) ⊂ Re≥−1

is 1
r1

. Hence,

w(−|ρn|)(I) =
1

r1
≥ w(γnρn)(I).

- (iii) By (ii) and using that r 7→ w(rγnρn)(I) is decreasing, we have

w(rγnρn)(I) =
1

α
, ∀r ≥ 1, ∀(γn)n ∈ ∂DN∗

if and only if

w(−|ρn|)(I) =
1

α
.

This equation is equivalent to r1 = α, that is limx→α−(f(|ρn|)(x)) ≤ 1.

We do not know if the (|ρn|)-radius of I is always the minimal one.
The idea of the proof of Lemma 1.4.15 can be transported to any operator T if we add a
summability condition to the sequence (ρn)n.

Proposition 1.4.16. — Let a = (an)n ∈ (C∗)N∗ be such that
∑

n≥1
1
|an| ≤ 1. Let T ∈ L(H)

and define

ρn :=

{
2an‖Tn‖ if Tn 6= 0
1 otherwise

(i) If r(T ) > 0 or if T is nilpotent, then T ∈ C(ρn).
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(ii) If r(T ) > 0 and lim infn(|an|
1
n ) = 1, then w(znρn)(T ) = 1, for all zn such that |zn| ≥ 1 and

limn(|zn|
1
n ) = 1.

Proof. - (i) Suppose first that r(T ) > 0. Since
∑

n
1
|an| < +∞, we have lim infn(|an|

1
n ) ≥ 1, thus

lim infn(|ρn|
1
n ) ≥ r(T ) > 0. We also have:

‖f(ρn)(zT )‖ ≤
∑
n≥1

2|z|n‖Tn‖
2|an|‖Tn‖

≤
∑
n≥1

1

|an|
≤ 1.

Thus, I+Re(f(ρn)(zT )) ≥ (1−‖f(ρn)(zT )‖)I ≥ 0 for all z ∈ D, so T ∈ C(ρn). If T is nilpotent then

f(ρn)(zT ) becomes a finite sum and the same computation gives the result, as lim infn(|ρn|
1
n ) > 0.

- (ii) When r(T ) > 0 and lim infn(|an|
1
n ) = 1, we have r(T ) = lim infn(|ρn|

1
n ), so

1 ≥ w(ρn)(T ) ≥ r(T )

lim infn(|ρn|
1
n )

= 1.

Thus w(ρn)(T ) = 1. If we multiply each an by a complex number zn with |zn| ≥ 1 and

limn(|zn|
1
n ) = 1, the sum

∑
n≥1

1
|znan| decreases, while lim infn(|znan|

1
n ) = 1. Thus, we can

apply the previous result to (znρn)n and obtain w(znρn)(T ) = 1.

Remark 1.4.17. — For any T with r(T ) > 0, if we take a sequence (ρn)n as in item (ii) of the
previous Proposition, then the result says that z 7→ w(zρn)(T ) is constant and equal to 1 on
C \ D.
- The choice of (ρn)n only depends on ‖Tn‖. For example, with any T normal with ‖T‖ = 1,

by taking an = π2

6 n
2, we have w(2anzn)(T ) = 1 for any sequence (zn)n such that 1 ≤ |zn| and

sup |zn| < +∞.

- If T is quasi-nilpotent but not nilpotent, we have lim infn(|ρn|
1
n ) = 0. However, the statement

of item (i) holds true for such a T , with a very similar proof.

Using the ideas in the proof of Proposition 1.4.16, we can show that some sets
⋃
r>0C(rρn)

largely differ from
⋃
ρ>0C(ρ) or {T : r(T ) < 1} even if lim infn(|ρn|

1
n ) = 1.

Corollary 1.4.18. — Let (ρn)n be such that lim infn(|ρn|
1
n ) = 1. The following assertions are

true:

(i) If ( 1
ρn

) ∈ `1, then
⋃
r>0C(rρn) contains all power-bounded operators;

(ii) If f(ρn) ∈ H∞(D) and f ′(ρn) ∈ H
∞(D), then

⋃
r>0C(rρn) contains an operator that is not

power-bounded.

(iii) If nk+1+ε = O(|ρn|) for k ∈ N∗ and some ε > 0, then
⋃
r>0C(rρn) contains all operators T

such that ‖Tn‖ = O(nk).

Proof. - (i) Let T be a power-bounded operator with ‖Tn‖ ≤ C. Let r > 0 and z ∈ D. We have

‖f(rρn)(zT )‖ ≤
∑
n≥1

2

r|ρn|
|z|n‖Tn‖ ≤ 2C

r

∑
n≥1

1

|ρn|
< +∞.
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Hence, for r large enough, we have ‖f(rρn)(zT )‖ ≤ 1 for every z ∈ D. This implies that

I + Re(f(rρn)(zT ) ≥ 0, ∀z ∈ D.

This in turn implies that T ∈ C(rρn) since we also know that r(T ) ≤ 1 = lim infn(|rρn|
1
n ).

- (ii) We first note that both the entire series f( ρn
n

)(z) =
∑

n≥1
2n
ρn
zn and f(ρn) have radii of

convergence 1, so their sum is analytic on D. We also have f( ρn
n

)(z) = zf ′(ρn)(z). Let N be a

nilpotent operator of order 2 and set T = I +N . Since Tn = I + nN , we have ‖Tn‖ ' n‖N‖ so
T is not power-bounded. We will show that T belongs to a class C(rρn) for large enough r > 0.
Let r > 0 and z ∈ D. We have:

‖f(rρn)(zT )‖ = ‖
∑
n≥1

2

rρn
zn(I + nN)‖ = ‖1

r
f(ρn)(z)I +

1

r
zf ′(ρn)(z)N‖

≤ 1

r
(‖f(ρn)‖H∞ + ‖f ′(ρn)‖H∞‖N‖) < +∞.

Hence, for r large enough, we have ‖f(rρn)(zT )‖ ≤ 1 for every z ∈ D, which implies that

I + Re(f(rρn)(zT ) ≥ 0, ∀z ∈ D.

This in turn implies that T ∈ C(rρn) since we also know that r(T ) = 1 = lim infn(|rρn|
1
n ).

- (iii) Let T be such that ‖Tn‖ = O(nk) and let z ∈ D. We have ‖T
n‖
|ρn| = O( 1

n1+ε ), so this

sequence is in `1. If T is nilpotent, then T is power-bounded and we can apply (i) to get a
positive r > 0 such that T ∈ C(rρn). Otherwise, we can consider the complex numbers

an :=
ρn
‖Tn‖

∥∥∥∥(‖Tn‖|ρn|
)
n

∥∥∥∥
`1
.

We have ∑
n≥1

1

|an|
=

∥∥∥∥(‖Tn‖|ρn|
)
n

∥∥∥∥−1

`1

∑
n≥1

‖Tn‖
|ρn|

= 1.

Thus, for τn := 2an‖Tn‖, we can use Proposition 1.4.16 to obtain T ∈ C(τn). Since τn =

2ρn

∥∥∥(‖Tn‖|ρn| )n∥∥∥`1 , we have τn = rρn for some r > 0, which concludes the proof.

The condition f ′(ρn) ∈ H
∞(D) implies that the sequence ( nρn )n is bounded, but it does not

imply the condition ( 1
ρn

) ∈ `1 from (i). Thus, for a sequence (ρn) satisfying the conditions of
item (ii), the set of the power-bounded operators may not be fully included in

⋃
r>0C(rρn).

1.4.C Some examples.

We conclude this chapter by providing a computation of w(zρn)(I) in two examples, where
sequences (ρn)n were chosen to match some common analytic maps. The difficulty lies in the
computation of the boundary of f(zρn)(D(1, 1

u)), as some specific points on the boundary do not
always have an explicit expression.

Example 1.4.19. — Let R > 0 and −π < t ≤ π. We have:
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(i) I + f(Reitn)(zI) = I − 2
Reit

log(1− zI);

(ii) w(Reitn)(I) = 1 if t = 0 and R ≥ 2 log(2);

(iii) w(Reitn)(I) = 1
exp(R

2
)−1

> 1 if t = 0 and 0 < R < 2 log(2);

(iv) w(Reitn)(I) = 1
1−exp(−R

2
)
> 1 if t = π;

(v) w(Reitn)(I) = 1 if t = ±π
2 and R ≥ π;

(vi) w(Reitn)(I) = 1
sin(R

2
)

if t = ±π
2 and 0 < R < π;

(vii) w(Reitn)(I) = 1 if 0 < |t| < π
2 and R ≥ 2 cos(t) log(2 cos(t)) + 2 sin(t)t;

(viii) If we have 0 < |t| < π
2 and 0 < R < 2 cos(t) log(2 cos(t)) + 2 sin(t)t, then

w(Reitn)(I) = inf({u > 1: 1− 2

R
gt(u) ≥ 0} > 1

with gt(u) := cos(t) log(

√
u2−sin(t)2+cos(t)

u ) + arcsin( sin(t)
u ) sin(t).

The same holds if π
2 < |t| < π.

Proof. Let R > 0, t ∈]− π, π]. As n ∈ R, we have w(Re−itn)(I) = w(Reitn)(I), so we can restrict
the study to t ∈ [0, π]. A direct computation gives:

f(Reitn)(zT ) = − 2

Reit
log(1− zT ).

As lim infn(|n|
1
n ) = 1, we have w(Reitn)(I) ≥ 1. Thus, we consider those u > 1 such that

I + Re(f(R.eitn)(
zI
u )) is positive for every z ∈ D. It is equivalent to look at the positivity of

1 + Re(f(R.eitn)(
z

u
)) = 1− 2

R
Re(e−it log(1− z

u
)).

We start off by studying the boundary of log(D(1, 1
u)). By analyticity, we have ∂ log(D(1, 1

u)) ⊂
log(∂D(1, 1

u)). As log(eisR∩D(1, 1
u)) is a horizontal interval that is non-empty if and only if |s| ≤

arcsin( 1
u), the previous sets are equal and log(D(1, 1

u)) is convex. Thus, the set log(∂D(1, 1
u))

can be parametrized by two arcs depending on the imaginary part of its elements:

s 7→ log

(
cos(s)± 1

u

√
1− sin(s)2u2

)
+ is, s ∈ [− arcsin(

1

u
); arcsin(

1

u
)].

We want to compute the minimum of 1− 2
RRe(e−it log(1− eis

u )) in order to find for which u > 1
this minimum is non-negative. For the cases t = 0, t = π, and t = π

2 , computing this minimum
amounts to finding the extrema of the real or imaginary part of the elements in log(∂D(1, 1

u)).
As these extrema are log(1± 1

u) for the real part and ± arcsin( 1
u) for the imaginary part, an easy

computation gives all the u > 1 such that infw∈R(1 − 2
RRe(e−it log(1 − eiw

u ))) ≥ 0 in all three
cases, which proves the items (ii), (iii), (iv), (v), (vi).
For 0 < t < π

2 , computing this minimum leads to searching the lower bound of

f1(s) := cos(π − t) log(cos(s)− 1

u

√
1− sin(s)2u2)− s sin(π − t).
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For π
2 < t < π, computing this minimum leads to searching the lower bound of

f2(s) := cos(π − t) log(cos(s) +
1

u

√
1− sin(s)2u2)− s sin(π − t).

The derivatives of these maps are:

f ′1(s) =
sin(s)u cos(π − t)√

1− sin(s)2u2
− sin(π − t), f ′2(s) = −sin(s)u cos(π − t)√

1− sin(s)2u2
− sin(π − t).

Both of them only have one zero, at s = − arcsin( sin(t)
u ). And in both cases the searched

minimum for 1− 2
RRe(e−it log(1− eis

u )) is:

1− 2

R
[cos(t) log(

√
u2 − sin(t)2 + cos(t)

u
) + arcsin(

sin(t)

u
) sin(t)] = 1− 2

R
gt(u).

If 0 < t < π
2 , this minimum decreases towards 1− 2

Rgt(1) := 1− 2
R [cos(t) log(2 cos(t)) + t sin(t)]

when u→ 1+. So I
u ∈ C(Reitn) for every u > 1 if and only if 1− 2

Rgt(1) ≥ 0, that is R ≥ 2gt(1).
This proves item (vii) and half of item (viii).
If π

2 < t < π, this minimum decreases towards −∞ as u→ 1+, so the smallest u for which this
minimum is non-negative satisfies u > 1 and w(Reitn)(I) = u. This gives the other half of item
(viii) and concludes the proof.

Example 1.4.20. — Let R > 0 and −π < t ≤ π. We have:

(i) I + f(Reitn!)(zI) = I + 2
R.eit

(exp(zI)− I);

(ii) w(Reitn!)(I) = 1
log(R

2
+1)

if t = π;

(iii) w(Reitn!)(I) = 1
log( 2

2−R )
if t = 0 and 0 < R ≤ 2− 2

e ;

(iv) w(Reitn!)(I) = 1
π
2
−t if 0 ≤ |t| < π

2 and R = 2 cos(t);

(v) w(Reitn!)(I) ≤ 1
log(R

2
−cos(t))

for R > 2 + 2 cos(t);

(vi) w(Reitn!)(I) ≥ 1√
π2+log( R

2 cos(t)
−1)2

if 0 ≤ |t| < π
2 and R > 4 cos(t);

(vii) In general, we have

w(Reit.n!)n(I) = inf({u > 0: ∀θ ∈ [−π, π] with θ +
sin(θ)

u
= t+ kπ,

k ∈ Z, we have (−1)ke
cos(θ)
u cos(θ) ≥ cos(t)− R

2
}).

For R ≥ 2eπ/2−2, we can restrict the infimum after u in ]0, 2
π ] and to the smallest θ ∈]−π2 , 0]

such that θ + sin(θ)
u = t+ kπ.
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Proof. Let R > 0, t ∈ [−π, π] and u > 0. As n ∈ R, we have w(Re−itn!)(I) = w(Reitn!)(I), so we
restrict the study to t ∈ [0, π]. A computation gives

I + f(Reitn!)(zI) = I +
2

R.eit
(exp(zI)− I).

We will first use Lemma 1.4.15 to compute w(−Rn!)(I) and rule out the case t = π. As f(Rn!)(x) =
2
R(exp(x)− 1), we get

f(Rn!)(x) = 1⇔ x = log(
R

2
+ 1).

Hence, w(−Rn!)(I) = 1
log(R

2
+1)

and item (ii) is proved.

As lim infn(|n!|
1
n ) = +∞, we have I

u ∈ C(Reitn!) if and only if u ≥ w(Reitn!)(I), if and only if

I + Re(f(Reitn!)(z
I
u)) for every z ∈ D. Thus, we need to study the positivity of

1 + Re(f(Reitn!)(
z

u
)) = 1 +

2

R
Re(e−it(exp(

z

u
)− 1)),

for every z ∈ D and for any u > 0. By analyticity, we only need to make the computations for
z ∈ ∂D. We have

1 +
2

R
Re(exp(

z

u
− it)− e−it) ≥ 0

⇔ exp(Re(
z

u
)) cos

(
Im(z)

u
− t
)
≥ −R

2
+ cos(t).

Denote, for s ∈ [−π, π],

gu(s) := e
cos(s)
u cos(t− sin(s)

u
).

Thus, I
u ∈ C(Reitn!) is equivalent to

min
s∈[−π,π]

(gu(s)) ≥ −R
2

+ cos(t).

Therefore, this inequality will be satisfied if and only if u ≥ w(Reitn!)(I). Also, since

min
s

(gu(s)) = min
|w|= 1

u

(Re(exp(w − it))) = min
|w|< 1

u

(Re(exp(w − it))),

we can see that mins(gu(s)) is the minimum of a harmonic non-constant map over the disc
D(0, 1

u). The maximum principle implies that the map u 7→ mins(gu(s)) is strictly increasing.
Hence, w(Reitn!)(I) is the only number u > 0 such that mins∈[−π,π](gu(s)) = −R

2 + cos(t).
Let us focus now on the minimum of gu. The derivative of gu is

g′u(s) =
1

u
e

cos(s)
u sin(t− sin(s)

u
− s).

Hence, the minimum of gu will be reached for a s0 such that hu(s0) := t− s0 − sin(s0)
u = kπ, for

some k ∈ Z. For such a s0, we will also have

gu(s0) = (−1)ke
cos(s0)
u cos(s0).
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If u ≥ 1, the map hu is strictly decreasing, with range [t − π, t + π]. Hence, there will only be
2 (resp. 3) values of s such that hu(s) = kπ if t ∈]0, π[ (resp. t = 0). If t = 0 and u ≥ 1, these
values of s will be −π, 0, π, and the minimum of gu will be gu(π) = exp(−1

u ). Thus, if t = 0 and
w(Rn!)(I) ≥ 1, we will have

exp

(
−1

w(Rn!)(I)

)
= −R

2
+ 1,

which is equivalent to 0 < R ≤ 2− 2
e . Thus w(Rn!)(I) = 1

log( 2
2−R )

, proving item (iii).

When t ∈]0, π[ and u ≥ 1, we have however no explicit formula for the two values of s mentioned
above.
For t ∈ [0, π2 [ and R = 2 cos(t), we will have mins(gw(Reitn!)(I)

(s)) = 0. As e
cos(s)
u cos(s) = 0 if and

only if s = ±π
2 , this minimum will be attained at π

2 or −π2 , and w(Reitn!)(I) will be the largest

u > 0 such that gu(π2 ) = 0 or gu(−π
2 ) = 0. The latter condition is equivalent to 1

u ± t = π
2 + kπ,

that is 1
u = π

2 ± t+ kπ. Since we have 0 ≤ t < π
2 , the integer k needs to be positive. By looking

at the smallest possible value for 1
u we get w(Reitn!)(I) = 1

π
2
−t , proving item (iv).

In general, we can see that mins(gu(s)) ≥ −e
1
u . When R > 2 + 2 cos(t), the inequality −e

1
u ≥

cos(t)− R
2 is equivalent to u ≥ 1

log(R
2
−cos(t))

, which proves item (v).

If uπ < 1, we have uπ = sin(α) for some α > 0, and gu(α) = − cos(t)e

√
1−u2π2

u . When R >
4 cos(t), the inequality gu(α) ≤ cos(t) − R

2 is equivalent to u ≤ 1√
π2+log( R

2 cos(t)
−1)2

. Item (vi) is

now proved.
Taking R ≥ 2eπ/2 − 2 = R0, we get −R

2 + 1 ≤ 2− eπ/2 < −1 and

w(Reitn!)(I) ≤ w(−Rn!)(I) ≤ w(−R0n!)(I) =
2

π
,

for every 0 ≤ t ≤ π, according to Lemma 1.4.15. We can then see that for u = w(Reitn!)(I) and
for a number s0 such that gu(s0) = mins(gu(s)) and hu(s0) = kπ, the relationship

(−1)ke
cos(s0)
u cos(s0) = gu(s0) = −R

2
+ cos(t) < −1

implies that cos(s0) > 0 and that k is odd. In this case, |s0| will be the smallest real s in [0, π2 [
such that hu(s) or hu(−s) is equal to kπ with k odd. As we also have hu(−π2 ) = t + π

2 + 1
u ≥

π ≥ t = hu(0) ≥ 0, we can see that s0 lies in ]−π2 , 0]. This gives all the announced results.
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Chapter 2

Hilbert space operators with unitary
skew-dilations: Classes CA

Classes CA have been defined by H. Langer ; see also [Sue98a]. A large part of the initial results
can be found in [Sue98a], we recall them here as they form a family of useful tools required later
on. A few improvements are given (see Propositions 2.2.12 and 2.3.1), as well as new results
(from Lemma 2.3.3 through Proposition 2.3.9).

2.1 Definition and Suen’s Results

Definition 2.1.1. [Class CA] Let H be a Hilbert space. Let A ∈ L(H) be a self-adjoint positive
operator that is invertible. We define the class CA(H) as

CA(H) := {T ∈ L(H): ∃K Hilbert and U ∈ L(K) unitary such that

H ⊂ K and A−
1
2TnA−

1
2 = PHU

n|H , ∀n ≥ 1}

where PH is the orthogonal projection onto H. When the underlying Hilbert space H is not
ambiguous, classes CA(H) will be abbreviated as CA.

Remark 2.1.2. For the rest of this chapter, we will use the notation A > 0 to design a self-adjoint
positive operator that is invertible (i.e. A ≥ λI for some λ > 0).
By taking ρ > 0 and A = ρI, we obtain the classical definition of the class Cρ from Sz. Nagy
and Foias [SNF66]. Hence, CρI = Cρ.

We could also define a more general class C̃B for any invertible operatorB by usingB−1Tn(B∗)−1

instead of A−
1
2TnA−

1
2 in its definition. However we can mimic the proof of the equivalence

(i)⇔ (iii) in Proposition 2.1.4 in order to obtain the equivalence:

• T ∈ C̃B:

• r(T ) ≤ 1 and BB∗ + Re(2
∑

n≥1(zT )n) ≥ 0, ∀z ∈ D.

Using Proposition 2.1.4 then gives C̃B = CB.B∗ . Hence this construction does not bring any
new class regarding the case A > 0.

69
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Remark 2.1.3. As A is self-adjoint, we can see from its definition that the class CA is stable for
the adjoint map: T ∈ CA ⇔ T ∗ ∈ CA.
We can also see that for any T ∈ CA, we have T k ∈ CA for every k ≥ 1, as

A−
1
2 (T k)nA−

1
2 = PH .(U

k)n|H .

Proposition 2.1.4. Let H be a Hilbert space. Let A, T ∈ L(H) be such that A > 0. The
following are equivalent

(i) T ∈ CA(H);

(ii) r(T ) ≤ 1 and I + Re(2
∑
n≥1

A−
1
2 (zT )nA−

1
2 ) ≥ 0, ∀z ∈ D;

(iii) r(T ) ≤ 1 and A+ Re(2
∑

n≥1(zT )n) ≥ 0, ∀z ∈ D;

(iv) r(T ) ≤ 1 and A− 2Re(z(A− I)T ) + |z|2T ∗(A− 2I)T ≥ 0, ∀z ∈ D;

(v) Let S := Span({z 7→ zn, z 7→ z̄n, n ≥ 0}) ⊂ C0(∂D). Let φ : S → L(H) be the linear map
satisfying φ(1) = A, φ(z 7→ zn) = Tn, φ(z 7→ z̄n) = (T ∗)n ∀n ≥ 1.
Then φ is positive: For every trigonometric polynomial P ∈ S such that P (w) ≥ 0 for all
w ∈ ∂D, we have φ(P ) ≥ 0.

Proof. (i) ⇔ (ii) We can mimic the proof of Proposition 1.2.6, that states a similar result for
classes C(ρn), in order to obtain the result. The proof of the implication (ii)⇒ (i) relies mainly
on Theorem 1.2.4.
- (ii)⇔ (iii) We recall that for R,S ∈ L(H) with S invertible, we have

Re(R) ≥ 0⇔ Re(SRS∗) ≥ 0.

We can then obtain the equivalence (ii)⇔ (iii) by choosing

R = I + 2
∑
n≥1

(zT )n, S = A
1
2 ,

and by rearranging the expressions.
- (iii) ⇔ (iv) Since r(T ) ≤ 1, (I − zT ) is invertible for every z ∈ D. By using the previous
property and the fact that A is self-adjoint, we get

Re(A+ 2
∑
n≥1

(zT )n) ≥ 0

⇔Re(A− 2I + 2(I − zT )−1) ≥ 0

⇔Re((I − zT )∗(A− 2I)(I − zT ) + 2(I − zT )∗) ≥ 0

⇔(I − zT )∗(A− 2I)(I − zT ) + 2Re((I − zT )∗) ≥ 0

⇔(A− 2I)− (zT )∗(A− 2I)− (A− 2I)zT + |z|2T ∗(A− 2I)T + 2Re(I − zT ) ≥ 0

⇔A− 2I − 2Re((A− 2I)zT ) + |z|2T ∗(A− 2I)T + 2I − 2Re(zT ) ≥ 0

⇔A− 2Re(z(A− I)T ) + |z|2T ∗(A− 2I)T ≥ 0

⇔A− 2Re(z(A− I)T ) + |z|2T ∗(A− 2I)T ≥ 0,
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which proves the equivalence.
- (i) ⇒ (v) Let fP ∈ S be a trigonometric polynomial such that fP (w) ≥ 0 for every w ∈ ∂D.
According to the Féjer-Riesz theorem, there exists Q ∈ C[X] such that fP (w) = Q(w)Q(w) for
every w ∈ ∂D. Since T lies in CA, we have a Hilbert space K containing H and an unitary
operator U ∈ L(K) such that

Tn = A
1
2PH .U

n|HA
1
2 , for every n ≥ 1.

This also gives us (T ∗)n = A
1
2PH .(U

∗)n|HA
1
2 = A

1
2PH .(U

−n)|HA
1
2 for every n ≥ 1. Since we

also have A = A
1
2PH(U0)|HA

1
2 , we can see that for every n ∈ Z we obtain

φ(z 7→ zn) = A
1
2PH .(U

n)|HA
1
2 .

Thus, we get

φ(fP ) = A
1
2PHfP (U)|HA

1
2 = A

1
2PHQ(U)Q(U)∗|HA

1
2 ,

as U is unitary. Such an operator is self-adjoint. For every h ∈ H we have

〈PHQ(U)Q(U)∗|Hh, h〉 = ||Q(U)∗h||2 ≥ 0,

so the self-adjoint operator PHQ(U)Q(U)∗|H is also positive. Hence φ(fP ) is self-adjoint positive,
so φ is positive.
- (v)⇒ (iii) The set S is a subspace of C0(D) that is stable for the adjoint map f 7→ f . As the
linear map φ : S → L(H) is positive, we can apply Proposition 2.1 of [Pau02] in order to obtain
the continuity of φ for ‖ · ‖L∞(D). Since S is dense in C0(D) according to the Stone-Weierstrass

Theorem, φ extends itself as a continuous linear map to C0(D). We also have

‖φ‖ ≤ 2‖φ(1)‖ = 2‖A‖,

according to [Pau02, Prop. 2.1]. As we also have φ(g) = φ(g) for every g ∈ S, we obtain

φ(Re(f)) = Re(φ(f)), for every f ∈ C0(D).

Take λ ∈ C, |λ| > 1 and f(z) := 1
λ−z −λ

−1. Thus f ∈ C0(D) and the power series decomposition

of f in 0 converges uniformly to f on D. Denote (Sn)n the sequence of partial sums of this series.
We have Sn(z) =

∑n
k=1 λ

−n−1zn. By continuity of φ, φ(Sn) converges in L(H) towards φ(f).
As φ(Sn) =

∑n
k=1 λ

−nTn, we obtain

‖λ−n−1Tn|| →n 0.

Since this fact is true for every |λ| > 1, this implies that r(T ) ≤ 1. Now, let z ∈ D and denote
fz(w) := 1+zw

1−zw . For every w ∈ D fz(w) belongs to the right half-plane Re≥0, so the map Re(fz)
is positive on ∂D. Thus the map Re(φ(fz)) = φ(Re(fz)) is self-adjoint positive in L(H). On
another hand, we have

fz(w) =
1 + zw

1− zw
=

2

1− zw
− 1 = 2

∑
n≥1

(zw)n + 1.

Since r(T ) ≤ 1, |z| < 1, and φ is continuous, we get φ(fz) = 2
∑

n≥1(zT )n +A. Combining both
facts yields Re(2

∑
n≥1(zT )n +A) ≥ 0, which gives item (iii) and concludes the proof.
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Remark 2.1.5.

(i) We can see from condition (iii) of Proposition 2.1.4 that 0 belongs to the class CA. Hence
all classes CA are non-empty.

(ii) The condition (iv) of Proposition 2.1.4 also allow us to apply Theorem 2.4 in Paulsen’s
book [Pau02] about positive maps over continuous functions on a compact Hausdorff space,
in order to obtain

‖φ‖ = ‖φ(1)‖ = ‖A‖.

(iii) The linear map φ allows us to build a functional calculus over C0(D) for any T ∈ CA, with

f(T ) := φ(f) + (I −A)f(0) = φ(f − f(0)) + f(0)I.

The map f 7→ f(T ) is then well-defined and continuous. It is a morphism of C∗-algebras
on S that sends every polynomial map P onto P (T ). Thus it is also a morphism of C∗-
algebras on C0(D) by continuity and by density of S.
For any f we then have

‖f(T )‖ ≤ ‖A‖ · ‖f‖+ ‖A− I‖|f(0)| ≤ (‖A‖+ ‖A− I‖)‖f‖.

If f(0) = 0 this inequality becomes ‖f(T )‖ ≤ ‖A‖‖f‖.

(iv) On the specific caseA = ρI, ρ > 0, it has been shown by [AO75, Thm.2] that we have in fact
‖f(T )‖ ≤ ρ‖f‖ for every f ∈ C0(D). However this proof relies on a specific factorization
of operators in classes Cρ, and we neither have a more elementary way to obtain such an
upper bound nor a method to obtain a similar factorization result for operators in classes
CA. Hence, the best upper bound we can currently obtain for the norm of the functional
calculus on operators in classes CA is

‖f 7→ f(T )‖ ≤ ‖A‖+ ‖A− I‖.

It is the best result obtainable using the theory of positive maps (see [Pau02, Ch.2] ) as
we did.

Corollary 2.1.6. Let H be a Hilbert space and let A,B ∈ L(H) with A ≥ B > 0. Then
CB ⊂ CA.

Proof. Let T ∈ CB. According to equivalence (i)⇔ (iii) of Proposition 2.1.4, we have r(T ) ≤ 1
and

B + Re(2
∑
n≥1

(zT )n) ≥ 0, ∀z ∈ D.

Since A ≥ B, we immediately obtain r(T ) ≤ 1 and

A+ Re(2
∑
n≥1

(zT )n) ≥ 0, ∀z ∈ D,

hence T ∈ CA.

Hence, any class CA contains the class C 1
‖A−1‖

.
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Proposition 2.1.7. Let A, T ∈ L(H) with A > 0. If T ∈ CA then T is similar to a contraction.

Proof. Since A ≤ ‖A‖I, Corollary 2.1.6 tells us that T lies in C‖A‖. As every operator in any
class Cρ is similar to a contraction, we obtain the desired result.

Lemma 2.1.8. Let H1, H2 be Hilbert spaces. Let A, T ∈ L(H1), B,S ∈ L(H2), be such that
A > 0, B > 0. If T ∈ CA(H1) and S ∈ CB(H2), then T ⊗ S ∈ CA⊗B(H1 ⊗H2).

Proof.
Let K1 be a Hilbert space containing H1, K2 be a Hilbert space containing H2, U an unitary
operator acting on K1, and V an unitary operator acting on K2 such that:

Tn = A
1
2PH1U

n|H1A
1
2 , Sn = B

1
2PH2V

n|H2B
1
2 , , ∀n ≥ 1.

Denote W = U ⊗ V . Then W is an unitary operator acting on K1 ⊗K2 with Wn = Un ⊗ V n,
∀n ≥ 1. For every k1 ⊗ k2 ∈ K1 ⊗K2, we also have:

PH1⊗H2(k1 ⊗ k2) = (PH1(k1))⊗ (PH2(k2)).

Thus, for every h1 ∈ H1, h2 ∈ H2, n ≥ 1, we obtain

(A⊗B)
1
2PH1⊗H2W

n|H1⊗H2(A⊗B)
1
2 (h1 ⊗ h2) = (A⊗B)

1
2PH1⊗H2 [UnA

1
2 (h1)⊗ V nB

1
2 (h2)]

=(A
1
2PH1U

nA
1
2 (h1))⊗ (B

1
2PH2V

nB
1
2 (h2))] = (Tn(h1))⊗ (Sn(h2))

=(T ⊗ S)n(h1 ⊗ h2).

Therefore, we have

(A⊗B)−
1
2 (T ⊗ S)n(A⊗B)−

1
2 = PH1⊗H2W

n|H1⊗H2 ,

which concludes the proof.

Proposition 2.1.9. Let H be a Hilbert space. Let A, T ∈ L(H) be such that A > 0. The
following are equivalent

(i) T ∈ CA(H);

(ii) 〈Ah, h〉 − 2Re(〈z(A− I)Th, h〉) + |z|2〈(A− 2I)Th, Th〉 ≥ 0, ∀z ∈ D, ∀h ∈ H;

(iii) 〈Ah, h〉 − 2r|〈(A− I)Th, h〉|+ r2〈(A− 2I)Th, Th〉 ≥ 0, ∀r ∈ [0, 1[, ∀h ∈ H;

(iv) P (A, z, T, n) :=


A zT ... (zT )n

(zT )∗ ... ...
... ... zT

((zT )∗)n ... (zT )∗ A


(n+1)×(n+1)

≥ 0, ∀z ∈ D, ∀n ≥ 1;

Proof. (i)⇒ (ii) By using the equivalence (i)⇔ (iv) in Proposition 2.1.4 we have A−2Re(z(A−
I)T ) + |z|2T ∗ (A− 2I)T ≥ 0, ∀z ∈ D, which gives condition (ii).
- (ii)⇒ (i) With the previous argument, we only need to show that r(T ) ≤ 1. Using the proof
of (iii)⇔ (iv) in Proposition 2.1.4, we can see that A− 2Re(z(A− I)T ) + |z|2T ∗ (A− 2I)T ≥ 0
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is equivalent to (I − zT )∗(A − 2I)(I − zT ) + 2Re((I − zT )) ≥ 0. Since we have ‖A‖I ≥ A, we
obtain

(‖A‖−2)(I−zT )∗(I−zT )+2Re(I−zT ) = (I−zT )∗(‖A‖I−2I)(I−zT )+2Re(I−zT ) ≥ 0, ∀z ∈ D.

Hence, item (iv) of Lemma 1.3.1 is satisfied for ρ = ‖A‖, therefore we have T ∈ C‖A‖ so r(T ) ≤ 1.
- (ii)⇔ (iii) Let h ∈ H and let r ∈ [0, 1[. As we have

sup
|z|=r

2Re(〈z(I −A)Th, h〉) = 2rRe(〈(I −A)Th, h〉),

we obtain

〈Ah, h〉 − 2Re(〈z(I −A)Th, h〉) + |z|2〈(A− 2I)Th, Th〉 ≥ 0, ∀z: |z| = r

⇔〈Ah, h〉 − 2rRe(〈(I −A)Th, h〉) + r2〈(A− 2I)Th, Th〉 ≥ 0,

therefore the two conditions are equivalent.
- (i) ⇒ (iv) Let n ≥ 1 and denote H1 = H, H2 = Cn+1, B = In+1. Define S = Sn+1 ∈ L(H2)
the left shift. As ‖Sn+1‖ = 1, we have Sn+1 ∈ C1(H2) = CIn+1(H2). We can then apply Lemma
2.1.8 to obtain (T ⊗ Sn+1) ∈ CA⊗In+1(H1 ⊗H2). Since (T ⊗ Sn+1) is nilpotent of order at most
n+ 1, Proposition 2.1.4 gives us

A⊗ In+1 + 2Re(
n∑
k=1

zk(T ⊗ Sn+1)k) ≥ 0, ∀z ∈ D,

which gives condition (iv).
- (iv) ⇒ (ii) Let n ≥ 1. Since (T ⊗ Sn+1) is nilpotent, we have r(T ⊗ Sn+1) = 0 ≤ 1. Hence
(T ⊗ Sn+1) satisfies condition (iii) of Proposition 2.1.4, so (T ⊗ Sn+1) ∈ CA⊗In+1 . Now, let

h ∈ H and denote h̃ = 1
n+1(h, ..., h). We can then use condition (ii) of this Proposition for

(T ⊗ Sn+1), A⊗ In+1 and h̃. We obtain

n+ 1

n+ 1
〈Ah, h〉 − Re(

2z

n+ 1
n〈(I −A)Th, h〉) +

|z|2

n+ 1
n〈(A− 2I)Th, Th〉 ≥ 0, ∀z ∈ D

⇔〈Ah, h〉 − n

n+ 1
Re(2z〈(I −A)Th, h〉) +

n

n+ 1
|z|2〈(A− 2I)Th, Th〉 ≥ 0, ∀z ∈ D

Since this is true for every n ≥ 1, taking the limit when n→ +∞ gives

〈Ah, h〉 − Re(2z〈(I −A)Th, h〉) +
n

n+ 1
|z|2〈(A− 2I)Th, Th〉 ≥ 0, ∀z ∈ D,

so condition (ii) is obtained.

Remark 2.1.10. Condition (iv) of Proposition 2.1.9 needs A to be self-adjoint positive, hence the
operator matrix P (A, z, T, n) has no chance to be self-adjoint positive for every z ∈ D. Hence,
we cannot really mimic this kind of idea for Cρ classes with ρ ∈ C \ R+. We could obtain a

similar condition by using the fact that Cρ = |ρ|
1+|ρ−1|C1+|ρ−1| and using Proposition 2.1.9 for

A = (1 + |ρ− 1|)I but this would only rely on Proposition 1.3.3 and no additional information
would be obtained.

As we obtained multiple characterizations of classes CA as well as some results regarding the
operators they contain, we can now introduce and study the A-radius of an operator to quantify
its distance to the class CA, similarly to how the ρ-radius behaves with respect the class Cρ (or
(ρn)-radius with respect to the class C(ρn)).
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2.2 The Operator Radii wA

Similarly to classes C(ρn), each class CA can be associated to a map, called a A-radius, that can
measure how ”far” an operator T is from (or inside) the class. We will show that a A-radius is,
similarly to (ρn)-radii, a quasi-norm that is equivalent to the operator norm ‖ · ‖, whose closed
unit ball is the class CA. Each property of the classes CA can be transposed to a property on
the A-radii.

Definition 2.2.1. Let A, T ∈ L(H) be such that A > 0. We define

wA(T ) := inf({r > 0:
1

r
T ∈ CA(H)}),

which is called the A-radius of T .

We can see that when A = ρI, ρ > 0, the A-radius coincides with the ρ-radius, that is
wρI = wρ.

Lemma 2.2.2. Let A ∈ L(H) with A > 0. Then, for every T ∈ L(H), wA(T ) is finite.
We also have wA(T ) = 0 if and only if T = 0, and

‖T‖
‖A‖

≤ w‖A‖(T ) ≤ wA(T ) ≤ w‖A−1‖−1(T ).

Proof. Let T ∈ L(H). Since A is self-adjoint, positive and invertible, we have ‖A‖I ≥ A ≥
1

‖A−1‖I > 0. If T = 0 then condition (iii) of Proposition 2.1.4 is met, so T ∈ CA and wA(T ) ≤ 1.

Since for every r > 0 we have 1
rT = 0 ∈ CA, we obtain wA(T ) = 0.

If T 6= 0, then w‖A−1‖−1(T ) is non-zero and finite. From our previous remark and from results
on classes Cρ (see Lemma 1.2.12), we have

1

w‖A−1‖−1(T )
T ∈ C‖A−1‖−1I .

Thus 1
w‖A−1‖−1 (T )T ∈ CA according to Corollary 2.1.6. Hence, wA(T ) ≤ w‖A−1‖−1(T ) and this

quantity is finite.
When T 6= 0 we have w‖A‖(T ) 6= 0. Let 0 < r < w‖A‖(T ). Then 1

rT /∈ C‖A‖. Hence, 1
rT cannot

lie in CA according to Corollary 2.1.6. Therefore we have 0 < w‖A‖(T ) ≤ wA(T ). The results
about ρ-radii give us the leftmost inequality, which concludes the proof.

Proposition 2.2.3. Let A, T ∈ L(H) with A > 0. The following are equivalent

(i) T ∈ CA(H);

(ii) wA(T ) ≤ 1;

(iii) wA⊗In+1(T ⊗ Sn+1) ≤ 1, ∀n ≥ 1;

(iv) P (A, 1, T, n) ≥ 0, ∀n ≥ 1.
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Proof. (i)⇒ (ii) Since 1
1T ∈ CA, we have wA(T ) ≤ 1.

- (ii)⇒ (i) Let rn ∈ R∗+ be a decreasing sequence such that T
rn
∈ CA and limn(rn) = wA(T ) ≤ 1.

If T = 0 then T ∈ CA and there is nothing to prove. If T 6= 0, then wA(T ) 6= 0 according to
Lemma 2.2.2. Condition (iii) of Proposition 2.1.4 gives us, for all n ≥ 1:

r(
T

rn
) ≤ 1 and A+ 2Re(

∑
m≥1

(
zT

rn
)m) ≥ 0, ∀z ∈ D.

Therefore we have on one hand r(T ) ≤ rn, so r(T ) ≤ wA(T ) ≤ 1. On another hand, we have
A+

∑
m≥1(wT )m ≥ 0 for every w in

⋃
n≥1 D(0, 1

rn
). The properties of the sequence (rn)n imply

that
⋃
n≥0 D(0, 1

rn
) = D(0, 1

wA(T )). Since 1
wA(T ) ≥ 1, we have A +

∑
m≥1(wT )m ≥ 0 for every

w ∈ D. Therefore T lies in CA according to Proposition 2.1.4.
- (iii)⇔ (i) With equivalence (i)⇔ (ii) of this Proposition and with the fact that (T ⊗Sn+1) is
nilpotent of order at most n+ 1, we can see that we have wA⊗In+1(T ⊗ Sn+1) ≤ 1 if and only if

A+ 2Re(
n∑
k=1

(zT ⊗ Sn+1)k) ≥ 0, ∀z ∈ D.

The latter condition is equivalent to P (A, z, T, n) ≥ 0 for every z ∈ D. Hence, the equivalence
(iv)⇔ (i) of Proposition 2.1.9 gives the desired result.
- (iv)⇔ (i) Let n ≥ 1. For every x ∈ Hn+1, the map gx : z 7→ 〈P (A, z, T, n)(x), x〉 is harmonic
on C as the real part of an analytic map. Due to harmonicity, this map takes positive values on
D if and only if it takes positive values on ∂D. For z ∈ ∂D, denote Bz := diag(I, zI, ..., znI). A
computation then gives B∗zP (A, 1, T, n)Bz = P (A, z, T, n), so

〈P (A, z, T, n)(x), x〉 = 〈P (A, 1, T, n)(Bz(x)), Bz(x)〉.

Hence, the map gx takes positive values on ∂D for every x ∈ Hn+1 if and only if gx(1) is positive
for every x ∈ Hn+1. Thus, the operators P (A, z, T, n) are positive for every z ∈ D if and only
if P (A, 1, T, n) ≥ 0. Therefore, we have P (A, 1, T, n) ≥ 0 for every n ≥ 1 if and only if we have
P (A, z, T, n) ≥ 0 for every z ∈ D and every n ≥ 1, which is in turn equivalent to T ∈ CA.

Proposition 2.2.4. Let H be a Hilbert space. Let A ∈ L(H), with A > 0. Then wA is a
quasi-norm that is equivalent to the operator norm ‖ · ‖, and whose closed unit ball is the class
CA.

Proof. Let S, T ∈ L(H). We obtained in Lemma 2.2.2 that w‖A−1‖−1(T ) ≤ wA(T ) ≤ w‖A‖(T ).
Since all ρ-radius are quasi-norms, this inequality gives us a quasi-triangular inequality for wA.
Indeed,

wA(S + T ) ≤ w‖A‖(S + T ) ≤ w‖A‖(I)‖S + T‖ ≤ w‖A‖(I)(‖S‖+ ‖T‖)
wA(S + T ) ≤ w‖A‖(I)(w‖A−1‖(I)w‖A−1‖−1(S) + w‖A−1‖(I)w‖A−1‖−1(S))

wA(S + T ) ≤ w‖A‖(I)w‖A−1‖(I)(wA(S) + wA(T )).

Hence we only need to prove that wA(zT ) = |z|wA(T ) for every z ∈ C in order for wA to be a
quasi-norm. Let z ∈ C. Since we know that wA(0) = 0, there is nothing to prove when z = 0
or T = 0. Suppose that z 6= 0 and T 6= 0. We then have wA(T ) 6= 0. By looking at the proof
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of implication (ii) ⇒ (i) in Proposition 2.2.3, we can see that 1
wA(S)S ∈ CA for any non-zero

operator S. Take S = |z|T . We then have |z|
wA(S)T = S

wA(S) ∈ CA. Hence, the definition of

wA(T ) gives us

wA(T ) ≤ wA(|z|T )

|z|
.

If we now take w = 1/z and T ′ = |z|T , we have

wA(|z|T ) = wA(T ′) ≤ wA(|w|T ′)
|w|

= |z|wA(T ),

thus wA(|z|T ) = |z|wA(T ). Let λ ∈ ∂D and U ∈ L(H). Since r(λS) = r(S) and since wλ
describes the whole unit disc when w describes it, we can see from condition (ii) of Proposition
2.1.4 that U ∈ CA if and only if λU ∈ CA. Therefore, we obtain

{r > 0:
1

r
|z|T ∈ CA} = {r > 0:

1

r
zT ∈ CA},

and looking at their infimum gives wA(zT ) = wA(|z|T ) = |z|wA(T ). Therefore the A-radius wA
is a quasi-norm. Since ρ-radii are equivalent to the norm ‖ · ‖, so does wA. Also, the equivalence
(i) ⇔ (ii) from Proposition 2.2.3 tells us that the closed unit ball for wA is exactly the class
CA.

Remark 2.2.5. Since the A-radius is homogeneous and since its closed unit ball is CA, we can
find similarly to the (ρn)-radii that the set {r > 0: 1

rT ∈ CA} is equal to [wA(T ),+∞[ when
T 6= 0 and to R∗+ when T = 0.

As the A-radius is also equivalent as a quasi-norm to ‖ · ‖, its closed unit ball is then closed
for the operator norm ‖ · ‖. Hence, all classes CA are closed subsets of L(H) that only contain
operators that are similar to contractions.

Proposition 2.2.6. Let H be a Hilbert space. Let A,B, T ∈ L(H) with A,B > 0. We have

(i) lim
‖B−1‖→0

(wB(T )) = r(T ) ;

(ii) wA(T ∗) = wA(T );

(iii) wA(T k) ≤ wA(T )k, ∀k ≥ 0;

(iv) For B ≥ A, we have wB(T ) ≤ wA(T ).

Proof. (i) Let η > 0 and B > 0 be such that ‖B−1‖ ≤ η. On one hand, we have

wB(T ) ≥ w‖B‖(T ) ≥ r(T ).

While on the other hand, we have

wB(T ) ≤ w‖B−1‖−1(T ) ≤ w 1
η
(T ).

Since limρ→+∞wρ(T ) = r(T ), then lim
‖B−1‖→0

(wB(T )) exists and is equal to r(T ).

- (ii) If T = 0 then there is nothing to prove. If T 6= 0, we have T
wA(T ) ∈ CA. Remark 2.1.3 tells
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us then that T ∗

wA(T ) ∈ CA, that is wA( T ∗

wA(T )) ≤ 1, or wA(T ∗) ≤ wA(T ) by homogeneity of wA.

We obtain the converse inequality by considering S = T ∗.
- (iii) Let k ≥ 1. If T = 0 then there is nothing to prove. If T 6= 0, we have T

wA(T ) ∈ CA.

Remark 2.1.3 tells us then that ( T
wA(T ))k ∈ CA, that is wA( Tk

wA(T )k
) ≤ 1, or wA(T k) ≤ wA(T )k,

by homogeneity of wA.
- (iv) If T = 0 then there is nothing to prove. If T 6= 0, we have T

wA(T ) ∈ CA ⊂ CB according to

Corollary 2.1.6. Hence, wB( T
wA(T )) ≤ 1, so wB(T ) ≤ wA(T ).

Proposition 2.2.7. Let H be a Hilbert space and let A,B, S, T ∈ L(H) with A > 0, B > 0. If
these operators double-commute with each other (e.g. TS = ST ,TS∗ = S∗T ), then

wAB(ST ) ≤ wA(S)wB(T ).

Proof. If S = 0 or T = 0, then ST = 0 and both sides of the inequality are equal to zero. If
S 6= 0 and T 6= 0 then, up to dividing S and T by their respective radius we can consider that
wA(S) = wB(T ) = 1. Thus, we need to prove that wAB(ST ) ≤ 1. We define

Tm :=


Tm if m ≥ 1
B if m = 0

(T ∗)|m| if m ≤ −1

, Sm :=


Sm if m ≥ 1
A if m = 0

(S∗)|m| if m ≤ −1.

As wA(S) = wB(T ) = 1, we have S ∈ CA and T ∈ CB. Item (iii) of Proposition 2.1.4 then
ensures us that the conditions of Proposition 1.4.1 are fulfilled, since

A+ Re(
∑
n≥1

(reitS)n) =
∑
m∈Z

r|m|eimtSm, for all 0 ≤ r < 1, t ∈ R,

and since the same is true for (Tm)m. Hence, 2.1.4 tells us that
∑

m∈Z r
|m|eimtSmTm converges

absolutely, is self-adjoint, and has a positive sum, for all 0 ≤ r < 1, t ∈ R. This implies that
the series

∑
n≥1(reitST )n is absolutely convergent and that AB + Re(

∑
n≥1(reitST )n) ≥ 0 for

all 0 ≤ r < 1, t ∈ R. Thus ST ∈ CAB and wAB(ST ) ≤ 1, which concludes the proof.

Lemma 2.2.8. Let H be a Hilbert space and let T ∈ L(H). For every r > 0, we have

inf({ρ > 0: wρ(T ) ≤ r}) = inf({‖A‖, A > 0: wA(T ) ≤ r}).

Proof. Let r > 0. Denote a1 and a2 these infima. Since w‖A‖(T ) ≤ wA(T ), if there is no ρ > 0
such that wρ(T ) ≤ r, then there is no A > 0 such that wA(T ) ≤ r. Conversely, if there is
no A > 0 such that wA(T ) ≤ r, then we have wρ(T ) = wρI(T ) > r for every ρ > 0. Thus,
if one of these sets is empty so is the other one. Suppose now that both sets are not empty,
so a1, a2 < +∞. We recall from Proposition 1.4.8 that the map ρ 7→ wρ(T ) is continuous on
]0,+∞[, decreasing, and tends to +∞ when ρ tends to 0. Thus we also have a1 > 0.

Since the set on the left is contained in the set on the right, we can see that a2 ≤ a1 and
a1 > 0. If we had a2 < a1, then we would have A > 0 such that wA(T ) ≤ r and ‖A‖ < a1. But
this would mean that w‖A‖(T ) ≤ wA(T ) ≤ r, which contradicts the minimality of a1. Hence we
get a1 = a2, which concludes the proof.
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Example 2.2.9. Let ρ, τ > 1. For T = S2, S = T ∗, A = ρI2, B = τI2, we have TS = diag(1, 0)
and

wAB(TS) = 1 >
1

ρτ
= wA(S)wB(T ).

Hence the result of Proposition 2.2.7 does not remain true when T and S do not double-commute.

Remark 2.2.10. We can try to obtain different inequalities like 2.2.7 by weakening the double-
commutativity condition between S and T to commutativity only, similarly to the results in
[AO76]. However, as A and B are self-adjoint commutativity between T (or S) and A or B
implies double-commutativity between these operators (if TA = AT then AT ∗ = T ∗A).

Lemma 2.2.11. Let m ≥ 1. Let H1, ...Hm be Hilbert spaces. Let Ai, Ti ∈ L(Hi), with Ai > 0,
for every 1 ≤ i ≤ m. Define H = H1⊕ ..⊕Hm, A = diag(A1, ..., Am) and T = diag(T1, ..., Tm).
Then, A > 0 and we have wA(T ) = maxi(wAi(Ti)).

Proof. Since all Ai are self-adjoint, positive and invertible, so is A = diag(A1, ..., Am). Let
u > 0. We have r(Tu ) = maxi(r(

Ti
u ). Hence, we have r(Tu ) ≤ 1 if and only if r(Tiu ) ≤ 1 for every

1 ≤ i ≤ m. Take u > 0 such that r(Tu ) ≤ 1. We then have

T

u
∈ CA

⇔A+ 2Re(
∑
n≥1

(z
T

u
)n) ≥ 0, ∀z ∈ D

⇔diag(A1, .., Am) + diag

2Re(
∑
n≥1

(z
T1

u
)n), .., 2Re(

∑
n≥1

(z
Tm
u

)n)

 ≥ 0, ∀z ∈ D

⇔diag

A1 + 2Re(
∑
n≥1

(z
T1

u
)n), .., Am + 2Re(

∑
n≥1

(z
Tm
u

)n)

 ≥ 0, ∀z ∈ D

⇔Ai + 2Re(
∑
n≥1

(z
Ti
u

)n) ≥ 0, ∀z ∈ D, ∀1 ≤ i ≤ m

⇔Ti
u
∈ CAi , ∀1 ≤ i ≤ m.

Therefore, by definition of wA(T ), we have

wA(T ) = sup
i

(inf{u > 0:
Ti
u
∈ CAi}) = max

i
(wAi(Ti)).

As we obtained the main characterizations and results about classes CA and A-radii wA, we
can use them to make some computations and obtain various inequalities.

Proposition 2.2.12. Let H be a Hilbert space and A,B, T ∈ L(H) with A,B > 0. We have

(i) wA(I) = w 1
‖A−1‖

(I) =

{
1 if A ≥ I
2‖A−1‖ − 1 else

;
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(ii) w A
‖A‖

(I) = 2‖A‖‖A−1‖ − 1 = w A−1

‖A−1‖
(I);

(iii) If T,A,B commute with each other, then wA(T ) ≤ wAB−1(I)wB(T ).
If we also have A ≤ B, then wB(T ) ≤ wA(T ) ≤ (2‖AB−1‖ − 1)wB(T ).

(iv) The inequalities w 1
‖A−1‖

(T ) ≥ wA(T ) ≥ w‖A‖(T ) are optimal for a fixed A.

Proof. (i) The numerical range of A is W (A) = [ 1
‖A−1‖ , ‖A‖]. Let u > 0. Using condition (ii) of

Proposition 2.1.4 we can notice that 1
uI lies in CA if and only if 1

uI lies in Cρ for every ρ ∈W (A).
Since we have Cρ ⊂ Cτ when ρ ≥ τ , this condition is equivalent to 1

uI ∈ C‖A−1‖−1 . Hence, we
obtain wA(I) = w‖A−1‖−1(I), and we can use Corollary 1.3.5 to compute it.
- (ii) The result comes from item (i).
- (iii) We can use Proposition 2.2.7 to get the result. When A ≤ B, we have AB−1 ≤ I, so

wAB−1(I) = (2‖AB−1‖ − 1).

- (iv) If A = ρI, both inequalities are always attained. Else, we have 1
‖A−1‖ 6= ‖A‖. The left hand

inequality is attained for T = I. For the right hand one, take η > 0 such that 1
‖A−1‖ < ‖A‖− η.

Using the theory of characteristic projections for self-adjoint operators (see [Sim15, Thm.5.1.5,
p.292-295] ), take T = χ[‖A‖−η,‖A‖](A). T is then an orthogonal projection that is non-zero, that
commutes with A, and such that

W (A|Ran(T )) = [‖A‖ − η, ‖A‖] ∩W (A) ⊃ [‖A‖ − η, ‖A‖[.

Thus, we can define H1 = T (H), H2 = (I − T )(H), A1 = A|H1 , A2 = A|H1 , T1 = T |H1 ,
T2 = T |H2 . WithH = H1⊕H2 we can see that we have A = diag(A1, A2) and T = diag(T1, T2) =
diag(IH1 , 0H2). Therefore, Lemma 2.2.11 gives us

wA(T ) = max(wA1(IH1), wA2(0)) = wA1(IH1) = w‖A‖−η(I) = w‖A‖−η(T ).

Since the map ρ 7→ wρ(I) is continuous and decreasing, for every ε > 0 we can then find η > 0
such that w‖A‖(I)−w‖A‖−η(I) ≤ ε. Hence, we can find a T ∈ L(H) such that w‖A‖(T )−wA(T ) ≤
ε.

Proposition 2.2.13. Let H be a Hilbert space. Let A ∈ L(H) with A > 0.
If A ≤ 2I then wA(·) is a norm.

Proof. (ii) Since the A-radius wA is a quasi-norm, showing that it is a norm amounts to showing
that its closed unit ball, CA, is convex. Let S, T ∈ CA and t ∈ [0, 1]. We need to prove that
tS + (1 − t)T ∈ CA. Since 0 < A ≤ 2I, 2I − A possesses a square root. Condition (ii) of
Proposition 2.1.9 applied to T gives us

〈Ah, h〉 − 2Re(〈z(A− I)Th, h〉) + |z|2〈(A− 2I)Th, Th〉 ≥ 0, ∀z ∈ D, ∀h ∈ H

⇔‖
√
Ah‖2 − 2Re(〈z(A− I)Th, h〉) ≥ |z|2〈(2I −A)Th, Th〉, ∀z ∈ D, ∀h ∈ H

⇔‖
√
Ah‖2 − 2Re(〈z(A− I)Th, h〉) ≥ |z|2‖

√
2I −ATh‖2, ∀z ∈ D, ∀h ∈ H

Hence, by combining this inequality with the same one for S, we obtain, for every z ∈ D and
h ∈ H:

‖
√
Ah‖2 − 2Re(〈z(A− I)(tS + (1− t)T )h, h〉) ≥ |z|2[t‖

√
2I −ASh‖2 + (1− t)‖

√
2I −ATh‖2].
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The map ‖ · ‖ : H → R+ is convex and the map x ∈ R+ 7→ x2 ∈ R+ is convex and increasing.
Hence, the map h 7→ ‖h‖2 is convex. Therefore, we get

‖
√
Ah‖2−2Re(〈z(A−I)(tS+(1−t)T )h, h〉) ≥ |z|2‖

√
2I −A(tS+(1−t)T )h‖2, ∀z ∈ D, ∀h ∈ H.

The previous computations show that this inequality can be reformulated into

〈Ah, h〉−2Re(〈z(A−I)(tS+(1− t)T )h, h〉)+ |z|2〈(A−2I)(tS+(1− t)T )h, (tS+(1− t)T )h〉 ≥ 0,

for every z ∈ D and h ∈ H. Thus, the operator (tS + (1 − t)T ) satisfies condition (ii) of
Proposition 2.1.9, so it belongs to the class CA.

2.3 Computations and Some Applications

The following proposition gives some improvements over Proposition 3.2 of [Sue98a]. The other
results in this subsection (from Lemma 2.3.3 through Proposition 2.3.9) are believed to be new.

Proposition 2.3.1. Let H be a Hilbert space, and A, T, V ∈ L(H) with A > 0 and V an
isometry. We have

(i) wV AV ∗(V TV
∗) = wA(T );

(ii) wV ∗AV (T ) ≤ wA(V TV ∗).
If we also have [V,A] := V A−AV = 0, then wA(V TV ∗) = wA(T ).

(iii) If [V V ∗, T ] = 0 and [V,A] := V A − AV = 0, then for H1 = Ker(V V ∗), H2 = Ran(V V ∗)
we have

wA(T ) = max(wA|H1
(T |H1), wA|H2

(T |H2)) and wA(V ∗TV ) = wA|H2
(T |H2).

If we also have T = V T ′ for some T ′, then

wA(V ∗T ) = wA(TV ∗) and wA(T ′V ) = wA(T ) = wA(V T ′).

(iv) Let U be an unitary. Then wA(UTU∗) = wU∗AU (T ).
If we also have [U,A] = 0 then wA(UTU∗) = wA(U∗TU) = wA(T ).

(v) If [V,A] = [V, T ] = 0, then wA(V T ) ≤ wA(T ).

(vi) If A ≤ 2I, then wA(Re(T )) ≤ wA(T ) and wA(Ran(T )) ≤ wA(T ).

Proof. (i) If T = 0 there is nothing to prove. Assume now that T 6= 0. We recall that for any
B,C ∈ L(H), we have Re(C) ≥ 0⇒ Re(BCB∗) = BRe(C)B∗ ≥ 0. Since V is an isometry, for
any n ≥ 0 we have (V TV ∗)n = V TnV ∗. Hence, we get

‖Tn‖ ≤ ‖V ∗‖‖V TnV ∗‖‖V ‖ = ‖(V TV ∗)n‖ = ‖V TnV ∗‖ ≤ ‖Tn‖,
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so we obtain r(T ) = r(V TV ∗). Let u > 0 be such that r(Tu ) ≤ 1. We then have

Re(A+ 2
∑
n≥1

(z
T

u
)n) ≥ 0, ∀z ∈ D

⇒Re(V (A+ 2
∑
n≥1

(z
T

u
)n)V ∗) ≥ 0, ∀z ∈ D

⇔Re(V AV ∗ + 2
∑
n≥1

(z
V TV ∗

u
)n) ≥ 0, ∀z ∈ D

⇒Re(V (A+ 2
∑
n≥1

(z
T

u
)n)V ∗) ≥ 0, ∀z ∈ D

⇒Re(V ∗V (A+ 2
∑
n≥1

(z
T

u
)n)V ∗V ) ≥ 0, ∀z ∈ D

Thus we end up with T
u ∈ CA if and only if V TV ∗

u ∈ CV AV ∗ , which gives in turn wA(T ) =
wV AV ∗(V TV

∗).
- (ii) Let u > 0 be such that V TV ∗

u ∈ CA. Let n ≥ 1, and recall that Sn+1 is the left shift
operator on Cn+1. Using Propositions 2.1.9 and 2.2.3 we then have

P (A, 1,
V TV ∗

u
, n) = Re(A⊗ In+1 + 2

n∑
k=1

(
V TV ∗

u
⊗ Sn+1)k) ≥ 0

⇔Re(A⊗ In+1 + 2

n∑
k=1

V ⊗ In+1 · (
T

u
⊗ Sn+1)k · V ∗ ⊗ In+1) ≥ 0

⇒Re((V ∗AV )⊗ In+1 + 2
n∑
k=1

(
T

u
⊗ Sn+1)k) ≥ 0

⇒P (V ∗AV, 1,
T

u
, n) ≥ 0.

Therefore, V TV ∗

u ∈ CA implies that T
u ∈ CV ∗AV . This gives

wV ∗AV (T ) ≤ wA(V TV ∗).

When A commutes with V , we have V AV ∗ = AV V ∗. Since V V ∗ is an orthogonal projection
we have 0 ≤ V V ∗ ≤ I. Since A is self-adjoint it commutes with V ∗ so it commutes with V V ∗.
Hence, we have 0 ≤ AV V ∗ ≤ A. Thus,

wA(V TV ∗) ≤ wAV V ∗(V TV ∗) = wA(T ) = wAV ∗A(T ) = wV ∗AV (T ) ≤ wA(V TV ∗).

- (iii) Since V is an isometry, V V ∗ is an orthogonal projection. Hence H1 = Ker(V V ∗) and

H2 = Ran(V V ∗) satisfy H = H1

⊥
⊕H2. As T and A commute with V V ∗ they leave H1 and H2

stable, so we can use Lemma 2.2.11 to obtain wA(T ) = max(wA|H1
(T |H1), wA|H2

(T |H2)).

By using item (ii) we get wA(V ∗TV ) = wA(V V ∗TV V ∗) = wA(T (V V ∗)2) = wA(TV V ∗).
Since TV V ∗ also commutes with V V ∗ and since TV V ∗|Ker(V V ∗) = 0 and TV V ∗|Ran(V V ∗) =
T |Ran(V V ∗), we end up with

wA(V ∗TV ) = wA(TV V ∗) = wA|H2
(T |H2).



2.3. Computations and Some Applications 83

If we also suppose that there exists T ′ such that T = V T ′, then wA(V ∗T ) = wA(T ′) =
wA(V T ′V ∗) = wA(TV ∗). We also have

TV V ∗ = V V ∗T = V V ∗V T ′ = V T ′ = T.

Therefore the previous computation gives us

wA(T ′V ) = wA(V ∗TV ) = wA(TV V ∗) = wA(T ).

- (iv) Let U be an unitary, so U∗ = U−1. Denote B = U∗AU . Using item (i) we obtain

wA(UTU∗) = wUBU∗(UTU
∗) = wB(T ) = wU∗AU (T ).

Suppose now that U commutes with A. We then have U∗ = U−1, which also commutes with A.
We can then get the result by applying item (i) with U and U∗.
- (v) If T = 0 there is nothing to prove. Assume now that T 6= 0. As V commutes with A,
we have V ∗AV = A. As V commutes with T , we have V ∗T kV k+l = T kV k = (TV )k for every
k ≥ 1. Up to dividing T by wA(T ), suppose that wA(T ) = 1. We then have P (A, 1, T, n) ≥ 0
for every n ≥ 1. A computation gives

diag(I, V, ..., V n)∗P (A, 1, T, n)diag(I, V, ..., V n) = P (A, 1, TV, n) ≥ 0.

Therefore, we have wA(TV ) ≤ 1 = wA(T ).
- (vi) This item comes from the fact that wA is a norm. Hence, we have

wA(Re(T )) = wA(
T + T ∗

2
) ≤ 1

2
(wA(T ) + wA(T ∗)) = wA(T ).

We can make a similar computation for Im(T ) = T−T ∗
2 .

Remark 2.3.2. The statement of item (iv) in Proposition 2.3.1 is false if we do not suppose that
U commutes with A. Proposition 2.3.5 and Remark 2.3.7 will provide a counter-example.

Lemma 2.3.3. Let H be a Hilbert space. Let A,C, T ∈ L(H) with A > 0. Let ρ > 0.

(i) If 0 < A ≤ 2I, C is invertible, and A commutes with C, then

wA(C∗TC) ≤ ‖C‖2wA(T ).

The result remains true if C lies in Com(A)× = {S ∈ L(H), SA = AS and S invertible.}.

(ii) If 0 < ρ ≤ 2, and C lies in L(H)×, then

wρ(C
∗TC) ≤ ‖C‖2wρ(T ).

Proof. (i) If T = 0 there is nothing to prove. Suppose that T 6= 0 and that C is invertible. Up
to considering T

wA(T ) , we can suppose that wA(T ) = 1. Denote S = C∗TC. Then, for every

h ∈ H and z ∈ D, with equivalence (i)⇔ (ii) of Proposition 2.1.9 we obtain

〈A(h), h〉 − 2Re(z〈(A− I)T (h), h〉) + |z|2〈(A− 2I)T (h), T (h)〉 ≥ 0.
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For g = C−1(h), we have

‖
√
AC(g)‖2 − 2Re(z〈C∗(A− I)TC(g), g〉) + |z|2〈(A− 2I)TC(g), TC(g)〉 ≥ 0.

Since 2I −A ≥ 0, it admits a square root. As A and C commute, we get

‖C‖2‖
√
A(g)‖2 − 2Re(z〈(A− I)S(g), g〉)− |z|2‖

√
2I −ATC(g)‖2 ≥ 0.

We also have ‖TC(x)‖ = ‖(C∗)−1C∗TC(x)‖ ≥ 1
‖C‖‖C

∗TC(x)‖, so

‖C‖2‖
√
A(g)‖2 − 2Re(z〈(A− I)S(g), g〉)− |z|2 1

‖C‖2
‖
√

2I −AS(g)‖2 ≥ 0.

By denoting S′ = S
‖C‖2 , we end up with

‖
√
A(g)‖2 − 2Re(z〈(A− I)S′(g), g〉)− |z|2‖

√
2I −AS′(g)‖2 ≥ 0.

Rewriting the expression gives

〈A(g), g〉 − 2Re(z〈(A− I)S′(g), g〉) + |z|2〈(A− 2I)S′(g), S′(g)〉 ≥ 0.

Therefore, we can use the equivalence (ii)⇔ (i) in Proposition 2.1.9 to obtain

wA(S′) =
wA(S)

‖C‖2
≤ 1 = wA(T ),

which gives the desired inequality.
Since both maps C 7→ wA(C∗TC) and C 7→ ‖C‖2wA(T ) are continuous, the result remains true
when C is a limit of a sequence of invertible operators commuting with A.
- (ii) For 0 < ρ ≤ 2 we take A = ρI. Then, for any C that is a limit of a sequence of invertible
operators we can apply item (i) and get the desired result.

Proposition 2.3.4. Let H be a Hilbert space. Let A, T ∈ L(H) with A > 0 and T 2 = 0. Then,

we have wA(T ) = 2w2(A−
1
2TA−

1
2 ).

Furthermore, if T and A commute we have

wA(T ) = |ρ|wρ(A−
1
2TA−

1
2 ) = ‖A−

1
2TA−

1
2 ‖, ∀ρ 6= 0.

This equality is generally false without commutativity.

Proof. Since r(T ) = 0 and T 2 = 0, we have wA(T ) ≤ 1 if and only if

I + 2Re(zA−
1
2TA−

1
2 ) ≥ 0, ∀z ∈ D.

Since we have (A−
1
2TA−

1
2 )2 = 0, this condition is equivalent to w2(2A−

1
2TA−

1
2 ) ≤ 1. The

quasi-norm properties of wA and w2 then give the desired result.
We recall that for S with S2 = 0, we have wρ(S) = ‖S‖

|ρ| = 2
|ρ|w2(S). When T and A commute,

the operator A−
1
2TA−

1
2 is nilpotent of order at most 2, which gives the result.

If we take T =

(
0 1
0 0

)
and A−

1
2 =

(
a b
b c

)
with a, b, c ∈ R∗+, we have A−

1
2TA−

1
2 =

(
ab ac
bb bc

)
.

The characteristic polynomial of this matrix is X2 − (ab + bc)X. Hence, according to item (v)
of Corollary 1.3.5, for every ρ ∈ C∗, we have

|ρ|wρ(A−
1
2TA−

1
2 ) = ‖A−

1
2TA−

1
2 ‖+ |ab+ bc||ρ− 1|,

so this quantity is not even constant.
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Proposition 2.3.5. Let A, T ∈ L(C2) with A > 0 and T 2 = 0.

Suppose that T =

(
0 1
0 0

)
and write A =

(
a b
b̄ c

)
. Then,

(i) wA(T ) = 1√
ac−|b| ;

(ii) For λ, µ the eigenvalues of A, with λ ≤ µ, we have 1√
λµ
≤ wA(T ) ≤ 1

λ .

Equality for the left hand inequality is attained when b = 0, whereas equality for the right
hand inequality is attained when |b| = µ−λ

2 (or equivalently a = µ+λ
2 ).

(iii) For any a > b > 0, we have

wa b
b a

(T ) = wa−b(T ) =
1

a− b
.

Proof. (i) Let u > 0. Denote

E = {Re(〈(A+ 2z
T

u
h, h〉), h ∈ C2, z ∈ D}.

Since r(T ) = 0 and T 2 = 0, we have

T

u
∈ CA ⇔ Re(A+ 2z

T

u
) ≥ 0, ∀z ∈ D

⇔ inf(E) ≥ 0.

We can also see that inf(E) = inf(E) and that inf(E) > −∞ since A + 2z Tu is bounded. For
h ∈ C2 write h = h1e1+h2e2. Let z ∈ D. We recall that since A is positive we have a, c ∈ [0,+∞[.
Hence,

Re(〈(A+ 2z
T

u
h, h〉) = a|h1|2 + c|h2|2 + 2Re(bh2h1) + 2Re(

z

u
h2h1).

For b = |b|eit take h′1 = |h1| and h′2 = |h2|e−it. Denote h′ = h′1e1 + h′2e2. For h′2h
′
1 = |h1||h2|eit

′

and n ≥ 1, define z′n = e−it
′
( |z|n + (1− 1

n)). As |z′n| ≥ |z| for every n ≥ 1, this implies

Re(〈(A+ 2z
T

u
h, h〉) ≥ a|h1|2 + c|h2|2 − 2|b||h2||h1| − 2

|z′n|
u
|h2||h1|.

The choice of h′2, h
′
1, z
′
n also gives us

Re(〈(A+ 2z′n
T

u
h′, h′〉) = a|h1|2 + c|h2|2 − 2|b||h2||h1| − 2

|z′n|
u
|h2||h1|.

Since the sequence (z′n)n lies in D and converges to e−it
′
, we can see that

a|h1|2 + c|h2|2 − 2|b||h2||h1| − 2
1

u
|h2||h1| ∈ E,

and that

inf(E) = inf({a|h1|2 + c|h2|2 − 2(|b|+ 1

u
)|h2||h1|, h1, h2 ∈ C}).
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Therefore, we have T
u ∈ CA if and only if ax2 + cy2 − 2(|b|+ 1

u)xy ≥ 0 for every x, y ∈ R+. The
polynomial ax2 + cy2 − 2(|b|+ 1

u)xy has a discriminant with respect to x equal to

∆ = 4(|b|+ 1

u
)2y2 − 4acy2 = 4y2((|b|+ 1

u
)2 − ac).

Such a quantity is negative for every y ∈ R if and only if (|b|+ 1
u)2 − ac ≤ 0. We have

(|b|+ 1

u
)2 − ac ≤ 0 ⇔ u ≥ 1√

ac− |b|
.

Hence we have T
u ∈ CA if and only if u ≥ 1√

ac−|b| , so the A-radius of T is equal to 1√
ac−|b| .

- (ii) Denote λ ≤ µ the eigenvalues of A. We proved that wA(T ) = 1√
ac−|b| =

√
ac+|b|
det(A) . We will

express the quantities ac and |b| depending on a, λ and µ, and find their extrema depending on
the values of a. We have Tr(A) = a+ c, so c = Tr(A)− a. We have det(A) = ac− |b|2, so

a(Tr(A)− a) = ac = det(A) + |b|2 ≥ det(A).

The polynomial map x 7→ x(Tr(A)−x) has a maximum of Tr(A)2

4 attained when x = Tr(A)
2 and

a computation gives
x(Tr(A)− x) ≥ det(A) ⇔ λ ≤ x ≤ µ.

Hence the quantity ac = a(Tr(A)−a) has a minimum of det(A) when a = λ or µ and a maximum

of Tr(A)2

4 when a = Tr(A)
2 .

As we have
|b|2 = ac− det(A) = a(Tr(A)− a)− det(A),

the quantity |b|2 has a minimum of 0 when a = λ or µ and a maximum of Tr(A)2

4 − det(A) when

a = Tr(A)
2 . Another computation gives Tr(A)2

4 − det(A) = (µ−λ)2

4 . Therefore, we obtain the
following inequalities

1√
λµ

=

√
λµ+ 0

det(A)
≤
√
ac+ |b|
det(A)

= wA(T ) ≤
Tr(A)

2 + µ−λ
2

det(A)
=

µ

λµ
=

1

λ
.

With the previous computations we can also see that wA(T ) = 1√
λµ

if and only |b| = 0 and that

wA(T ) = 1
λ if and only if |b| = µ−λ

2 (or equivalently a = µ+λ
2 ).

- (iii) By considering a = c and b = |b|, we have
√
ac−|b| = a−b, which concludes the proof.

Remark 2.3.6. Let λ ∈ R∗+ and define

Aλ =

(
1+λ

2
1−λ

2
1−λ

2
1+λ

2

)
, T =

(
0 1
0 0

)
.

A computation gives that Aλ ≤ Aµ when λ ≤ µ and item (iii) of Proposition 2.3.5 tells us that
wAλ(T ) = 1.
Hence we have a one-parameter family of positive operators that is non-decreasing and that
tends in norm to +∞, for which wAλ(T ) is constant.
However there are no subspaces H1, H2 of C2 and operators Ti, Ai ∈ L(Hi) for which we would
have T = diag(T1, T2) and Aλ = diag(A1, A2). This means that the computation of wAλ(T ) does
not come from the formula of Lemma 2.2.11 and that this example comes from other properties
of the A-radii.
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Remark 2.3.7. For 0 < λ ≤ µ, all self-adjoint matrices in L(C2) whose eigenvalues are λ and
µ are unitarily similar to diag(λ, µ). When λ < µ, Proposition 2.3.5 gives us an operator
T ∈ L(C2) such that wA(T ) is not constant over the set of operators A with A > 0 and
σ(A) = {λ, µ}. Hence we have positive operators A,B and an unitary U such that A = UBU∗,
but wA(T ) 6= wB(T ) = wUAU∗(T ) = wA(U∗TU).

Lemma 2.3.8. Let H be a Hilbert space, and let A, T ∈ L(H) with A > 0. We have

(i) wA(T ) ≥ w‖A‖(I)r(T ), and this inequality is sharp.

(ii) If T is invertible then wA(T−m) ≥ wA(Tm)−1 ≥ wA(T )−m, ∀m ≥ 1.

Proof. (i) With item (ii) of Proposition 1.2.18 we have wA(T ) ≥ w‖A‖(T ) ≥ w‖A‖(I)r(T ). If
A = ρI then for T = I we obtain an equality. Else, the proof of item (iv) of Proposition 2.2.12
gives, for every ε > 0, an orthogonal projection T ∈ L(H) such that w‖A‖(T ) − wA(T ) ≤ ε.
Hence we end up with wA(T )− w‖A‖(I)r(T ) = w‖A‖(T )− wA(T ) ≤ ε.
- (ii) Using the previous item and item (iii) of Proposition 2.2.6, we obtain

wA(T−m) ≥ w‖A‖(I)r(T−m) ≥ r(T−m) ≥ 1

r(Tm)
≥ 1

wA(Tm)
≥ 1

wA(T )m
.

Proposition 2.3.9. Let H be a Hilbert space. Let A, T ∈ L(H) with A > 0 and T invertible.
If ‖A‖ ≥ 1 and if there exists m ≥ 1 such that wA(T−m) = wA(T )−m, then T = ‖T‖U for some
unitary operator U .
Conversely, if T = ‖T‖U for some unitary U , then for every A ≥ I and m ≥ 1 we have
wA(T−m) = wA(T )−m.

Proof. Since T is non-zero, we can consider T
wA(T ) in order to assume that wA(T ) = 1. Thus,

Lemma 2.3.8 gives us

1 = wA(T−m) ≥ wA(Tm)−1 ≥ wA(T )−m = 1.

This implies r(T−m) ≤ 1 and r(Tm) ≤ 1, so r(Tm) = 1 = r(T−m). Hence, we have

1 = wA(T ) ≥ w‖A‖(T ) ≥ r(T ) = 1;

1 = wA(T−m) ≥ w‖A‖(T−m) ≥ r(T−m) = 1.

We end up with w‖A‖(T
−m) = 1 = 1

w‖A‖(T )

m
. Since ‖A‖ ≥ 1, we can apply Theorem 1.1 from

[AL10] to get the desired result.
The converse result comes from the fact that for U an unitary, when A ≥ I we have

1 = w1(U) ≥ wA(U) ≥ w‖A‖(U) = 1.

Therefore, for T = ‖T‖U , we have wA(T ) = ‖T‖ and wA(T−m) = 1
‖T‖m = wA(T )−m.

Remark 2.3.10. We cannot have a similar equality for some A > 0 with ‖A‖ < 1 as the fact that
ρ 7→ wρ(T ) is decreasing on R∗+ (see Prop.1.4.5) and the equation in Proposition 1.3.3 imply
that ρ 7→ wρ(T ) is strictly decreasing on ]0, 1], so

wA(T ) ≥ w‖A‖(T ) > lim
ρ→+∞

(wρ(T )) = r(T ).
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Chapter 3

Similarity of operators and classes of
projections

This third chapter studies two different notions: algebraic operators and projections. This
chapter acts as a transition between classes C(ρn) and Lp-projections, the two main characters
of this thesis. In Section 3.1 we focus on the study of algebraic operators (operators that are
annihilated by a non-zero polynomial) by studying similarity to a contraction as well as some
weaker conditions like polynomially boundedness or power-boundedness. We prove that most
of these conditions are equivalent for algebraic operators. These results provide useful criteria
for similarity to a contraction for algebraic operators.

As an algebraic operator possesses a spectral decomposition through its characteristic pro-
jections, we continue in Section 3.2 with the study of some classes of projections, comparing
the way they behave with respect to each other. The classes of projections range from the class
of norm one projections to classes of Lp-projections. As the properties defining some of these
classes are mainly about the norm of vectors in a direct sum of two subspaces, we make some
generalizations for direct sums of a finite number of subspaces in Subsection 3.3.B. Working
with direct sums brings additional questions regarding these new properties, with some notable
differences between direct sums of two or more subspaces (see Lemma 3.2.11).

In Section 3.3 we look at projections that are either Hermitian or Lp-projections in the
specific case where X is equal to Lp(Ω) or to some subspace of Lp(Ω). We study some variations
of properties of these projections by replacing the conditions which are satisfied for every z ∈ C
by the weaker conditions satisfied “for every z ∈ ∂D” or “for z = ±1”. Also, as Lp-projections are
particular cases of Hermitian projections, we look at subspaces of Lp for which every Hermitian
projection is an Lp-projections, or at conditions that ensure the contrary. In Subsection 3.3.B
we study the case p = 2n, where the relationship |f +g|2n = (f +g)n(f +g)n allows us to obtain
a useful additional property.

3.1 Similarity to a Contraction for Algebraic Operators

It is known that for Hilbert space operators we have the following implications :

similar to a contraction ⇒ polynomially bounded ⇒ power bounded . (3.1.1)

Here, for a Hilbert space operator T ∈ L(H), we say that T is similar to a contraction if there
is an invertible operator L ∈ L(H) such that ‖L−1TL‖ ≤ 1. We say that T is polynomially
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bounded if the von Neumann inequality holds true up to a constant, that is, there exists C ≥ 1
such that ‖p(T )‖ ≤ C‖p‖∞,D for every polynomial p. Finally, we say that T is power bounded if
supn≥1 ‖Tn‖ < +∞.

Both implications in (3.1.1) cannot be reversed : the first example of a power bounded
operator which is not similar to a contraction, so not polynomially bounded was given by Foguel
(a different proof has been given by Lebow), while the first example of a polynomially bounded
operator which is not similar to a contraction was constructed by Pisier. We refer to [Pis96] for
more details and for the history of these examples.

The case of Banach spaces is more complicated: in general the von Neumann inequality is
not true (in fact, the von Neumann inequality characterizes Hilbert spaces, see [Pis96]). Some
general conditions under which an arbitrary Banach space contraction is polynomially bounded
are given in [Zar05].

An operator T is said to be algebraic if it is annihilated by some non-zero polynomial Q.
This section focuses on the study of algebraic operators regarding similarity to a contraction,
power-boundedness and polynomial boundedness. We are able to obtain equivalences between
many conditions thanks to the specific behaviour of algebraic operators regarding their spectrum
and characteristic spaces.

Polynomial boundedness

We start by recalling a kernel lemma and stating some basic properties of algebraic polynomials.

Lemma 3.1.1 (Kernel lemma). Let X be Banach space, let T ∈ L(X), and let P ∈ C[Z]. Write
P as P (Z) = Πr

i=1(Z − λi)ai, with λi that are pairwise disjoint. Then, we have

Ker(P (T )) =

r⊕
i=1

Ker((T − λi)ai).

Lemma 3.1.2. Let X be Banach space and let T ∈ L(X). Suppose that there exists P ∈
C[Z] \ {0} such that P (T ) = 0. Then

(i) T possesses a minimal polynomial µT : the smallest non-zero monic polynomial R such
that R(T ) = 0.
We write µT (Z) = Πr

i=1(Z − λi)ai, with λi that are pairwise disjoint.

(ii) For 1 ≤ i ≤ r, denote Xi = Ker((T − λi)ai).
We have X = X1 ⊕ ...⊕Xr, and T (Xi) ⊂ Xi.

(iii) For every 1 ≤ i ≤ r, we have Ti|Xi = λiIXi +Ni, with Ni a nilpotent operator of order ai.

(iv) For 1 ≤ i ≤ r, denote Pi : X → Xi the projection on Xi parallel to
⊕

j 6=iXj, Ji : Xi → X
the canonical inclusion, and Ti = JiTi|XiPi.
Then T = T1 + ...+ Tr.

(v) For 1 ≤ i, j ≤ r, we have TiTj = 0 if i 6= j.
For every polynomial Q ∈ C[Z] we have Q(T ) = Q(T1) + ..+Q(Tr).

Proof. (i) As T is algebraic, the kernel of the ring morphism ψ : Q ∈ C[Z] 7→ Q(T ) is not
reduced to {0}. Since it is an ideal of C[Z] and since C[Z] is a principal ring, there exists an
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monic polynomial R such that Ker(ψ) = (R). This polynomial satisfies the condition of item
(i). We denote µT = R.
- (ii) Applying the kernel lemma 3.1.1 to µT and T tells us that

X = Ker(µT (T )) =

r⊕
i=1

Ker((T − λi)ai) =

r⊕
i=1

Xi.

And since each subspace Xi is the kernel of a polynomial in T , they are stable under T .
- (iii) Let 1 ≤ i ≤ r. Since we have Xi = Ker((T −λi)ai), this implies that (Ti|Xi−λiIXi)ai = 0.
Hence, Ni = Ti|Xi − λiIXi is a nilpotent operator.
Suppose that we have m < ai such that Nm

i = 0. This would imply that Ker((T − λi)m) =
Ker((T − λi)ai). Using the kernel lemma to the polynomial Q(Z) = Πj 6=i(Z − λj)aj · (Z − λi)m,
we would in turn obtain that Q(T ) = 0, which contradicts the minimality of µT . Therefore Ni

is nilpotent of order ai.
- (iv) Let x ∈ X. Write x = x1 + ... + xr, with xi ∈ Xi. For every 1 ≤ i ≤ r, the subspace Xi

is stable under T . Hence, we have T (xi) ∈ Xi, that is T (xi) = JiTi|XiPi(xi) = Ti(xi). For any
j 6= i, we have Tj(xi) = JjTj |XjPj(xi) = 0. Thus, we obtain

T (x) = T (x1) + ..+ T (xr) = T1(xi) + ...+ Tr(xr) = T1(x) + ..+ Tr(x).

- (v) Let 1 ≤ i ≤ r. As Ti = JiTi|XiPi, we have
⊕

j 6=iXj = Ker(Pi) ⊂ Ker(Ti) and Ran(Ti) ⊂
Ran(Ji) = Xi. Therefore, for any j 6= i we have Ran(Tj) ⊂ Ker(Ti), so TiTj = 0.
Hence, we can now prove by induction on n ≥ 1 that Tn = Tn1 + ..+ Tnr . Indeed, this result is
true when n = 1, and if Tn = Tn1 + ..+ Tnr for some n ≥ 1 then we have

Tn+1 = TnT = (Tn1 + ..+ Tnr )(T1 + ..+ Tr)

=
r∑

k=1

Tnk (T1 + ..+ Tr) =
r∑

k=1

Tn+1
k ,

which concludes the induction proof. Thus, for any polynomial Q ∈ C[Z], we have Q(T ) =
Q(T1) + ..+Q(Tr). The proof is complete.

With the results of Lemma 3.1.2, we can now go into our main results for this section.

Proposition 3.1.3. Let X be Banach space and let T ∈ L(X). Suppose that there exists
P ∈ C[Z] \ {0} such that P (T ) = 0. Let µT (Z) be the minimal polynomial of T . Write
µT (Z) = Πr

i=1(Z − λi)ai, with λi that are pairwise disjoint. Then, the following assertions are
equivalent

(i) |λi| ≤ 1 for every 1 ≤ i ≤ r, and if |λi| = 1 then ai = 1;

(ii) ‖T
n‖
n →n 0;

(iii) T is power bounded: supn(‖Tn‖) < +∞;

(iv) T is polynomially bounded: There exists M > 0 such that ‖P (T )‖ ≤M‖P‖∞,D, for every
P ∈ C[Z];

(v) There exists M > 0 and a polygon P contained in D such that ‖P (T )‖ ≤ M‖P‖∞,P ,
∀P ∈ C[Z].
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Proof. The implications (v)⇒ (iv)⇒ (iii)⇒ (ii) are immediate.
We will use the results and notations of Lemma 3.1.2.
Together with these results, we can easily prove that

• If ai = 1 then Ti|Xi = λiIXi , Ti = λiPi, and for every Q ∈ C[Z] we have

Q(Ti) =

{
Q(0)IX + Q(λi)−Q(0)

λi
Ti if λi 6= 0

Q(0)IX + 0 if λi = 0.

In this case, we obtain

‖Q(Ti)‖ ≤

{
(1 + 2‖Ti‖|λi| ) max(|Q(0)|, |Q(λi)|) if λi 6= 0

|Q(0)| if λi = 0.

• If ai > 1 then Ti|Xi = λiIXi + Ni with Ni nilpotent of order ai. And for x ∈ Ker(N2
i ) \

Ker(Ni) 6= ∅ we get

Tn(x) = Tni (x) = Ti|nXi(x) = λni x+ λn−1
i nNi(x).

Thus, ‖T
n(x)‖
n ≤ |λi|n−1‖Ni(x)‖+ |λi|n ‖x‖n , ∀n ≥ 1.

We can now focus on the remaining implications.
- (ii)⇒ (i) As all Ker(T − λi) are non-empty by minimality of µT , for every 1 ≤ i ≤ r we have

x ∈ X such that T (x) = λix and x 6= 0. As we have ‖T
n(x)‖
n →n 0, this implies that |λi| ≤ 1 for

every 1 ≤ i ≤ r. Now suppose that there exists i with |λi| = 1 and ai > 1. From the previous
discussion, we have a x ∈ Xi such that

Tn(x) = λni x+ λn−1
i nNi(x), with Ni(x) 6= 0.

Thus, we obtain ‖Tn(x)‖
n ≥ ‖Ni(x)‖ − ‖x‖n > 0, which contradicts the fact that ‖T

n‖
n →n 0.

Therefore if |λi| = 1 we must have ai = 1.
- (i)⇒ (v) Let 1 ≤ i ≤ r be such that |λi| = 1. As we have ai = 1, a previous item gives us

‖Q(Ti)‖ ≤Mi sup
{0,λi}

(|Q(z)|), ∀Q ∈ C[Z],

with Mi = 1 + 2‖Ti‖|λi| if λi 6= 0 and Mi = 1 if λi = 0. We now want to show that there exists

a closed disk D contained in D such that for every 1 ≤ j ≤ r with |λj | < 1 and for every
polynomial Q ∈ C[Z], ‖Q(Tj)‖ ≤Mj‖Q‖∞,D for some constant Mj .
Let t = max({|λj |: |λj | < 1}). Take ε > 0 such that t+ε < 1. Take 1 ≤ j ≤ r such that |λj | < 1.
Let Q ∈ C[Z]. We have

Q(Tj |Xj ) = Q(λjIXj +Nj) =

aj−1∑
k=0

Q(k)(λj)

k!
Nk
j .

Take tj = t+ ε− |λj |. The Taylor formula applied to Qk on D(λj , tj), for k ≥ 0, gives us

Q(k)(λj)

k!
=

1

2iπ

∫
∂D(λj ,tj)

Q(w)dw

(w − λj)k+1

⇒|Q
(k)|(λj)

k!
≤ 2π

2π
sup

|z−λj |=tj

|Q(z)|
tkj

.
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Since |λj |+ tj = t+ ε, we can apply the maximum principle to D(0, t+ ε) to obtain

|Q(k)(λj)|
k!

≤ sup
|z|=t+ε

|Q(z)|
tkj

, for every 0 ≤ k ≤ aj − 1.

With this inequality we can now estimate ‖Q(Tj)‖. Indeed,

‖Q(Tj)‖ = ‖Q(JjTj |XjPj)‖ = ‖JjQ(Tj |Xj )Pj‖

⇒‖Q(Tj)‖ ≤ ‖Jj‖‖Pj‖‖
ai−1∑
k=0

Q(k)(λj)

k!
Nk
j ‖

⇒‖Q(Tj)‖ ≤ ‖Pj‖(
ai−1∑
k=0

|Q(k)(λj)|
k!

‖Nk
j ‖)

⇒‖Q(Tj)‖ ≤ sup
|z|=t+ε

|Q(z)|‖Pj‖(
ai−1∑
k=0

‖Nk
j ‖
k!

)

⇒‖Q(Tj)‖ ≤ sup
|z|=t+ε

|Q(z)|Mj .

Now, let P be a polygon contained in D and containing all λi as well as D(0, r+ε). The previous
computations shows that

‖Q(T )‖ = ‖Q(T1) + ...+Q(Tr)‖ ≤
∑
j

‖Q(Tj)‖ ≤ sup
z∈P

(|Q(z)|)(M1 + ..+Mr).

The item (v) now follows, which concludes the proof.

Similarity to a contraction

Recall that on a Hilbert space, an operator that is polynomially bounded is not always similar to
a contraction. Thus, regarding Proposition 3.1.3, we wonder if an algebraic operator satisfying
condition (i) is similar to a contraction or not.
Here, we can also ask the same question for more general Banach spaces and also focus on differ-
ent similarity relationships depending on the Banach spaces over which the desired contraction
can be defined.

Remark 3.1.4 (SQp spaces). For any 1 ≤ p < +∞, the collection of subspaces of quotients of
Lp spaces, also called SQp, is stable under quotients, subspaces, finite sums, and ultraproducts.
These stability properties make this collection of Banach spaces an interesting setting for ques-
tions and results regarding similarity of operators.
Characterizing Banach spaces that are isomorphic to subspaces of quotients of Lp-spaces led to
the notion of p-complete boundedness. Many details and results around this notion can be found
in Pisier’s book [Pis96, Ch.8]. Some aspects of it are related to the similarity of an operator to
a contraction on a SQp space. Although this notion is not used in this section, we will look at
the similarity of an algebraic operator to a contraction on a SQp space (see Proposition 3.1.9).
Such elements are also a part of the shifting point from questions about similarity to a contrac-
tion in certain classes (like C(ρn)) to questions about properties and characterizations of specific
classes of projections, which is the main topic of Chapter 4.
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For our next Proposition, we will need a few results about `p(X).

Remark 3.1.5. Let X be a Banach space, and 1 ≤ p < +∞. We recall that `p(X) is the Banach
space defined as

`p(X) := {(xn)n ∈ XN: ‖(xn)n‖ := ‖(‖xn‖)n‖`p < +∞}.

We also recall that for a Banach space Y , a quotient of a subspace of Y is isometrically isomorphic
to a subspace of some quotient of Y . Indeed, for F a closed subspace of Y andG a closed subspace
of F , the quotient F/G of the subspace F by G can be identified as a closed subspace of the
quotient of Y/G.

Lemma 3.1.6. Let X be a Banach space, 1 ≤ p < +∞, and n ≥ 2. Let X1, ..., Xn be subspaces

of quotients of `p(X). Then X1

`p

⊕ ...
`p

⊕Xn is isometrically isomorphic to a subspace of a quotient
of `p(X).

Proof. We will prove this fact by induction on n ≥ 2. Let X1, X2 be subspaces of quotients of
`p(X). Write X1 = F1/G1, X2 = F2/G2, with F1, G1, F2, G2 closed subspaces of `p(X) such that

G1 ⊂ F1,G2 ⊂ F2. Define the map φ : `p(X)
`p

⊕ `p(X) → `p(X) that sends a pair of sequences
((xn)n, (yn)n) to the sequence (zn)n such that z2n = xn and z2n+1 = yn. As we have

‖((xn)n, (yn)n)‖p =
∑
n≥0

‖xn‖p +
∑
n≥0

‖yn‖p =
∑
m≥0

‖zm‖p = ‖(zm)m‖p,

the map φ is well-defined and is an isometry which is also isomorphic. As the space F1/G1

`p

⊕

F2/G2 is isometrically isomorphic to (F1

`p

⊕F2)/(G1

`p

⊕G2), we end up with the following isomor-
phism

F1/G1

`p

⊕ F2/G2 ' φ(F1

`p

⊕ F2)/φ(G1

`p

⊕G2).

Hence, X1

`p

⊕X2 is isometrically isomorphic to a subspace of a quotient of `p(X).
Now, let n ≥ 2 and suppose that the statement is true for n. Let X1, ..., Xn+1 be subspaces of

quotients of `p(X). Then, X1

`p

⊕ ...
`p

⊕Xn is isometrically isomorphic to a subspace of a quotient
of `p(X). As we have

X1

`p

⊕ ...
`p

⊕Xn

`p

⊕Xn+1 = (X1

`p

⊕ ...
`p

⊕Xn)
`p

⊕Xn+1,

we can use the first part of the proof to see that X1

`p

⊕ ...
`p

⊕Xn+1 is isometrically isomorphic to
a subspace of a quotient of `p(X), which concludes the induction.

Remark 3.1.7. As isometric isomorphisms do not change the structure of a given Banach space,
the results of Lemma 3.1.6 stay true if the spaces X1, ..., Xn are isometrically isomorphic to
subspaces of quotients of `p(X).

Now that we have a characterization of `p direct sums of subspaces of quotients of `p(X),
we can prove the main result of this subsection.

Proposition 3.1.8. Let X be a Banach space and 1 < p < +∞. Let T ∈ L(X) be an algebraic
operator. The following are equivalent
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(i) ‖T
n‖
n → 0;

(ii) There exists M > 0 such that ‖P (T )‖ ≤M‖P‖∞,D for every P ∈ C[Z];

(iii) There exists a Banach space Y and an isomorphism S : X → Y such that ‖STS−1‖ ≤ 1;

(iv) There exists Y a subspace of a quotient of `p(X) and an isomorphism S : X → Y such
that ‖STS−1‖ ≤ 1.

Proof. The equivalence (i)⇔ (ii) comes from Proposition 3.1.3. The implication (iv)⇒ (iii) is
immediate.
- (iii)⇒ (i) If condition (iii) is true then T is similar to a contraction, hence supn‖Tn‖ is finite,

so ‖T
n‖
n → 0.

- (i)⇒ (iv) Using Proposition 3.1.3, we have a direct sum decomposition of X, X = X1⊕ ..⊕Xr

such that each Xi is stable under T and such that we either have T |Xi = λiIXi for some λi ∈ ∂D
or r(T |Xi) < 1. Up to reordering, we can take 1 ≤ m ≤ r such that T |Xi = λiIXi for 1 ≤ i ≤ r
and r(T |Xi) < 1 for m < i ≤ r. Denote X0 :=

⊕r
i>mXi. We then have X = X0⊕X1⊕ ..⊕Xm.

As X0 is a direct sum of characteristic spaces for T related to eigenvalues lying in D, we have
r(T |X0) < 1.
We can then use Corollary 5.1 of [Bad03] (a Banach space Rota theorem) to find a Banach space
Y0 that is a quotient of `p(X0) and an isomorphism S0 : X0 → Y0 such that ‖S0T |X0S

−1
0 ‖ ≤ 1.

For 1 ≤ i ≤ m, denote Yi = Xi. As X is isometric to the quotient of `p(X) by {(xn)n ∈
`p(X): x0 = 0}, we can see that Y1, ..., Ym are isomorphically isometric to subspaces of quotients
of `p(X). According to a previous remark, we can also see that Y0 is isomorphically isometric
to a subspace of a quotient of `p(X).

Denote Y = Y0

`p

⊕ Y1

`p

⊕ ..
`p

⊕ Ym. Lemma 3.1.6 then tells us that Y is isometrically isomorphic to
a subspace of a quotient of `p(X).
Denote S : x0 + x1 + ..+ xm ∈ X 7→ S0(x0) + x1 + ...+ xm ∈ Y . For 0 ≤ i ≤ m, the projection
Pi on Xi parallel to ⊕j 6=iXj is bounded. Hence, for any x ∈ X we obtain

‖S(x)‖pY = ‖S0(x0)‖p + ‖x1‖p + ...+ ‖xm‖p

= ‖S0(P0(x))‖p + ‖P1(x)‖p + ...+ ‖Pm(x)‖p

≤ max(‖S0P0‖p, ‖P1‖p, ..., ‖Pm‖p)(m+ 1)‖x‖p,

so S is bounded. Thus S is an isomorphism between X and Y . For every 1 ≤ i ≤ m, Yi is stable
for STS−1 and STS−1|Yi = λiIYi . With our construction, for any y ∈ Y , we have

‖STS−1(y)‖pY = ‖STS−1(y0) + STS−1(y1) + ...+ STS−1(ym)‖pY
= ‖STS−1(y0) + λ1y1 + ...+ λmym‖pY
= ‖STS−1(y0)‖p + ‖λ1y1‖p + ...+ ‖λmym‖p

= ‖S0T |X0S
−1
0 (y0)‖p + ‖y1‖p + ...+ ‖ym‖p

≤ ‖y0‖p + ‖y1‖p + ...+ ‖ym‖p = ‖y‖p.

Therefore we end up with ‖STS−1‖ ≤ 1, which concludes the proof.

Corollary 3.1.9. Let X be a Banach space and 1 < p < +∞. Let T ∈ L(X) be an algebraic
operator. Suppose that X is isomorphic to a SQp space. The following are equivalent
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(i) ‖T
n‖
n → 0;

(ii) There exists M > 0 such that ‖P (T )‖ ≤M‖P‖∞,D for every P ∈ C[Z];

(iii) There exists Y a SQp space and an isomorphism S : X → Y such that ‖STS−1‖ ≤ 1.

Proof. By hypothesis, we have a SQp-space X ′ and an isomorphism R : X → X ′. The operator
T ′ = RTR−1 is then an algebraic operator on the SQp-space X ′, and for any polynomial
P ∈ C[Z] we have

‖P (T ′)‖ = ‖SP (T )S−1‖ ≤ ‖S‖‖S−1‖‖P (T )‖.

Hence up to considering X ′ and T ′ we can suppose that X is a SQp-space.
As the class of SQp-spaces is stable under countable `p-sum, if X is a SQp-space then `p(X) =⊕`p

n≥0X is a SQp-space. Hence any subspace of quotient of `p(X) is a SQp-space. We can then
apply Proposition 3.1.8 to obtain the equivalence.

When p = 2, the class of SQp-spaces coincides with the class of Hilbert spaces. Thus we can
use Corollary 3.1.9 to see that any algebraic operator on a Hilbert space is power-bounded if and
only if it is similar to a contraction on a Hilbert space. A similar equivalence can be obtained
using a result of Delaubenfels [dL98].

Corollary 3.1.10. Let H be a Hilbert space and let T ∈ L(H) be an algebraic operator. The
following are equivalent

(i) ‖T
n‖
n →n 0;

(ii) T is power bounded : supn(‖Tn‖) < +∞;

(iii) T is polynomially bounded : There exists M > 0 such that ‖P (T )‖ ≤M‖P‖∞,D, for every
P ∈ C[Z];

(iv) T is similar to a contraction on H.

Proof. We have (iv)⇒ (ii), and Proposition 3.1.3 gives us (iii)⇔ (ii)⇔ (i).
- (iii)⇒ (iv) According to Proposition 3.1.3, there exists M ′ > 0 and a polygon P contained in
D such that ‖P (T )‖ ≤M ′‖P‖∞,P , for every P ∈ C[Z]. We can then use Theorem 4.4 of [dL98]
to find that T is similar to a contraction on H, whose numerical range is contained in P.
The implication (ii)⇒ (iv) has also been proven by Mlak in 1974 [Mla74, Cor.3].

Remark 3.1.11. Fundamentally, an algebraic operator T satisfying condition (i) of Proposition
3.1.3 has the form T = T1 + ..+Tr with T1, ..., Tr such that TiTj = TjTi = 0 for every i 6= j, and
Ti similar to a contraction for every 1 ≤ i ≤ r. These operators Ti are more specific than that,
but our point of view shifted more onto the subspaces tied to them (that are in direct sum)
rather than their specific properties (aside from the similarity to a contraction).
We can for example study complementary closed subspaces X1, X2 for which the operator T =
diag(C1, C2) ∈ L(X1 +X2) is similar to a contraction (on some class of Banach spaces) for every
contraction Ci ∈ L(Xi) (resp. for any operator similar to a contraction). Such a property is for

example true when X = X1

N
⊕X2, for N a norm on R2 (i.e. ‖x1 + x2‖ = N(‖x1‖, ‖x2‖)), as we

have ‖T‖ = max(‖C1‖, ‖C2‖) ≤ 1. Such a question motivates the next section.
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3.2 Classes of Projections on a Banach Space

As an algebraic operator possesses a spectral decomposition through its characteristic projec-
tions, the study shifts in this Section to classes of projections. We will define multiple classes of
projections, with many classical ones, and study how these classes behave with respect to each
other.
As the properties defining some of these classes are mainly about the norm of vectors in a direct
sum of two subspaces, we make generalizations of some classes for direct sums of a finite number
of subspaces in Subsection 3.3.B. Working with direct sums adds another parameter, namely
the choice of the direct sum or of a smaller direct sum. This raises new questions regarding the
classes we will be studying.

3.2.A Various classes of projections

Definition 3.2.1. Let X be a Banach space. Let X1, X2 be closed subspaces of X that are in
direct sum. As we have X = X1 ⊕X2 and each of these spaces is closed, the projection P over
X onto X1 parallel to X2 is bounded. We define the following properties

(P1) P is a norm-one projection : ‖P‖ = 1;

(P2) P and I − P are norm-one projections :‖P‖ = ‖I − P‖ = 1;

(P3) P is generalized bicircular : There is λ ∈ ∂D \ {1} such that λP + (I − P ) is a surjective
isometry

(P4) P is Hermitian: For every α ∈ R, eiαP is a surjective isometry.

(P5) For every λi ∈ C, every xi ∈ Xi, 1 ≤ i ≤ 2, we have

‖λ1x1 + λ2x2‖ ≤ max
i

(|λi|)‖x1 + x2‖.

(P ′5) For every λ ∈ ∂D, xi ∈ Xi, 1 ≤ i ≤ 2, we have

‖x1 + λx2‖ = ‖x1 + x2‖.

(P6) For every xi, yi ∈ Xi, 1 ≤ i ≤ 2, with ‖x2‖ = ‖y2‖, we have

‖x1 + x2‖ = ‖x1 + y2‖.

(P7) For every closed subspaces Vi ⊂ Xi, every Ci ∈ L(Xi), and every xi ∈ Vi, 1 ≤ i ≤ 2, we
have

‖C1(x1) + C2(x2)‖ ≤ max
i=1,2

( sup
yi∈Vi, ‖yi‖=1

(‖Ci(yi)‖))‖x1 + x2‖.

(P8) For every xi ∈ Xi \ {0}, every Ci ∈ L(Xi), 1 ≤ i ≤ 2, we have

‖C1(x1) + C2(x2)‖ ≤ max
i

(
‖Ci(xi)‖
‖xi‖

)‖x1 + x2‖.
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(P ′8) For every xi, yi ∈ Xi with xi non-zero, 1 ≤ i ≤ 2, we have

‖y1 + y2‖ ≤ max
i

(
‖yi‖
‖xi‖

)‖x1 + x2‖.

(P9) For every xi, yi ∈ Xi with ‖xi‖ = ‖yi‖, 1 ≤ i ≤ 2, we have

‖y1 + y2‖ = ‖x1 + x2‖.

(P10) There exists 1 ≤ p ≤ +∞ such that P is a Lp-projection: For every xi ∈ Xi we have

‖x1 + x2‖ = ‖(‖x1‖, ‖x2‖)‖`p .

Lemma 3.2.2. Let X be a Banach space. Let X1, X2 be closed subspaces of X that are in direct
sum. Let P ∈ L(X) be the projection onto X1 parallel to X2. We have

(P10)⇒ (P9)⇔ (P ′8)⇔ (P8)⇔ (P7)⇒ (P6)⇒ (P5)⇔ (P ′5)⇔ (P4)⇒ (P3)⇒ (P2)⇒ (P1).

Furthermore,

• (P1) ; (P2) ; (P3) ; (P4);

• (P ′5) ; (P6);
If dim(X2) = 1, then (P ′5)⇔ (P6);

• (P6) ; (P7);
If dim(X1) = 1, then (P7)⇔ (P6);

• (P9) ; (P10).

Proof. The implication (P10) ⇒ (P9) is immediate. The implications (P ′8) ⇒ (P8) ⇒ (P7)
are immediate. The implications (P ′8) ⇒ (P9) and (P7) ⇒ (P6) are immediate, as well is the
implication (P6)⇒ (P ′5). The implication (P2)⇒ (P1) is immediate.
For any α ∈ R, we have eiαP = I + (eiα − 1)P = eiαP + (I − P ). Thus we obtain (P4)⇒ (P3).
We can also see that eiαP + (I − P ) is always surjective. Hence, we have (P ′5)⇒ (P4).
- (P9)⇒ (P ′8) We use the fact that for every wi ∈ Xi, the map z 7→ ‖w1 + zw2‖ is sub-harmonic
on C. Thus, for every z ∈ D, we have

‖w1 + zw2‖ ≤ sup
|λ|=1

(‖w1 + λw2‖) = ‖w1 + w2‖.

If we suppose by symmetry that ‖y1‖
‖x1‖ = maxi(

‖yi‖
‖xi‖), we then obtain

‖y1 + y2‖ = ‖x1
‖y1‖
‖x1‖

+ x2
‖y2‖
‖x2‖

‖ =
‖y1‖
‖x1‖

‖x1 +
‖y2‖‖x1‖
‖x2‖‖y1‖

x2‖

≤ ‖y1‖
‖x1‖

‖x1 + x2‖ = max
i

(
‖yi‖
‖xi‖

)‖x1 + x2‖.

- (P8)⇒ (P ′8) We use the Hahn-Banach Theorem on X1 and X2 to get linear forms f1, f2 such

that fi(xi) 6= 0 and ‖fi‖ = ‖fi(xi)‖
‖xi‖ . We can then build rank 1 linear maps Ci on Xi such that
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Ci sends xi onto yi, which gives us (P ′8).
- (P7) ⇒ (P8) Let xi ∈ Xi \ {0}, and Ci ∈ L(Xi), 1 ≤ i ≤ 2. Denote Yi = Span(xi). We then
have supyi∈Yi, ‖yi‖=1‖Ci(yi)‖ = ‖Ci( xi

‖xi‖)‖, which allows us to obtain (P8).

- (P5) ⇒ (P ′5) We can notice that for every λ ∈ ∂D the operator T (x1 + x2) := x1 + λx2 is
invertible and satisfies ‖T‖ ≤ 1, ‖T−1‖ ≤ 1. Hence T is an invertible isometry, so (P ′5) is true.
- (P ′5) ⇒ (P5) Let x1, x2, λ1, λ2 and suppose that |λ1| = maxi(|λi|). Since z 7→ ‖λ1x1 + zx2‖ is
sub-harmonic, Property (P ′5), gives us

‖λ1x1 + λ2x2‖ ≤ sup
|z|=|λ1|

‖λ1x1 + zx2‖ = ‖λ1x1 + λ1x2‖ = |λ1|‖x1 + x2‖.

Similarly, if |λ2| = maxi(|λi|) we have

‖λ1x1 + λ2x2‖ ≤ sup
|z|=|λ2|

‖zx1 + λ2x2‖ = ‖|λ2|eitx1 + λ2x2‖

≤ ‖|λ2|eitx1 + |λ2|eitx2‖ = |λ2|‖x1 + x2‖.

- (P4) ⇒ (P ′5) Since eiαP = eiα(P + e−iα(I − P )) is invertible, it is a surjective isometry for
every α ∈ R if and only if P + e−iα(I − P ) is an isometry for every α ∈ R. This gives us the
equivalence between (P4) and (P ′5).
- (P3) ⇒ (P2) The map z 7→ ‖P + z(I − P )‖ is subharmonic and equal to 1 on the unit circle.
Hence, the mean inequality gives us ‖P + 0‖ ≤ 1. Since P is a non-zero projection, we must
have ‖P‖ = 1. By considering w 7→ ‖wP + (I − P )‖ we obtain that ‖I − P‖ = 1 in a similar
way.
- (P9) ; (P10) Take N a norm on R2 that is not an Lp norm. Let X1, X2 be non-trivial Banach
spaces and X = X1⊕X2, with ‖x1 +x2‖X = N(‖x1‖X1 , ‖x2‖X2). Then (P9) is satisfied but not
(P10).
- (P1) ; (P2) There are projections P such that ‖P‖ = 1 and ‖I − P‖ = 2, for example the
projection on Span(e1) parallel to Span(e2) in C2, for ‖xe1 + ye2‖ = |y|+ |x− y|.
- (P2) ; (P3) Take X1 = C and X2 = C. We will build a norm on C2 such that (P2) is satisfied
but not (P3). For this, denote

K = Conv({λe1, γe2, δ(e1 + e2), λ, γ, δ ∈ D}.

The set K is convex, compact, contains 0 in its interior, and is stable for x 7→ λx, ∀λ ∈ D.

Furthermore, K is contained in the polydisc D2
and the vectors e1, e2, e1 +e2 are in its boundary,

but e1 + λe2 do not lie in K for every λ ∈ ∂D such that λ 6= 1.
Hence, there exists a norm N on C2 whose closed unit ball is K. As we have N(e1) = N(e2) = 1

and K ⊂ D2
, we obtain ‖P‖ = ‖I − P‖ = 1 so (P2) is true. However, we have

N(e1 + e2) = 1 6= N(e1 + λe2), ∀λ ∈ ∂D \ {1},

so (P3) is false.
- (P ′5) ; (P6). Take X1 = C, X2 = C2. We will build a norm on C3 such that (P ′5) is satisfied
but not (P6). For this, denote

K = Conv({λ1e1 + λ2e2, λ3e3, , λi ∈ D}).

The set K is convex, compact, contains 0 in its interior, and is stable for x 7→ λx and ae1 +be2 +

ce3 7→ ae1 +λe2 +λe3 , ∀λ ∈ D. Furthermore, K is contained in the polydisc D3
and the vectors
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e1, e2, e3, e1 + e2 are in its boundary, but it does not contain e1 + e3. Lastly, the boundary of K
is stable for ae1 + be2 + ce3 7→ ae1 + λbe2 + λce3, ∀λ ∈ ∂D.
Hence, there exists a norm N on C3 whose closed unit ball is K. As we have

N(ae1 + be2 + ce3) = N(ae1 + λbe2 + λce3), ∀λ ∈ ∂D,

we have Property (P ′5). However, as we also have N(e1) = N(e2) = N(e3) = 1 and N(e1 +e2) =
1 < N(e1 + e3), (P6) is not satisfied.
- When dim(X2) = 1, for every x2, y2 ∈ X2 we have ‖x2‖ = ‖y2‖ if and only if y2 = λx2 for a
λ ∈ ∂D. Hence, Properties (P ′5) and (P6) coincide in this case.
- (P6) ; (P7) Take X1 = C2, X2 = C. We will build a norm on C3 such that (P6) is satisfied
but not (P7). For this, denote

K = Conv({λ2e2 + λ3e3, λ1e1, , λi ∈ D}.

The set K is convex, compact, contains 0 in its interior, and is stable for x 7→ λx and ae1 +

be2 + ce3 7→ λae1 + λbe2 + ce3 , ∀λ ∈ D. Furthermore, K is contained in the polydisc D3
and

the vectors e1, e2, e3, e2 + e3 are in its boundary, but it does not contain e1 + e3. Lastly, the
boundary of K is stable for the transformation ae1 + be2 + ce3 7→ λae1 + λbe2 + ce3, ∀λ ∈ ∂D.
Hence, there exists a norm N on C2 whose closed unit ball is K. As we have

N(ae1 + be2 + ce3) = N(λae1 + λbe2 + ce3), ∀λ ∈ ∂D,

and as dim(X2) = 1, (P6) is satisfied. However, as we also have N(e1) = N(e2) = N(e3) = 1
and N(e2 + e3) = 1 6= N(e1 + e3), (P7) is not satisfied.
- When dim(X1) = 1, for every x1, y1 ∈ X1 we have ‖x1‖ = ‖y1‖ if and only if y1 = λx1 for
some λ ∈ ∂D. Hence, Properties (P6) and (P7) coincide in this case.
- (P3) ; (P4). If (P3) is satisfied for a λ that is not a root of unity, then (P4) is true. However
there exist projections P that only satisfy (P3) for λ = −1 or for some root of unity. Such
counter-examples appear in [Lin08, Thm 4] (some projections on Lp(Ω, X), p 6= 2, (Ω, µ) of
finite measure, X with an Lp-trivial structure, only satisfy (P3) for λ = −1) and in [Kin13, Thm
2.2] (any projection on Hp(∂D2), p 6= 2, can only satisfy (P3) for λ = −1).

Lemma 3.2.3. Let X be a Banach space. Let X1, X2 be closed subspaces of X that are in direct
sum. Let P ∈ L(X) be the projection on X1 parallel to X2.

(i) P satisfies Property (P8) if and only if for every Ci ∈ L(Xi) we have

‖x1 + x2 7→ C1(x1) + C2(x2)‖ ≤ max
i

(‖Ci‖).

In particular, if Ci are contractions, then (x1 + x2 7→ C1(x1) + C2(x2)) is a contraction.

(ii) If P satisfies Property (P8), and if for Ci ∈ L(Xi) we have ai > 0 such that ai‖xi‖ ≤
‖Ci(xi)‖, ∀xi ∈ Xi, then the operator T := x1 + x2 7→ C1(x1) + C2(x2) satisfies

min
i

(ai)‖x1 + x2‖ ≤ ‖T (x1 + x2)‖ ≤ max
i

(‖Ci‖)‖x1 + x2‖.

(iii) P satisfies (P5) if and only if for Ci = λiIXi with λi ∈ D, we have

‖x1 + x2 7→ C1(x1) + C2(x2)‖ = max
i

(|λi|) ≤ 1.
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Proof. (i) The direct implication is a consequence of (P8).
Conversely, we will show that (P9) is true, which is equivalent to (P8). Let xi, yi ∈ Xi, be such
that ‖xi‖ = ‖yi‖, 1 ≤ i ≤ 2. By using Hahn-Banach’s Theorem on Xi, we obtain a linear form
fi such that

fi(xi) = 1 and ‖fi‖ = ‖fi(
xi
‖xi‖

)‖ =
1

‖xi‖
.

We can then define Ci ∈ L(Xi) by Ci(zi) = fi(zi)yi. These are rank one operators, with

‖Ci‖ = ‖yi‖‖fi‖ =
‖yi‖
‖xi‖

= 1.

Thus, we have ‖y1 + y2‖ = ‖C1(x1) + C2(x2)‖ ≤ ‖x1 + x2‖. Since this inequality is true for
every xi, yi ∈ Xi, such that ‖xi‖ = ‖yi‖, we obtain an equality by symmetry. Therefore, (P9) is
satisfied.
- (ii) In this context the operators Ci : Xi → Ci(Xi) are isomorphisms. Hence, for C−1

i :
Ci(Xi)→ Xi we have ‖C−1

i ‖ ≤
1
ai

. Take xi ∈ Xi non-zero and denote yi = Ci(xi). Since yi are
non-zero, we can use (P ′8) to obtain

‖C−1
1 (y1) + C−1

2 (y2)‖ ≤ max
i

(‖C−1
i (

yi
‖yi‖

)‖)‖y1 + y2‖

⇒‖C−1
1 (y1) + C−1

2 (y2)‖ ≤ max
i

(‖C−1
i ‖)‖y1 + y2‖

⇒‖x1 + x2‖ ≤ max
i

(
1

ai
)‖T (x1 + x2)‖

⇒min
i

(ai)‖x1 + x2‖ ≤ ‖T (x1 + x2)‖

- (iii) The equivalence between these two conditions is immediate.

Lemma 3.2.4. Let X be a Banach spaces. Let X1, X2 be closed subspaces of X. Let Y1 ⊂ X1,
Y2 ⊂ X2 be closed subspaces. Then

(i) If (P10) is true for X1 ⊕X2, then (P10) is true for Y1 ⊕ Y2.

(ii) If (P9) is true for X1 ⊕X2, then (P9) is true for Y1 ⊕ Y2.

(iii) If (P6) is true for X1 ⊕X2, then (P6) is true for Y1 ⊕ Y2.

(iv) If (P5) is true for X1 ⊕X2, then (P5) is true for Y1 ⊕ Y2.

Proof. By taking x1, y1 ∈ Y1, x2, y2 ∈ Y2 such that ‖xi‖ = ‖yi‖ (or only ‖x2‖ = ‖y2‖), and
λ1, λ2 ∈ C, a quick computation gives each implication.

Lemma 3.2.5. Let X be a Banach space. Let X1, .., Xr be closed subspaces of X such that
X = X1⊕X2⊕ ...⊕Xr. If Property (P9) is true for Xi⊕(Xi+1⊕ ...⊕Xr) for every 1 ≤ i ≤ r−1,
then Property (P9) is true for Xi ⊕Xj, for every 1 ≤ i < j ≤ r.
The converse is false in general.

Proof. We can use Lemma 3.2.4 in order to obtain the implication.
We will exhibit a counter-example for the converse. Take X1 = C, X2 = C, X3 = C. We will
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build a norm on C3 such that Property (P9) is satisfied for X1⊕X2, X1⊕X3, X2⊕X3, but not
for X1 ⊕ (X2 ⊕X3). For this, denote

K = Conv({λ1e1 + λ2e2, λ3e1 + λ4e3, λ5e2 + λ6e3, λ7(e1 + e2 + e3), λi ∈ D}.

The set K is then convex, closed, contains 0 in its interior, and is invariant under x 7→ λx,
ae1 + be2 7→ ae1 + λbe2, ae1 + ce3 7→ ae1 + λce3 and be2 + ce3 7→ be2 + λce3 , for every λ ∈ D.

Furthermore, K is included in the polydisc D3
and e1, e2, e3, e1+λe2, e1+λe3, e2+λe3, e1+e2+e3

are on its frontier, while e1 + e2 − e3 is not in K. Hence, there exists a norm N on X whose
closed unit ball is K. As dim(Xi) = 1, for every xi, yi ∈ Xi we have ‖xi‖ = ‖yi‖ if and only if
yi = λxi for some λ ∈ ∂D. As we have

N(ae1 + be2) = N(ae1 + λbe2), N(ae1 + ce3) = N(ae1 + λce3),

N(be2 + ce3) = N(be2 + λce3), ∀λ ∈ ∂D,

the spaces X1 ⊕X2, X1 ⊕X3, X2 ⊕X3 satisfy Property (P9). However, as

N(e1) = N(e2 + e3) = N(e2 − e3) = 1, N(e1 + e2 + e3) = 1 6= N(e1 + e2 − e3),

the space X1 ⊕ (X2 ⊕X3) does not satisfy Property (P9).

Remark 3.2.6. We will see in the next chapter that the implication of Lemma 3.2.5 holds for
Property (P10) (Lp-projections). We will also see, in this context, that the converse is true if we
add some properties to the underlying Banach space X (properties extracted from Lp spaces).

Lemma 3.2.7. Let X be a Banach space. Let X1, X2 be closed subspaces of X that are in direct
sum. The following are equivalent

(i) For any λ ∈ ∂D, the operator Vλ defined by (x1 +x2 7→ x1 +λx2) is similar to a contraction
in L(X), i.e., there exists an invertible operator S ∈ L(X) such that ‖S−1VλS‖ ≤ 1.

(ii) There exists Y1, Y2 closed subspaces of X with X = Y1 ⊕ Y2, Yi ' Xi, such that Property
(P ′5) is satisfied for Y1 ⊕ Y2.

Proof. (i)⇒ (ii) Take λ = ei, C1 = IX1 and C2 = λIX2 . Let S ∈ L(X) be an invertible operator
and denote Yi = S−1(Xi), 1 ≤ i ≤ 2. We have X = Y1 ⊕ Y2 and

S−1C1S(y1) + S−1C2S(y2) = y1 + λy2, ∀yi ∈ Yi.

Thus, we have
‖y1 + λy2‖ ≤ ‖y1 + y2‖, ∀yi ∈ Yi.

With an induction on n ≥ 1, we then obtain

‖y1 + λny2‖ ≤ ‖y1 + y2‖, ∀yi ∈ Yi, ∀n ≥ 1.

By density of {ein, n ≥ 0} in ∂D and by continuity of ‖ · ‖, we get

‖y1 + γy2‖ ≤ ‖y1 + y2‖, ∀yi ∈ Yi, ∀γ ∈ ∂D.

Since this inequality is true for γ and γ, for all γ ∈ ∂D, we must have an equality. Therefore,
Property (P ′5) is true for X = Y1 ⊕ Y2.
- (ii) ⇒ (i) Conversely, we have two invertible operators, S1 : X1 → Y1 and S2 : X2 → Y2. As
X = X1⊕X2, the linear map S : x1 +x2 ∈ X 7→ S1(x1)+S2(x2) ∈ X is bounded and invertible.
Then, for any λ ∈ ∂D and for Tλ(x1 + x2) := x1 + λx2, we have STS−1(y1 + y2) = y1 + λy2,
which is a contraction due to Property (P ′5).
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Lemma 3.2.8. Let X be a Banach space and let X1, ..., Xr be closed subspaces such that X =
X1 ⊕X2 ⊕ ...⊕Xr. The following are equivalent

(i) There exists closed subspaces Y1, .., Yr such that X = Y1 ⊕ ... ⊕ Yr, and such that for
every Ni ∈ L(Xi) nilpotent, there is S ∈ L(X) invertible with S−1(Xi) = Yi, such that
‖S−1V S‖ ≤ 1, where V denotes the operator

x1 + ..+ xr 7→ N1(x1) + ..+Nr(xr).

(ii) There exists closed subspaces Y1, .., Yr such that X = Y1 ⊕ ...⊕ Yr, Yi ' Xi, and such that
for every Ni ∈ L(Yi) nilpotent, we have

inf
{Siinvertible, Si∈L(Yi)}

(‖S−1
i NiSi‖) = 0.

Proof. (i) ⇒ (ii) Let 1 ≤ i ≤ r fixed. Let Ni ∈ L(Yi) be nilpotent and non-zero. Condition
(i) implies the existence of S ∈ L(X) invertible such that S−1(Xi) = Yi. For every n ≥ 1, we
define Tn(x1 + ..+ xr) := nSNiS

−1(xr). Then, we have Tn = nT1. Since nSNiS
−1 ∈ L(Xi) and

is nilpotent, for every n ≥ 1 we have Un ∈ L(X) invertible such that

U−1
n (Xi) = Yi, and ‖U−1

n TnUn‖ ≤ 1.

Define Ri(y1 + ..+ yr) := Ni(yi). We then have SRiS
−1 = T1 = 1

nTn, so

‖(U−1
n S)Ri(S

−1Un)‖ ≤ 1

n
, ∀n ≥ 1,

which gives condition (ii).
- (ii) ⇒ (i) Let Ti : Xi → Yi be bounded and invertible. The linear map T (x1 + ... + xr) :=
T1(x1) + ...+Tr(xr) is then bounded and invertible. Let Ni ∈ L(Xi) be nilpotent, for 1 ≤ i ≤ r.
Define V (x1 + ...+ xr) := N1(x1) + ...+Nr(xr). We then have

TV T−1(y1 + ...+ yr) = T1N1T
−1
1 (y1) + ...+ TrNrT

−1
r (yr).

Let ε > 0. For every 1 ≤ i ≤ r, condition (ii) gives us Si ∈ L(Yi) invertible such that
‖SiTiNiT

−1
i S−1

i ‖ ≤ ε. Define S(y1 + ... + yr) := S1(y1) + ... + Sr(yr). Then S is bounded and
invertible. Denote Pi ∈ L(X) the projection on Yi parallel to

⊕
j 6=i Yj . Let y = y1 + ..+ yr ∈ X.

We have

‖STV T−1S−1(y)‖ = ‖
r∑
i=1

SiTiNiT
−1
i S−1

i (yi)‖ = ‖
r∑
i=1

SiTiNiT
−1
i S−1

i Pi(y)‖

≤
r∑
i=1

‖SiTiYiT−1
i S−1

i ‖‖Pi‖‖y‖ ≤ ε
r∑
i=1

‖Pi‖‖y‖.

Therefore, with ε small enough we obtain condition (i).

The properties defined in Definition 3.2.1 focused on a single projection, that is a direct sum
decomposition of X in two subspaces. We will now study the more general case of direct sums
of more than two subspaces.
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3.2.B Generalizations to finite direct sums of subspaces

In this Subsection, we generalize some classes of projections (identified to a direct sum of two
subspaces) to classes of finite direct sums satisfying a given condition. We will look at relation-
ships between these classes in a similar way as in Subsection 3.2.A and also raise new questions
that naturally appear.

Definition 3.2.9. Let X be a Banach space, r ≥ 2, and let X1, .., Xr be closed subspaces such
that X = X1 ⊕X2 ⊕ ...⊕Xr. We define the following properties

(P8,r) For every xi ∈ Xi and Ci ∈ L(Xi), 1 ≤ i ≤ r, we have

‖C1(x1) + ...+ Cr(xr)‖ ≤ max
i

(a(Ci, xi))‖x1 + ...+ xr‖,

where a(Ci, xi) :=

{‖Ci(xi)‖
‖xi‖ if xi 6= 0

0 else

(P9,r) For every xi, yi ∈ Xi such that ‖xi‖ = ‖yi‖, 1 ≤ i ≤ r, we have

‖x1 + ...+ xr‖ = ‖y1 + ...+ yr‖.

(P5,r) For every xi ∈ Xi and λi ∈ C, 1 ≤ i ≤ r, we have

‖λ1xi + ...+ λrxr‖ ≤ max
i

(|λi|)‖x1 + ...+ xr‖.

(P ′5,r) For every xi ∈ Xi and λi ∈ ∂D, 1 ≤ i ≤ r, we have

‖λ1xi + ...+ λrxr‖ = ‖x1 + ...+ xr‖.

Lemma 3.2.10. Let X be a Banach space, r ≥ 2, and let X1, .., Xr be closed subspaces such
that X = X1 ⊕X2 ⊕ ...⊕Xr. We have

(P8,r)⇔ (P9,r)⇒ (P ′5,r)⇔ (P5,r).

Proof. The implications (P9,r)⇒ (P ′5,r)⇒ (P5,r) are immediate.
- (P5,r) ⇒ (P ′5,r). Take λi ∈ ∂D, 1 ≤ i ≤ r, and define T (x1 + ... + xr) := λ1x1 + ... + λrxr.

Then T is an invertible operator on X, and (P5,r) implies that ‖T‖ ≤ 1 and ‖T−1‖ ≤ 1, as
max(|λi|) = 1 = max(|λ−1

i |). Hence T is an (invertible) isometry, thus

‖λ1xi + ...+ λrxr‖ = ‖x1 + ...+ xr‖, ∀x1 + ...+ xr ∈ X.

- (P9,r)⇒ (P8,r) We recall that for every wi ∈ Xi, 1 ≤ i ≤ r, the map (z1, .., zr) 7→ ‖z1w1 + ...+
zrwr‖ is pluri-subharmonic. Hence, for every (z1, .., zr) ∈ Dr, we obtain

‖z1w1 + ...+ zrwr‖ ≤ sup
∂Dr

(‖λ1w1 + ...+ λrwr‖) = ‖w1 + ...+ wr‖.
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Let xi ∈ Xi and Ci ∈ L(Xi), for 1 ≤ i ≤ r. Denote a(Ci, xi) :=

{‖Ci(xi)‖
‖xi‖ si xi 6= 0

0 else
and take

b = maxi(a(Ci, xi)). If all Ci(xi) are zero, then b = 0 and there is nothing to prove. Suppose
that at least one Ci(xi) is non-zero. Then, xi 6= 0 and b 6= 0. This gives us

‖Ci(xi)‖ = ‖xi.a(Ci, xi)‖ and
a(Ci, xi)

b
≤ 1, ∀1 ≤ i ≤ r.

Hence,

‖C1(x1) + ...+ Cr(xr)‖ = ‖x1a(C1, x1) + ...+ xra(Cr, xr)‖

= b‖x1
a(C1, x1)

b
+ ...+ xr

a(Cr, xr)

b
‖ ≤ b‖x1 + ...+ xr‖,

which gives (P8,r).
- (P8,r)⇒ (P9,r). Take xi, yi ∈ Xi such that ‖xi‖ = ‖yi‖, 1 ≤ i ≤ r. For every i such that xi = 0
we have yi = 0, so we take Ci = 0. For every j such that xj 6= 0, we can use the Hahn-Banach
Theorem on Xj to find a linear form fj such that

fj(xj) 6= 0 and ‖fj‖ =
‖fj(xj)‖
‖xj‖

.

By defining Cj(w) :=
fj(w)
fj(xj)

yj , Cj is an operator satisfying Cj(xj) = yj . Therefore, we obtain

‖y1 + ...+ yr‖ = ‖C1(x1) + ...+ Cr(yr)‖ ≤ max
i

(a(Ci, xi))‖x1 + ...+ xr‖ ≤ ‖x1 + ...+ xr‖.

By permuting the role of xi with yi we also obtain ‖x1 + ...+ xr‖ ≤ ‖y1 + ...+ yr‖, so Property
(P9,r) is satisfied.

Lemma 3.2.11. Let X be a Banach space. Let r ≥ 2 and let X1, ..., Xr be closed subspaces of
X with X = X1 ⊕ ...⊕Xr. For the following conditions,

(i) Property (P9) is true for Xi ⊕ (
⊕

j 6=iXj), ∀1 ≤ i ≤ r;

(ii) Property (P9) is true for Xi ⊕ (Xi+1 ⊕ ...⊕Xr), ∀1 ≤ i < r;

(iii) Property (P9,r) is true for X = X1 ⊕X2 ⊕ ...⊕Xr.

(1) Property (P ′5,r) is true for X = X1 ⊕X2 ⊕ ...⊕Xr;

(2) Property (P ′5) is true for Xi ⊕ (
⊕

j 6=iXj), ∀1 ≤ i ≤ r;

(3) Property (P ′5) is true for Xi ⊕ (Xi+1 ⊕ ...⊕Xr), ∀1 ≤ i < r.

we have the implications

(i)⇒ (ii)⇒ (iii), (1)⇔ (2)⇒ (3).

Proof. (i) ⇒ (ii) Let 1 ≤ i ≤ r. Since Xi+1 ⊕ ... ⊕ Xr ⊂
⊕

j 6=iXj , item (ii) of Lemma 3.2.4
gives the implication.
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- (ii)⇒ (iii) Let xj , yj ∈ Xj be such that ‖xj‖ = ‖yj‖, 1 ≤ j ≤ r. Item (ii) applied to i = r− 1
gives us ‖xr−1 + xr‖ = ‖yr−1 + yr‖. We can then apply item (ii) to i = r − 2 to obtain

‖xr−2 + xr−1 + xr‖ = ‖yr−2 + yr−1 + yr‖.

Hence, we can reiterate this process with a finite decreasing induction on 1 ≤ i < r in order to
obtain

‖x1 + ..+ xr‖ = ‖y1 + ..+ yr‖,

which gives item (iii).
- (1) ⇒ (2) Let 1 ≤ i ≤ r. Let λ, γ ∈ ∂D. Let xj ∈ Xj , 1 ≤ j ≤ r. For j 6= i, denote λj = λ.
Denote λi = γ. With item (1) we obtain

‖λxi + γ(
∑
j 6=i

xj)‖ = ‖λixi + (
∑
j 6=i

λjxj)‖ = ‖xi +
∑
j 6=i

xj‖,

which gives item (2).
- (2) ⇒ (3) Let 1 ≤ i < r. Let λ, γ ∈ ∂D. For every i ≤ j ≤ r, take xj ∈ Xj . For 1 ≤ j < i,
denote xj = 0. With item (2) we have

‖λxi + γ(xi+1 + ..+ xr)‖ = ‖λxi + γ(
∑
j 6=i

xj)‖ = ‖xi + (
∑
j 6=i

xj)‖ = ‖xi + (xi+1 + ..+ xr)‖,

which gives item (3).
- (2) ⇒ (1) For 1 ≤ j ≤ r, take xj ∈ Xj and λj ∈ ∂D. For any yj ∈ Xj and any 1 ≤ i ≤ r,
applying item (2) to y1, .., yr and to i, with λ = λi and γ = 1, gives

‖y1 + ..+ yr‖ = ‖y1 + ..+ yi−1 + λiyi + yi+1 + ..+ yr‖.

Therefore, we obtain

‖x1+..+xr‖ = ‖x1+..+xr−1+λrxr‖ = ‖x1+..+xr−2+λr−1xr−1+λrxr‖ = .. = ‖λ1x1+..+λrxr‖,

proving item (1).

3.3 Projections and Clarkson equality case for Lp and its sub-
spaces

This Section 3.3 deals with Hermitian projections and Lp-projections on Banach spaces that are
either Lp(Ω) or subspaces of Lp(Ω). These projections have been completely described on many
of these spaces thanks to their specific properties.
When looking at Hermitian projections or Lp-projections on a subspace of dimension 2, their
definition can be reformulated into a condition that must be satisfied for every z ∈ C. Hence we
will try to see if a weaker condition (for every z ∈ ∂D, for z = ±1) would give the same results.
As Lp-projections are a specific case of Hermitian projections we also try to look at subspaces
of Lp for which every Hermitian projection is an Lp-projections, or at conditions that ensure
the contrary.
In Subsection 3.3.B we study the case p = 2n, where the relationship |f+g|2n = (f+g)n(f+g)n

allows us to obtain a useful additional property.
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3.3.A Projections and Clarkson equality case on Lp

Example 3.3.1. (i) For X = C0(Ω), with Ω compact and Hausdorff, the projections P
satisfying Property (P4) (Hermitian projection) have the form P = MχA , with A ⊂ Ω a
clopen subset (G closed and open).
Hence, if Ω is connected, there is no non-trivial projection satisfying (P4) on X [Tor68].

(ii) For X = Lp(Ω,F , µ, E), with E a reflexive Banach space, µ totally σ-finite without atoms,
and 1 < p < +∞, p 6= 2, the projections P satisfying Property (P4) have the form P = MχA

with A ∈ F [Lum63]. Hence, every Hermitian projection on X is an Lp-projection.

(iii) For X = Hp(D) or Lpα(D) with 1 ≤ p ≤ +∞, p 6= 2, there is no non-trivial projection
P satisfying Property (P4) [Ber72]. Hence, every Hermitian projection on X is an Lp-
projection.

(iv) For X = C1([0, 1]), Lip([0, 1]) or AC([0, 1]), there is no non-trivial projection P satisfying
Property (P4). [BS74]
Hence, every Hermitian projection on these spaces is a L∞-projection, and they can be
completely described.
These results come from a characterization of Hermitian operators on X ( T ∈ L(X) with
‖eiαT ‖ = 1, ∀α ∈ R), that we then apply to projections.
This non-existence result can also be proved from a characterization of surjective isometries
on X that we then apply in order to show that for P a non-trivial projection, P +λ(I−P )
is an isometry if and only if λ = ±1.

(v) For X = C0(Ω) with Ω locally compact and Hausdorff, every L∞-projection P on X has
the form P = MχA with A ⊂ Ω a clopen subset [HWW93, Ex.1.4(a)].

(vi) For X = ⊕lpn≥1Xn, with Xn Banach spaces, and 1 ≤ p < +∞, p 6= 2, the Hermitian
projections on X have the form P = ⊕nPn, with Pn a Hermitian projection on Xn [BS74,
Thm.2.1] .

(vii) For X = lp(N) (1 ≤ p ≤ +∞, p 6= 2) or c0(N), Hermitian projections on X have the form
P = MχA , with A ⊂ N.
For X = c(N), Hermitian projection on X have the form P = MχA , with A ⊂ N such that
n 7→ χA(n) is constant up to a certain rank [Tor68].
Hence every Hermitian projection on these spaces is an Lp or L∞-projection.

Remark 3.3.2. If X is a SQp space, is every Hermitian projection P on X also an Lp-projection
( ‖x‖p = ‖P (x)‖p + ‖(I − P )(x)‖p, ∀x ∈ X ) ?
The answer is negative regarding subspaces of some Lp(Ω) when p = 2n, n ≥ 2. Proposition
3.3.10 provides a counter-example in this case.

Lemma 3.3.3. —
Let X = Lp(Ω,F , µ), with 1 ≤ p ≤ +∞, p 6= 2. Let f, g ∈ X. Consider the following conditions

(i) f and g have disjoint supports (up to a set of null measure);

(ii) ‖f + zg‖ = ‖(‖f‖, ‖zg‖)‖`p, ∀z ∈ C;

(iii) ‖f + zg‖ = ‖f + |z|g‖, ∀z ∈ C.
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(1) f and g have disjoint supports (up to a set of null measure);

(2) ‖f + λg‖ = ‖(‖f‖, ‖g‖)‖`p, ∀λ ∈ ∂D;

(3) ‖f + λg‖ = ‖f + g‖, ∀λ ∈ ∂D.

We have the implications
(i)⇒ (ii)⇒ (iii), (1)⇒ (2)⇒ (3)

The implications (ii)⇒ (i) and (2)⇒ (1) are true when p < +∞.
The implications (ii)⇒ (i) and (2)⇒ (1) are false when p = +∞ and dim(X) ≥ 3.

Proof. The implications (i)⇒ (ii)⇒ (iii) and (1)⇒ (2)⇒ (3) are immediate.
When p < +∞, the implications (ii) ⇒ (i) and (2) ⇒ (1) derive from the equality case of the
Clarkson inequalities (see Lemma 4.1.12 and Corollary 4.2.3).
When p = +∞ and dim(X) ≥ 3, the σ-algebra F contains three sets A1, A2, A3 that are mutually
disjoint (up to a set of measure zero) and that satisfy µ(Ai) > 0. By taking ei = 1

µ(Ai)
χAi ,

Span(e1, e2, e3) is isometrically isomorphic to l∞(C3). Denote f = 2e1 + e2 and g = e2 + 2e3.
A short computation gives that ‖f + zg‖ = max(‖f‖, ‖zg‖), ∀z ∈ C. However f and g do not
have disjoint supports, which concludes the proof.

Corollary 3.3.4. Let X = Lp(Ω,F , µ), with 1 ≤ p ≤ +∞. Consider the following assertions

(i) The implication (3)⇒ (2) in Lemma 3.3.3 is true for X;

(ii) The implication (iii)⇒ (ii) in Lemma 3.3.3 is true for X;

(iii) Every Hermitian projection on a closed subspace of X is an Lp-projection.

Then (i)⇒ (ii)⇒ (iii). Furthermore, conditions (ii) and (iii) are equivalent.

Proof. (ii)⇒ (iii) Let F be a closed subspace of X and let P ∈ L(F ) be a Hermitian projection.
For every f ∈ Ker(P ), g ∈ Ran(P ), and z ∈ C, we have ‖f + zg‖ = ‖f + |z|g‖. Hence,
if (iii) ⇒ (ii) in Lemma 3.3.3 is true, we have ‖f + g‖ = ‖(‖f‖, ‖g‖)‖`p . Thus P satisfies
Proposition (P10) for p, so it is an Lp-projection.
- (iii) ⇒ (ii) Let f, g ∈ X be such that ‖f + zg‖ = ‖f + |z|g‖, ∀z ∈ C. If f = 0 or g = 0
there is nothing to prove. When f 6= 0 and g 6= 0, we can see that f and g are not colinear as
|1 + az|‖f‖ is not equal to (1 + |az|)‖f‖ for every z ∈ C. Hence, Span(f, g) is of dimension 2.
Denote Q the projection on Span(f) parallel to Span(g). Let λ, γ ∈ ∂D and a, b ∈ C. If a = 0
then ‖λaf + γbg‖ = ‖bg‖ = ‖af + bg‖. If not, we have

‖λaf + γbg‖ = |a|‖f +
γb

λa
g‖ = |a|‖f +

|b|
|a|
g‖

= |a|‖f +
b

a
g‖ = ‖af + bg‖,

so Q is a Hermitian projection. Thus Q is an Lp-projection, so ‖f + zg‖ = ‖(‖f‖, ‖zg‖)‖`p for
every z ∈ C, which proves the implication.
- (i) ⇒ (ii). Let f, g ∈ X be such that ‖f + zg‖ = ‖f + |z|g‖, ∀z ∈ C. Let w ∈ C. For every
λ ∈ ∂D we have

‖f + λwg‖ = ‖f + |λw|g‖ = ‖f + wg‖,
thus the implication (3) ⇒ (2) gives ‖f + wg‖ = ‖(‖f‖, ‖wg‖)‖`p . As this is true for every
w ∈ C, this concludes the proof.
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Remark 3.3.5. We do not know if the conditions (i) and (ii) in Corollary 3.3.4 are equivalent.
However, both of them are false for some spaces L2n(Ω), n ≥ 2 (see Propositions 3.3.9 and
3.3.10).

Proposition 3.3.6. Let µ be the Lebesgue measure on R, let I be a non-empty interval of R ,
and suppose that 1 ≤ p < +∞, p 6= 2. Let X = Lp(I, µ). Then the conditions (i) and (ii) in
Corollary 3.3.4 are false for X.

Proof. Up to dilating and translating I, we can suppose that I contains J = [0, 2π]. We then
define f(x) = χJ(x) and g(x) = eixχJ(x). The maps f and g are in Lp. Let λ = reit ∈ C. Using
a change of variables and the 2π-periodicity of x 7→ 1 + reix gives us

‖f+λg‖pp =

∫ 2π

0
|1+rei(t+x)|pdµ(x) =

∫ 2π+t

t
|1+reiu|pdµ(u) =

∫ 2π

0
|1+reis|pdµ(s) = ‖f+rg‖pp.

Hence, f and g satisfy conditions (3) and (iii) of Lemma 3.3.3. However, as f and g do not have
disjoint supports, Corollary 4.2.3 implies that we cannot have ‖f ± g‖p = ‖f‖p + ‖g‖p. Hence
conditions (2) and (ii) of Lemma 3.3.3 are not satisfied.

Remark 3.3.7. Let 1 ≤ p ≤ +∞. If we have Lp(Ω,F , µ) with vectors f, g such that ‖f + λg‖ =
‖f + g‖, ∀λ ∈ ∂D but not ‖f + g‖ = ‖(‖f‖, ‖g‖)‖`p , the same holds true for every space
Lp(Ω′,G, ν) which contains a closed subspace that is isometrically isomorphic to Lp(Ω,F , µ).
We can also see that the proof of Proposition 3.3.6 that for F = Span(f, g), F is a subspace of
Lp(I, µ) possessing a Hermitian projection that is not an Lp-projection.

Corollary 3.3.8. Let n ≥ 1. Let µn be the Lebesgue measure on Rn, let I be a product of
intervals in Rn with µn(I) > 0, and suppose that 1 ≤ p < +∞, p 6= 2. Let X = Lp(I, µn). Then
the conditions (i) and (ii) in Corollary 3.3.4 are false for X.

Proof. Write I = Πn
k=1Ik, with Ik non-empty intervals in R. The map T : Lp(I1) → Lp(I)

defined by T (f)(x1, ..., xn) = f(x1)χI(x1, .., xn)Πn
k=2µ(Ik)

− 1
p is an isometry. Hence X contains

a closed subspace that is isometrically isomorphic to Lp(I1, µ), and we can use Remark 3.3.7 to
get the desired result.

3.3.B The case of L2n(Ω)

When p has the form p = 2n, with n ≥ 1, the Lp norm can be expressed differently thanks to
the relationship |f + g|2n = (f + g)n(f + g)n. We will use this relationship to obtain weaker
conditions that can give Hermitian projections. We shall also construct Hermitian projections
on some subspaces that are not Lp-projections.

Proposition 3.3.9. Let (Ω,F , µ) be a measure space and let n ≥ 1. Let X = L2n(Ω,F , µ). Let
f, g ∈ X. The following are equivalent

(i) ‖f + λg‖2n = ‖f + g‖2n, ∀λ ∈ ∂D;

(ii) ‖f + zg‖2n = ‖f + |z|g‖2n, ∀z ∈ C;

(iii)
n−l∑
k=0

(
n
k

)(
n
l+k

) ∫
Ω

(gl|g|2kf̄ l|f |2(n−l−k))(x)dµ(x) = 0, ∀1 ≤ l ≤ n;
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(iv) ‖f + zg‖2n2n =
∑n

k=0 |z|2k
(
n
k

)2 ∫
Ω

(|f |2(n−k)|g|2k)(x)dµ(x), ∀z ∈ C.

Proof. The implications (ii)⇒ (i) and (iv)⇒ (ii) are immediate. Let us first develop |f+λg|2n
in order to show (iii)⇒ (iv). After that we will build a harmonic map to obtain (i)⇒ (iii).
Let z ∈ C. By developing (f + zg)n we obtain

|f + zg|2n = (f + zg)n(f + zg)
n

=
n∑
k=0

(
n

k

)2

|f |2(n−k)|zg|2k +
n∑
l=1

n−l∑
k=0

2Re(zlgl|zg|2kf̄ l|f |2(n−l−k)

(
n

k

)(
n

l + k

)
).

We can notice that all products (gl|g|2k)(f̄ l|f |2(n−l−k)) lie in L1(Ω,F , µ) as (l + 2k) + (l +
2(n− l − k)) = 2n. The same is true for |f |2(n−k)|g|2k. We can then define

h : z ∈ C 7→ 2
n∑
l=1

Re[zl
n−l∑
k=0

(
n

k

)(
n

l + k

)∫
Ω

(gl|g|2kf̄ l|f |2(n−l−k))(x)dµ(x)].

The map h is then well-defined and harmonic on C. Using |λ| = 1, we also notice that for
λ ∈ ∂D we have

h(λ) +

∫
Ω

n∑
k=0

(
n

k

)2

(|f |2(n−k)|g|2k)(x)dµ(x) =

∫
Ω
|f + λg|2n(x)dµ(x) = ‖f + λg‖2n2n.

- (iii)⇒ (iv) If item (iii) is true, then for any z ∈ C the previous computations give

‖f + zg‖2n2n =

∫
Ω

n∑
k=0

(
n

k

)2

(|f |2(n−k)|zg|2k)(x)dµ(x) + 0,

so item (iv) is true.
- (i)⇒ (iii) With the previous relationship for λ ∈ ∂D, we can notice that item (i) is equivalent
to the fact that h is constant on ∂D. Since h is harmonic, this is equivalent to the fact that h
is constant on D, or equivalently to the whole complex plane C. Also, by denoting

h2(z) = 2

n∑
l=1

zl
n−l∑
k=0

(
n

k

)(
n

l + k

)∫
Ω

(gl|g|2kf̄ l|f |2(n−l−k))(x)dµ(x),

we see that the map h2 is well-defined on C, that it is a polynomial in z so it is holomorphic on
C, and that is satisfies h = Re(h2). Since h = Re(h2) is constant on C, the map h2 is constant
on C, equal to h2(0) = 0. As h2 is a polynomial, each of its coefficients must be zero. Therefore,
we obtain

n−l∑
k=0

(
n

k

)(
n

l + k

)∫
Ω

(gl|g|2kf̄ l|f |2(n−l−k))(x)dµ(x) = 0, ∀1 ≤ l ≤ n,

which concludes the proof.

Proposition 3.3.10. Let n ≥ 2. Let X = l2n({0, .., n}). Then the implication (iii) ⇒ (ii) in
Lemma 3.3.3 is false for X. Hence, there are closed subspaces F of X who admit Hermitian
projections that are not L2n-projections.
The same results hold for Y = l2n(N).
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Proof. We will use Proposition 3.3.9 in order to imitate the proof of Proposition 3.3.6. For this,
define

fm = 1, gm = e
2imπ
n+1 , 0 ≤ m ≤ n.

Define f := (fm)m and g := (gm)m. We then have f, g ∈ X. The quantities in item (iii) of
Proposition 3.3.9 for f and g are

n−l∑
k=0

(
n

k

)(
n

l + k

)
(
∑
m≥0

glm · 1 · 1 · 1), ∀1 ≤ l ≤ n.

Since e
2ilπ
n+1 6= 1 for every 1 ≤ l ≤ n, we obtain

∑
m≥0

glm =
n∑

m=0

e
2imlπ
n+1 =

n∑
m=0

(e
2ilπ
n+1 )m =

1− 1

1− e
2ilπ
n+1

= 0.

Hence, we can apply Proposition 3.3.9 and obtain with item (i) that

‖f + λg‖2n = ‖f + g‖2n, ∀λ ∈ ∂D.

Item (iv) of this Proposition gives us

‖f + zg‖2n2n =

n∑
k=0

|z|2k
(
n

k

)2

(n+ 1).

Hence, we can also see that

‖f + g‖2n2n > 2(n+ 1) = ‖f‖2n2n + ‖g‖2n2n,

so the implication (iii)⇒ (ii) of Lemma 3.3.3 is not satisfied for X.
This also proves that on the closed subspace Span(f, g), the projection onto Span(f) parallel to
Span(g) is a Hermitian projection that is not a L2n-projection.
We obtain the same results for Y = l2n(N) using Remark 3.3.7.
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Chapter 4

Lp-projections on a Banach space

The aim of this chapter is to study Lp-projections, a notion introduced by Cunningham in
1953, on subspaces, quotients, and subspaces of quotients of complex Banach spaces. An
Lp-projection on a Banach space X, for 1 ≤ p ≤ +∞, is an idempotent operator P satisfying
‖f‖X = ‖(‖P (f)‖X , ‖(I − P )(f)‖X)‖`p for all f ∈ X. This is an Lp version of the equality
‖f‖2 = ‖Q(f)‖2 + ‖(I − Q)(f)‖2, valid for orthogonal projections on Hilbert spaces. For
a complex Banach space X and subspaces F,G, we will focus on relationships between the
Lp-projections on X and those on F ,X/F or G/F . All the results in this chapter are true
for 1 < p < +∞, p 6= 2. The cases p = 1, 2 or +∞ can exhibit different behaviour. In
this regard, we give a complete description of L∞-projections on spaces L∞(Ω). For this,
we introduce a notion of p-orthogonality for two elements x, y by requiring that Span(x, y)
admits an Lp-projection separating x and y. We also introduce the notion of maximal
Lp-projections for X, that is Lp-projections defined on a subspace G of X that cannot be
extended to Lp-projections on larger subspaces. We prove results concerning Lp-projections
and p-orthogonality of general Banach spaces or on Banach spaces with additional prop-
erties. Generalizations of some results to spaces Lp(Ω, X) as well as some results about
Lq-projections on subspaces of Lp(Ω) are also discussed.

Section 2 mainly focuses on relationships and characterizations of Lp-projections on a sub-

space F . Section 3 looks at relationships and characterizations of Lp-projections on a quo-

tient X/F and on a subspace of quotient G/F . Section 4 gives generalizations of previous

results to some spaces Lp(Ω, X).

4.1 Introduction and Preliminaries about Lp-projections

Introduction

The notion of Lp-projection has been introduced by Cunningham in 1953 ([Cun53]) and studied,
mainly in the cases p = 1 and p = +∞, in the papers [Cun53,Cun60,Cun67,CER73]. The general
case 1 < p < +∞ has been studied by Alfsen-Effros [AE72], Sullivan [Sul70] and Fakhoury
[Fak74]. The main characterization results, which were obtained in 1973-1976 by Alfsen-Effros,
Behrends, Fakhoury, Sullivan and others, were compiled in the book [BDE+77, Ch.1,2,6].

We will be interested either in general Banach spaces or in Banach spaces with additional
properties regarding Lp-projections and p-orthogonality. All these additional properties are true
for the spaces Lp(Ω). The results in this chapter are true for 1 < p < +∞, p 6= 2 and some of
them are even true when p = 1, 2 or +∞. However the Hilbert case (p = 2) and the non-reflexive
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cases (p = 1,+∞) can exhibit different behaviours, or do not work well in some contexts. In
this regard, section 2.C only deals with the case p = +∞.

In this chapter, a projection (or an idempotent) is a bounded linear operator P on a Banach
space X that satisfies P 2 = P . We recall that an Lp-projection is an idempotent satisfying the
additional condition of the following definition.

Definition 4.1.1 (Lp-projections). Let X be a Banach space, and let 1 ≤ p ≤ +∞.
A projection P (P 2 = P ) on X is said to be an Lp-projection if it satisfies the condition

‖f‖X = ‖(‖P (f)‖, ‖(I − P )(f)‖)‖p, for all f ∈ X.

This means that{
‖f‖pX = ‖P (f)‖pX + ‖(I − P )(f)‖pX , ∀f ∈ X when 1 ≤ p < +∞.
‖f‖X = max(‖P (f)‖X , ‖(I − P )(f)‖X), ∀f ∈ X when p = +∞.

We denote by Pp(X) the set of Lp-projections on X.

Organization.

In the rest of this introductory section we introduce some of the basic results about Lp-
projections, giving useful tools for the rest of this chapter.
For a complex Banach space X and subspaces F,G, the following sections will focus on rela-
tionships between the Lp-projections on X and those on F ,X/F or G/F . Section 4.2 mainly
concerns relationships and characterizations of Lp-projections on a subspace F . Section 4.3
looks at relationships and characterizations of Lp-projections on a quotient X/F . Section 4.4
gives generalizations of previous results to some spaces Lp(Ω, X).
This chapter introduces a notion of p-orthogonality for two vectors x, y, that is when Span(x, y)
admits an Lp-projection separating x and y. This p-orthogonality for vectors also implies a
notion of p-orthogonal for sets. We introduce as well a notion of maximal Lp-projection for X,
that is Lp-projections defined on a subspace of X that cannot be extended to Lp-projections on
a larger subspace.

Preliminaries

Remark 4.1.2. We can first see that 0 and I are always Lp-projections, so Pp(X) is never empty.
The class Pp(X) of Lp-projections is stronger than the usual class of Hermitian projections. We
recall (see for instance [BS74]) that a projection Q is Hermitian if ‖eiαQ‖ = 1 for each α ∈ R
and that a projection Q is Hermitian if and only if Q+λ(I−Q) is an isometry for every λ ∈ ∂D
or, equivalently, if λQ+γ(I−Q) is an isometry, for any λ, γ ∈ ∂D. To see that an Lp-projection
P is Hermitian, we note that the Lp-projection condition is also equivalent to

‖f + g‖X = ‖(‖f‖, ‖g‖)‖`p , for all f ∈ Ran(P ), g ∈ Ker(P ),

where Ran and Ker denote the range and respectively the kernel. Hence, for any λ, γ ∈ ∂D, we
have

‖λf + γg‖X = ‖(‖f‖, ‖g‖)‖`p = ‖f + g‖X , for all f ∈ Ran(P ), g ∈ Ker(P ).



4.1. Introduction and Preliminaries about Lp-projections 115

Therefore, λP+γ(I−P ) is an isometry on X, and the Lp-projection P is a Hermitian projection.
However, the main characterization results on Hermitian projections in this context mainly
concern Lp and Hp spaces(see [Lum63, Ber72, BS74, Tor68]), thus they are of little help in our
context.

For the rest of this chapter, we will only consider complex Banach spaces. Lp-projections do
not behave differently between real and complex cases except when p = 1 or +∞ (see Thm.4.1.9),
so most of the results can be easily generalized to the real case when 1 < p < +∞, p 6= 2.

For a set E, A a subset of E, F a vector space and a map f : E → F , , we define MχA(f)
as the multiplication by the characteristic function of A:

MχA(f)(x) = fχA(x) =

{
f(x) if x ∈ A

0 if x /∈ A .

The following facts are recorded here without proofs.

Proposition 4.1.3. We have

(i) For (Ω,F , µ) a measure space, 1 ≤ p ≤ +∞, and A ⊂ Ω such that A ∩ B ∈ F for every
B ∈ F with µ(B) < +∞, the operator P = MχA is an Lp-projection on Lp(Ω,F , µ).

(ii) For X,Y Banach spaces, 1 ≤ p ≤ +∞, and T : X → Y an isometric isomorphism, we
have Pp(Y ) = T ◦ Pp(X) ◦ T−1.

(iii) The set of L2-projections on a Hilbert space H is the set of orthogonal projections.

(iv) For K a compact topological space, the L∞-projections on C0(K) have the form P = MχA

with A a clopen subset of K.

Proposition 4.1.4. Let X be a Banach space, and 1 ≤ p ≤ +∞. Let P,Q ∈ Pp(X) be such
that Ran(P ) = Ran(Q). Then, P = Q.

Remark 4.1.5. The set of all Lp-projections P on X is in bijective correspondence to decomposi-
tions X = X1⊕`pX2 of X. A `p-direct sum decomposition like this is called a p-summand of X.
Hence, studying the p-summands of a Banach space X amounts to studying the Lp-projections
on X. Proposition 4.1.4 indicates that for a p-summand X = X1 ⊕p X2, X2 is the only closed
subspace of X that is in `p-direct sum with X1.

We now continue to present several results characterizing Lp-projections on a general Banach
space X, mainly when p 6= 2. Proofs of these results can be found in [BDE+77].

Lemma 4.1.6. Let X be a Banach space, and consider two real conjugate numbers p and p′,
with 1

p + 1
p′ = 1. Let P ∈ L(X) be a projection on X. Then P is an Lp-projection on X if and

only if P ′ is a Lp
′
-projection on X ′.

Proposition 4.1.7. Let X be a Banach space, and 1 ≤ p, p′ ≤ +∞, with 1
p + 1

p′ = 1 and p′ 6= 1.

Then, all Q ∈ Pp′(X ′) are continuous for the weak-* topology σ(X ′, X). Hence, there is P ∈
Pp(X) such that P ′ = Q, so (Pp(X))′ = Pp′(X ′).

The only pathologic case regarding duality and Lp-projections is p′ = 1, p = +∞. For
example X = C0([0, 1]) has trivial L∞-projections whereas X ′ is the space of complex finite
Borel measures on [0, 1], which possesses many L1-projections.
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Theorem 4.1.8. Let X be a Banach space, and 1 ≤ p ≤ +∞, p 6= 2. We then have

(i) All elements of Pp(X) commute with each other.

(ii) The set Pp(X) is a commutative Boolean algebra for the operations (P,Q) 7→ PQ, (P,Q) 7→
P +Q− PQ and P 7→ (I − P ).

(iii) The relationship P ≤ Q ⇔ PQ = P is an order relationship on Pp(X).

(iv) When p 6= +∞, every decreasing filtrating net (Pi)i∈I in Pp(X) is pointwise convergent to
an Lp-projection P , with P = infi∈I(Pi).

(v) When p 6= +∞, the Boolean algebra Pp(X) is complete: Every subset {Pi, i ∈ I} admits
an infimum infi∈I(Pi) in Pp(X). Furthermore, Ran(infi∈I(Pi)) =

⋂
i∈I Ran(Pi).

Theorem 4.1.9. Let X be a Banach space, and 1 ≤ p, q ≤ +∞, with p 6= q. Then, at least one
of the sets Pp(X) or Pq(X) is reduced to {0, I}.
The result stays true for a real Banach space Y , unless Y is isometrically isomorphic to l1(R2) '
l∞(R2).

Remark 4.1.10. Theorems 4.1.8 and 4.1.9 show, for p 6= 2, the similarity of the set Pp(X)
with the set {MχA : A ∈ F}, for (Ω,F , µ) a measure space with µ σ-finite. Theorem 4.1.9 also
shows that we do not need to study Lq-projections on a Banach space X whenever there are
non-trivial Lp-projections on X, for 1 ≤ p, q ≤ +∞ with p 6= q. However, in certain cases,
there may exist Lq-projections on subspaces, quotients, or subspaces of quotients of X, like for
X = Lq(Ω)⊕p Lr(Ω′) for example. This question will be discussed later on (see Lemma 4.4.3).

Corollary 4.1.11. Let X be a Banach space, and 1 ≤ p < +∞, p 6= 2. Let E be a subset of X.
Then, the set of Lp-projections P on X such that P (E) = E admits a unique minimum with
respect to the order relation from Theorem 4.1.8.
Furthermore, for any Q ∈ Pp(X) such that Q(E) = E, we have P ≤ Q.

This minimum in Corollary 4.1.11 is called the minimal Lp-projection for E.

We end this section with results focused around Lp-projections on Lp spaces. With Theorem
4.1.8 we can see that sets of Lp-projections on generic Banach spaces have common behaviours.
Hence having a complete characterization of the set Pp(Lp(Ω)) gives a useful example of the
structure such a set can have.

Lemma 4.1.12 (Clarkson inequalities). Let 1 ≤ p < +∞ and let (Ω,F , µ) be a measure space.
For every f, g in Lp(Ω,F , µ), we have

(i) ‖f + g‖pp + ‖f − g‖pp ≤ 2(‖f‖pp + ‖g‖pp) if 1 ≤ p ≤ 2

(ii) ‖f + g‖pp + ‖f − g‖pp ≥ 2(‖f‖pp + ‖g‖pp) if 2 ≤ p

Moreover, if p 6= 2 there is equality in the above inequalities if and only if µ(supp(f)∩supp(g)) =
0, that is if f and g have a disjoint support.

A proof of these inequalities can be found in [Roy88, Ch15-7,Lem 22,p.416].
The equality case in Clarkson inequalities is the main ingredient in the proof of the two following
characterizations of Lp-projections on Lp-spaces.
This equality case has no equivalent for p = +∞, as one can see in Proposition 4.2.24.
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Theorem 4.1.13. Let 1 ≤ p < +∞, p 6= 2 and let (Ω,F , µ) be a measure space, with µ being
σ-finite. Let P ∈ Pp(Lp(Ω)). Then there exists A ∈ F such that P = MχA.

Theorem 4.1.14. Let 1 ≤ p < +∞, p 6= 2 and let (Ω,F , µ) be a measure space. Let P ∈
Pp(Lp(Ω)). Then we have P = MχA, with A ⊂ Ω such that A ∩ B ∈ F for every B ∈ F with
µ(B) < +∞.

Theorem 4.1.15. Let 1 ≤ p < +∞, p 6= 2 and let (Ω,F , µ) be a measure space. Let Y be a
finite dimensional Banach space. Let P ∈ Pp(Lp(Ω, Y )). Denote Pp(Y ) = {Ti, i ∈ I}. Then
we have P =

∑
i∈I Pi ⊗ Ti, where Pi are Lp-projections on Lp(Ω) such that

∑
i∈I Pi = I, that is

Ran(Pi) are in direct sum in Lp(Ω).

Remark 4.1.16. We refer to Daniel Li’s thesis [Li79] or to [BDE+77] for a proof of Theorems
4.1.13, 4.1.14 and 4.1.15. The proof of Theorem 4.1.15 uses results about the Stonean space
associated to Pp(X) in order to make an Lp-projection P on Lp(Ω, Y ) correspond to an Lp-
projection P ′ on a space of continuous functions, and then describes the form of the latter Lp-
projection by noticing that P ′ composed with any evaluation operator is again an Lp-projection.
The construction made in this proof formalizes the impression that, for P ∈ Pp(Lp(Ω, Y )) and
for any w ∈ Ω, f ∈ Lp(Ω, Y ), we should have ‖f(w)‖ = ‖(‖P (f)(w)‖, ‖(I − P )(f)(w)‖)‖p (even
though these quantities are not valid in that case). Most of the tools used in these proofs
behave differently in the case p = +∞, even though this underlying idea stays similar (see
Section 4.2.C). We also prove in this chapter that L∞(Ω) cannot admit other L∞-projections
than multiplication operators (Theorem 4.2.25).

4.2 The p-Orthogonality Relationship

For a Banach space X and F a closed subspace of X, we will focus in this section on relationships
between Lp-projections on F and those on X, either for a general complex Banach space X or for
a space X satisfying additional properties. Section 4.2.A introduces and studies the notions of
p-orthogonality for vectors and of p-orthogonal sets. Two properties for Banach spaces regarding
p-orthogonality for vectors are also defined and studied. All the results in this section are valid
for 1 ≤ p < +∞, p 6= 2, while some of them are true for p = +∞. Section 4.2.B gives some
examples and Section 4.2.C focuses on the case p = +∞, one of its main results being the
description of P∞(L∞(Ω)). Lastly, Section 4.2.D introduces and studies the notion of maximal
Lp-projections: Lp-projections on a subspace of X that cannot be extended to Lp-projections on
a larger subspace, for 1 ≤ p ≤ +∞, p 6= 2. This section also focuses on the number of maximal
Lp-projections for a subspace F ⊂ X, especially in the finite dimensional case.

4.2.A p-orthogonality, Lp-projections on subspaces, maximal Lp-projections

We introduce the following definition.

Definition 4.2.1 (p-orthogonality). Let X be a Banach space, and 1 ≤ p ≤ +∞. Let f, g ∈ X.
The elements f and g are said to be p-orthogonal, denoted by f⊥pg, if{

‖f + zg‖p = ‖f‖p + |z|p‖g‖p, ∀z ∈ C, when p < +∞;
‖f + zg‖ = max(‖f‖, |z|‖g‖), ∀z ∈ C, when p = +∞.

If f 6= 0 and g 6= 0, this condition is equivalent to the fact that Span(f, g) has dimension 2 and
that the projection on Span(f) parallel to Span(g) is an Lp-projection on Span(f, g).
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Remark 4.2.2. This p-orthogonality relationship is symmetric. We also have

f⊥pf ⇔ f = 0 and f⊥pg ⇔ f⊥pwg, for any w ∈ C∗.

However, f⊥pg and f⊥ph does not imply f⊥p(g + h) in general. See item 4.2.20 for a counter-
example.

A similar notion of orthogonality can be found in a paper of Berkson [Ber72, Section 3],
although it concerns Boolean algebras of Hermitian operators. We also recall the Birkhoff-
James orthogonality, defined as

x⊥BJy ⇔ ‖x+ ty‖ ≥ ‖x‖ for every t ∈ R.

If x⊥py, then one can see that x⊥BJy and y⊥BJx. Hence the p-orthogonality, defined via Lp-
projections, is stronger than the Birkhoff-James orthogonality (the latter is defined using norm
one projections). We refer for instance to [Ran01, 5.f] and [BP88], and warn the reader that
there are many other notions of orthogonality in the literature.

Corollary 4.2.3. Let 1 ≤ p < +∞, p 6= 2, and let (Ω,F , µ) be a measure space. Take X =
Lp(Ω,F , µ) and let f, g ∈ X. We then have the equivalences

(i) f⊥pg;

(ii) ‖f + eitg‖p = ‖f‖p + ‖g‖p, ∀t ∈ R;

(iii) ‖f ± g‖p = ‖f‖p + ‖g‖p;

(iv) ‖f + g‖p + ‖f − g‖p = 2(‖f‖p + ‖g‖p);

(v) f and g have disjoint supports (up to a set of measure 0).

Proof. The implications (i)⇒ (ii)⇒ (iii)⇒ (iv) are immediate.
- (v)⇒ (i) If µ(supp(f) ∩ supp(g)) = 0, then for any z ∈ C we have

‖f + zg‖p =

∫
Ω
|(f + zg)(x)|pdµ(x) = ‖f‖p + ‖zg‖p,

so f⊥pg.
- (iv)⇒ (v) If ‖f + g‖p + ‖f − g‖p = 2(‖f‖p + ‖g‖p), then f and g satisfy the equality case in
Clarkson inequalities 4.1.12, which implies that µ(supp(f) ∩ supp(g)) = 0.

Definition 4.2.4 (p-orthogonal). Let X be a Banach space, and 1 ≤ p ≤ +∞. Let E be a
subset of X. We define E⊥p the p-orthogonal of E as

E⊥p := {f ∈ X: f⊥pg, ∀g ∈ E}.

Remark 4.2.5. Since the map f 7→ ‖f + zg‖ − ‖(‖f‖, |z|‖g‖)‖p is continuous for every z ∈ C,
the set E⊥p is closed. We also have E ⊂ (E⊥p)⊥p , and E ⊂ F ⇒ F⊥p ⊂ E⊥p , similarly to
orthogonal sets in Hilbert spaces or in dual spaces. Hence, for P an Lp-projection leaving E
invariant, we have Ker(P ) ⊂ E⊥p . However, E⊥p is not a linear subspace and is not always
equal to Ker(P ), as we will see in Counter-examples 4.2.20 and 4.2.21.
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Lemma 4.2.6. [BDE+77] Let X be a Banach space, and 1 ≤ p ≤ +∞. Let Q ∈ Pp(X) be an
Lp-projection. We have Ran(Q)⊥p = Ker(Q) and Ker(Q)⊥p = Ran(Q).

Proof. We can first notice that for any h1 ∈ Ran(Q), h2 ∈ Ker(Q), we have h1⊥ph2. This
implies that Ker(Q) ⊂ Ran(Q)⊥p . Let f ∈ Ran(Q)⊥p .
Suppose first that p < +∞. We have f = Q(f) + (I −Q)(f), so

‖f‖p = ‖Q(f)‖p + ‖(I −Q)(f)‖p.

But we also have (I −Q)(f) = f −Q(f), so

‖(I −Q)(f)‖p = ‖f‖p + ‖Q(f)‖p.

Hence, Q(f) = 0, so f ∈ Ker(Q) and Ran(Q)⊥p = Ker(Q).
Suppose now that p = +∞. Let z ∈ C. We have f + zQ(f) = (1 + z)Q(f) + (I −Q)(f), so

max(‖f‖, ‖zQ(f)‖) = ‖f + zQ(f)‖ = max(‖(1 + z)Q(f)‖, ‖(I −Q)(f)‖).

As this must be true for every z ∈ C, we have Q(f) = 0, so f ∈ Ker(Q) and Ran(Q)⊥p = Ker(Q).
The other equality is obtained by taking Q′ = (I −Q).

We introduce properties on a Banach space X for 1 ≤ p ≤ +∞ regarding the behaviour of
Lp-projections and of the p-orthogonality of vectors. These properties hold true in the case of
Lp-spaces, as we will see in Proposition 4.2.12 below.

Property 4.2.7 (Extension of p-orthogonality to X). For any f, g ∈ X such that f⊥pg, there
exists P ∈ Pp(X) such that P (f) = f and P (g) = 0.

Property 4.2.8 (Linearity of p-orthogonality on X). For any f, g, h ∈ X such that f⊥pg and
f⊥ph, we have f⊥p(g + h).

Proposition 4.2.9. Let X be a Banach space, and 1 ≤ p ≤ +∞, p 6= 2. Then, Property 4.2.7
implies Property 4.2.8

Proof. Let f, g, h ∈ X such that f⊥pg and f⊥ph. Then there exists P1 and P2 two Lp-projections
such that P1(f) = f ,P1(g) = 0, P2(f) = f ,P2(h) = 0. Let Q = P1P2. Since p 6= 2, P1

and P2 commute, so we have Q(f) = P1P2(f) = f , Q(g) = P1P2(g) = P2P1(g) = 0, and
Q(h) = P1P2(h) = 0. Hence, g, h ∈ Ker(Q), so g + h ∈ Ker(Q). Since f ∈ Ran(Q), this implies
in turn that f⊥pg + h.

Proposition 4.2.10. Let X be a Banach space, and 1 ≤ p < +∞, p 6= 2. The following are
equivalent

(i) X satisfies Property 4.2.7 for p;

(ii) For any subsets E1, E2 of X, such that f⊥pg for every f ∈ E1, g ∈ E2, there exists
P ∈ Pp(X) such that P (E1) = E1 and P (E2) = {0}.

Furthermore, if one of them is true, then for any subspace F of X and for any P ∈ Pp(F ), there
exists Q ∈ Pp(X) such that P = Q|F .
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Proof. By definition, item (ii) implies Property 4.2.7 for p. For the converse implication, let
E1,E2 be subsets of X that are p-orthogonal. Since p < +∞, let f ∈ E1 and denote Pf
the minimal Lp-projection for f . For any g ∈ E2, we have an Lp-projection Q such that
Q(f) = f and Q(g) = 0. Hence, Pf ≤ Q by Corollary 4.1.11, so PfQ = Pf . This implies that
Pf (g) = PfQ(g) = 0, so g ∈ Ker(Pf ). Therefore, E2 ⊂ Ker(Pf ).
Let us now denote by P the minimal Lp-projection for E2. By minimality of P , we have
P ≤ (I −Pf ) that is P (I −Pf ) = P . This implies that P (f) = P (I −Pf )(f) = 0. Therefore we
have E1 ⊂ Ker(P ), so E1 ⊂ Ran(I − P ) and E2 ⊂ Ker(I − P ). Thus the conditions of item (ii)
are satisfied.
If we now take a subspace F of X and an Lp-projection R on F , we can apply the condition
of item (ii) to E1 = Ran(R) and E2 = Ker(P ) to get S ∈ Pp(X) such that S(E1) = E1 and
S(E2) = {0}. As F = Ran(R) ⊕ Ker(R) we have S(F ) ⊂ F , and S coincides with R on the
subspace F , so S|F = R.

Remark 4.2.11. Proposition 4.2.10 turns out to be also true for p = +∞, but its proof requires
additional information for this case. (see Prop.4.2.29)
If X satisfies Property 4.2.8, then so do all the subspaces F of X. This is however not true in
general for Property 4.2.7. (see 4.2.21)

Proposition 4.2.12. Let (Ω,F , µ) be a measure space and 1 ≤ p < +∞, p 6= 2. Then
Lp(Ω,F , µ) satisfies Property 4.2.7 for p.

Proof. Let f, g ∈ Lp(Ω) such that f⊥pg. According to Corollary 4.2.3, f and g have a disjoint
support. Hence, if we take A = supp(f) and P = MχA , then P is an Lp-projection on Lp(Ω)
such that P (f) = f and P (g) = 0.

Proposition 4.2.12 is not true in general for L∞-spaces (see Cor.4.2.27). The result in the
case p = 1 can also be found in the book of Harmand, Werner and Werner [HWW93, Prop 1.21].
It allows us to fully describe Lp-projections on subspaces of Lp-spaces using Pp(Lp(Ω)).

Corollary 4.2.13 (Lp-projections on subspaces of Lp(Ω)). Let (Ω,F , µ) be a measure space and
1 ≤ p < +∞, p 6= 2. Let F be a subspace of Lp(Ω,F , µ) and let P ∈ Pp(F ). Then there exists
A ⊂ Ω satisfying A ∩ B ∈ F for every B ∈ F with µ(B) < +∞ such that P = MχA, and we
have F = MχA(F ) ⊕pMχ

AC
(F ). Furthermore, F admits non-trivial Lp-projections if and only

if it admits a non-trivial decomposition of this form.

Proof. Proposition 4.2.12 tells us that Lp(Ω) satisfies Property 4.2.7 for p. We can then apply
Proposition 4.2.10 and Theorem 4.1.14 in order to obtain that P = Q|F with Q = MχA . Thus
we have P = MχA , which proves the Corollary.

For a general Banach space X we have no notion of support for an element x unlike in Lp(Ω).
However, when X satisfies Property 4.2.7 the minimal Lp-projection for x plays a similar role
regarding p-orthogonality. The following Lemma gives a similar equivalence as (iv)⇔ (v) from
Corollary 4.2.3.

Lemma 4.2.14. Let X be a Banach space, 1 ≤ p < +∞, p 6= 2. Suppose that X satisfies
Property 4.2.7 for p. Let x, y ∈ X and let P,Q be the minimal Lp-projections for x, y respectively.
Then, the following are equivalent

(i) x⊥py;
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(ii) PQ = 0;

(iii) Ran(P ) ∩ Ran(Q) = {0}.

Proof. (i)⇒ (ii) Since X satisfies Property 4.2.7 for p and x⊥py, we can use Proposition 4.2.10
to have R ∈ Pp(X) such that R(x) = x and R(y) = 0. Since P and Q are minimal, Corollary
4.1.11 gives PR = P and Q(I −R) = Q. Thus

PQ = PRQ(I −R) = PR(I −R)Q = 0.

- (ii)⇒ (i) We have P (x) = x and Q(y) = y. Therefore P (y) = P (Q(y)) = 0, and thus x⊥py.
- (ii)⇔ (iii) This equivalence comes from the fact that P and Q are commuting projections.

Proposition 4.2.15 (Lp-projections on specific subspaces and quotients of X). [Li79] Let X
be a Banach space, 1 ≤ p ≤ +∞, p 6= 2. Let P ∈ Pp(X). Then, we have

(i) The Boolean algebra Pp(Ran(P )) is isomorphic to Pp(X) ◦ P ;

(ii) The canonical projection π : X → X/Ran(P ) induces an isometric isomorphism between
Ker(P ) and X/Ran(P ). Hence, the Boolean algebra Pp(X/Ran(P )) is isomorphic to
Pp(X) ◦ (I − P ).

Proof. (i) Let T ∈ Pp(X). Since p 6= 2, T commutes with P so T (Ran(P )) ⊂ Ran(P ). Hence,
the map QT : y ∈ Ran(P ) 7→ T (y) is well-defined and is an Lp-projection on Ran(P ).
Let Q ∈ Pp(Ran(P )). We then have

X = Ker(P )⊕p Ran(P ) = Ker(P )⊕p (Ker(Q)⊕p Ran(Q))

= (Ker(P )⊕p Ker(Q))⊕p Ran(Q).

Thus, the projection T on Ran(Q) parallel to (Ker(P )⊕Ker(Q)) is an Lp-projection on X. Since
p 6= 2, T commutes with P and TP = T . By construction, we get QT = Q. Therefore, there is
a bijection between Pp(Ran(P )) and {T ◦ P , T ∈ Pp(X)}, and the commutativity of these sets
makes this bijection an isomorphism of commutative Boolean algebras.
(ii) As X = Ker(P )⊕p Ran(P ), the quotient map π : X → X/Ran(P ) induces a linear bijection
T between Ker(P ) and X/Ran(P ). Let x ∈ Ker(P ). We have

‖T (x)‖ = ‖π(x)‖ = inf
h∈Ran(P )

{‖x− h‖} = inf
h∈Ran(P )

{‖(‖(I − P )(x)‖, ‖ − h‖)‖p} = ‖x‖.

Therefore the linear bijection T is isometric. Hence, using item (ii) of Proposition 4.1.3, we have
that Pp(X/Ran(P )) = TPp(Ker(P ))T−1. Thus there is an isomorphism of Boolean algebras
between Pp(X/Ran(P )) and Pp(Ker(P )). Note now that Pp(Ker(P )) is in turn isomorphic to
Pp(X) ◦ (I − P ).

Remark 4.2.16. When p = 2, the same arguments show that P2(Ran(P )) is in bijection with
the set {TP , T ∈ P2(X): TP = PT}, which is in general neither commutative nor a Boolean
algebra.

Proposition 4.2.17. Let (Xi)i∈I be a of family Banach spaces. Suppose 1 ≤ p ≤ +∞, p 6= 2

and let Y = Π
`p
i∈IXi. Let Pi ∈ L(Y ) be the projection on Xi parallel to the product of Xj, j 6= i.

Then the map φ : P ∈ Pp(Y ) 7→ (PPi|Xi)i∈I ∈ Πi∈IPp(Xi) is well defined and is an isomorphism
of Boolean algebras.
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Proof. Each operator Pi is an Lp-projection on Y . Let P ∈ Pp(Y ). As p 6= 2, P commutes with
each Pi, so P (Xi) ⊂ Xi, and PPi|Xi defines an Lp-projection on Xi. The commutativity also
implies that for P ′ ∈ Pp(Y ), we have (PP ′)Pi|Xi = (P ′Pi|Xi)(PPi|Xi), so φ(PP ′) = φ(P )φ(P ′).
Thus φ turns to be a morphism of Boolean algebras. Let P ∈ Ker(φ) and y = (xi)i∈I ∈ Ran(P ).
For every j ∈ I, we have Pj(y) ∈ Yj . This gives

0 = PPj(Pj(y)) = PPj(y) = PjP (y) = Pj(y).

Hence we have yj = 0 for every j ∈ J , so y = 0. This means that Ran(P ) = {0}, so P = 0 and
φ is injective. Now, let Q = (Qi)i∈I ∈ Πi∈IPp(Xi). The map PQ : (xi)i ∈ Y 7→ (Qi(xi)) ∈ Y is
well defined and is a norm one projection on Y . We also have

‖(xi)i‖Y = ‖(‖xi‖Xi)i‖`p = ‖(‖(‖Qi(xi)‖, ‖(IXi −Qi)(xi)‖)‖`p)i‖`p
= ‖(‖(‖Qi(xi)‖)i‖`p , ‖(‖(IXi −Qi)(xi)‖)i‖`p)‖`p
= ‖(‖(Qi(xi))i‖Y , ‖((IXi −Qi)(xi))i‖Y )‖`p .

Hence PQ is an Lp-projection on Y . By construction of φ and PQ we have φ(PQ) = (Qi)i, so φ
is bijective. This concludes the proof.

Proposition 4.2.18 (Finite dimensional p-orthogonal decomposition). Let X be a finite dimen-
sional Banach space, with X 6= 0 and 1 ≤ p ≤ +∞, p 6= 2. Then, we have

(i) Card(Pp(X)) = 2m, for some 1 ≤ m ≤ dim(X), where Card(E) is the cardinality of E;

(ii) For m = log2(Card(Pp(X))), there exist subspaces X1, ..., Xm of X such that

X = X1 ⊕p ..⊕p Xm with Xi 6= {0} and Pp(Xi) = {0, I};

(iii) With the direct sum of item (ii), denote Pi the projection on Xi parallel to ⊕j 6=iXj. Then
Pp(X) is generated as a Boolean algebra by the family {P1, .., Pm};

(iv) If X satisfies Property 4.2.7, then every Xi in the direct sum of item (ii) satisfies

x⊥py, x, y ∈ Xi ⇒ x = 0 or y = 0.

Proof. (i) Let n = dim(X). Operators acting on X can then be identified to n×n matrices with
complex entries (for a choice of a basis forX). Thus, Pp(X) identifies to a set of commutative and
diagonalizable matrices with eigenvalues in {0, 1}. These matrices are then jointly diagonalizable:
there exists a change of basis of X that turns all these matrices into diagonal ones. This means
that there can be at most Card({0, 1})n = 2n elements in this set. As the cardinal of a finite
commutative Boolean algebra is 2m for some m ≥ 0, we obtain the conclusion of item (i).
- (ii) We will prove the result with an induction on m ≥ 1. If m = 1 then Pp(X) = {0, I} and the
result is true. Suppose that the result is true for any Banach space Y with Card(Pp(Y )) ≤ 2m,
and let X be a Banach space with Card(Pp(Y )) = 2m+1. As m+ 1 > 1, X possesses non-trivial
Lp-projections. Let P ∈ Pp(X) that is non-trivial. We then have X = Ran(P )⊕p Ker(P ), and
Proposition 4.2.17 gives

2m+1 = Card(Pp(X)) = Card(Pp(Ran(P )))Card(Pp(Ker(P ))).
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Since both Ran(P ) and Ker(P ) are different from {0}, these subspaces possess at least 2 Lp-
projections. The previous equation then implies that they cannot possess more than 2m Lp-
projections. As

Card(Pp(Ran(P ))) = 2k and Card(Pp(Ker(P ))) = 2m+1−k,

we can apply the induction hypothesis to Ran(P ) and Ker(P ) to get subspaces F1, .., Fk and
Gk+1, ..., Gm+1 such that Fi, Gj 6= {0}, Pp(Fi) = {0, I}, Pp(Gj) = {0, I}, and

X = Ran(P )⊕p Ker(P ) = (F1 ⊕p ..⊕p Fk)⊕p (Gk+1 ⊕p ..⊕p Gm+1),

which concludes the proof by induction.
- (iii) Since X = X1⊕p ..⊕pXm, all Pi are Lp-projections on X. Since every Xi is not reduced to
{0}, every Pi is non-zero. For any set E ⊂ {1, ..,m}, we can see that the projection on ⊕i∈EXi

parallel to ⊕j /∈EXj is well-defined and lies in the Boolean sub-algebra generated by the family
{P1, ..., Pm}. Since all these projections are distinct, the Boolean sub-algebra generated by the
family {P1, .., Pm} has at least 2m = Card(Pp(X)) elements, so it is equal to Pp(X).
- (iv) Let 1 ≤ i ≤ m. Let x, y ∈ Xi be such that x⊥py, and let Q ∈ Pp(X) be such that
Q(x) = x and Q(y) = 0. As for every 1 ≤ j ≤ m, we have Pj(Xi) = Xi or {0}, we can use item
(iii) to see that we either have Q(Xi) = Xi or {0}. If we have Q(Xi) = Xi this implies that
0 = Q(y) = y. If we have Q(Xi) 6= Xi then Q(Xi) = {0} so x = Q(x) = 0. Therefore, we have
x = 0 or y = 0.

Remark 4.2.19. Concerning item (iv) of Proposition 4.2.18, we have not been able to answer the
following question when 1 < p ≤ +∞. For X a Banach space of the form X = X1 ⊕p ..⊕p Xm

satisfying

xi⊥pyi, xi, yi ∈ Xi ⇒ xi = 0 or yi = 0,

does X satisfy Property 4.2.7 for p ?
When p = 1, if we take x, y ∈ X with x⊥py, for any z ∈ C we have∑

i

‖xi + zyi‖ = ‖
∑
i

xi + zyi‖ = ‖x+ zy‖ = ‖x‖+ ‖zy‖ =
∑
i

‖xi‖+
∑
i

‖zyi‖,

and the triangular inequality applied to every xi+zyi forces us to have ‖xi+zyi‖ = ‖xi‖+‖zyi‖.
Hence, we end up with xi⊥pyi for every i, so xi = 0 or yi = 0 for every i. By taking J = {i: xi 6=
0} and P the projection on

⊕
j∈J Xj parallel to

⊕
j /∈J Xj , we can see that P is a L1-projection

such that P (x) = x an P (y) = 0.

4.2.B Counter-examples for p-orthogonality

We collect in this section several examples.

Counter-Example 4.2.20 (A Banach space not satisfying Property 4.2.8). Let X = C3, and
{e1, e2, e3} be its canonical basis. Let 1 ≤ p < +∞. Take

E ={eiat.e1 + eib(1− tp)
1
p .e2; eiat.e3 + eib(1− tp)

1
p .e2; eic(e1 + e2 + e3), a, b, c ∈ R, t ∈ [0, 1]}

K =Conv(E).
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Then, K is a compact convex set that contains 0 in its interior and that is invariant under
multiplication by λ, for any λ ∈ ∂D. Hence there exists a norm N on X whose closed unit ball
is K. By construction, Span(e1, e2) and Span(e2, e3) are isometric to `p(C2), therefore we have
e2⊥pe1 and e2⊥pe3. Since e1 + e2 + e3, e2 and e1+e3

2 are in the boundary of K, we have

N(e1 + e2 + e3) = N(e2) = N(
e1 + e3

2
) = 1.

Thus, we have

N(e2 + (e1 + e3)) = 1 < 2 = N(e1 + e3) ≤ ‖(N(e2), N(e1 + e3))‖p.

Hence, e2 is not p-orthogonal to e1 + e3, so X does not satisfy Property 4.2.8.

Counter-Example 4.2.21 (A Subspace not satisfying Property 4.2.7 nor Proposition 4.2.10).
Let 1 ≤ p < +∞ and X = `p(C4). Take f = (1,−1, 0, 0), g = (0, 0, 1,−1), h = (1, 1, 1, 1), and
F = Span(f, g, h). As X is an Lp-space, it satisfies Property 4.2.7. However, its closed subspace
F does not. Indeed, on F we have f⊥ph, but since h⊥p = Span(f) and f⊥p = Span(h), F
cannot possess any Lp-projection P such that P (f) = f and P (g) = 0 as we would have

dim(Ran(P )) + dim(Ker(P )) ≤ 1 + 1 = 2 < 3 = dim(F ).

Furthermore, every element x in F that is not in Span(f) nor Span(g) satisfies x⊥p = {0} as there
is no element in F outside 0 that has a support disjoint with supp(x). Hence, Pp(F ) = {0, I},
whereas the subspace Span(f, g) clearly possesses non-trivial Lp-projections. Thus, the second
part of Proposition 4.2.10 is also false for F and F does not satisfy Property 4.2.7.

Counter-Example 4.2.22 (A Banach Space satisfying Property 4.2.7 but not Clarkson’s equal-
ity case). Let 1 ≤ p < +∞, X = C2 and let {e1, e2} be its canonical basis. Take

K = Conv({eiae1; eiae2;
eiae1 + eibe2

2
1
p

, a, b ∈ R}).

Then, K is a compact convex set that contains 0 in its interior and that is invariant under
multiplication by λ, for any λ ∈ ∂D. Hence there exists a norm N on X whose closed unit ball
is K. By construction, e1, e2 and 1

2
1
p

(e1 + eibe2) are in the boundary of K, so these elements

are of norm one. Thus, we have

N(e1 + eite2)p = 2 = N(e1)p +N(e2)p, ∀t ∈ R.

Since the unit ball for N is not uniformly convex, it cannot be equal to an `p unit ball for
some 1 < p < +∞. Hence, Span(e1, e2) cannot be isometrically isomorphic to `p(C2), so e1 and
e2 are not p-orthogonal. Thus, Pp(X) is trivial, as well as Pp(F ) for every subspace F of X.
Therefore, X satisfies Property 4.2.7 but it does not possess anything similar to the equality
case in Clarkson inequalities as the implication (iii)⇒ (iv) of Corollary 4.2.3 is false on X.

Counter-Example 4.2.23 (A Banach space not satisfying Property 4.2.8, of finite dimension,
but with α(X) not finite). Let X = C3, and {e1, e2, e3} be its canonical basis. Let 1 ≤ p ≤ +∞.
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We refer to 4.2.30 for the definition of the cardinality α(X). Take

E = {eiat.e2 + eib(1− tp)
1
p [cos(s)e1 + sin(s)e3]; eia(

1

2
e2 + (1− 1

2p
)

1
p (e1 − e3);

eiate1 + eib
√

1− t2e3, a, b ∈ R, 0 ≤ s ≤ π

2
}

K = Conv(E).

Then, K is a compact convex set that contains 0 in its interior and that is invariant under
multiplication by λ, for any λ ∈ ∂D. Hence there exists a norm N on X whose closed unit ball
is K. By construction, Span(e1, e3) is isometric to l2(C2) and Span(e2, cos(s)e1 + sin(s)e3) is

isometric to `p(C2) for every 0 ≤ s ≤ π
2 . Since

√
2

2 (e1 − e3), e2 and 1
2e2 + (1− 1

2p )
1
p (e1 − e3) are

in the boundary of K, we have

N(e1 − e3) =
√

(2), N(e2) = N(
1

2
e2 + (1− 1

2p
)

1
p (e1 − e3)) = 1.

This gives

N(
1

2
e2)p +N((1− 1

2p
)

1
p (e1 − e3))p =

1

2p
+
√

2(1− 1

2p
) > 1 = 1p,

so the vectors e2 and e1 − e3 are not p-orthogonal. Since e2 is p-orthogonal to e1 and e3 we can
see that X does not satisfy Property 4.2.8 for p.
Since e2 is not p-orthogonal to Span(e1, e3), then for almost every 0 ≤ s ≤ π

2 any non-trivial Lp-
projection on Span(e2, cos(s)e1 + sin(s)e3) does not extend to Span(e2, e1, e3) = X. Therefore,
according to Definition 4.2.30, almost all non-trivial Lp-projections on these spaces are maximal,
so α(X) is not finite.

4.2.C The case of L∞-projections

This section focuses on results regarding L∞-projections. We describe∞-orthogonality in L∞(Ω)
and we use it to determine P∞(L∞(Ω)), along with an equivalent form of Proposition 4.2.10 for
p = +∞.

Proposition 4.2.24. Let (Ω,F , µ) be a measure space, and let f ∈ L∞(Ω), f 6= 0. Then,

(i) f⊥∞ = {g : |g(x)| ≤ ‖f‖−|f(x)|
‖f‖ ‖g‖, ∀a.e.x ∈ Ω} = {g 6= 0 : |g|

‖g‖ + |f |
‖f‖ ≤a.e. 1} ∪ {0};

(ii) For g ∈ f⊥∞ and Bn ∈ F such that µ(Bn) > 0 and ‖(‖f‖ − |f |)χBn‖ →n 0,
we have ‖gχBn‖ →n 0;

(iii) We have f⊥∞ = {0} if and only if ‖‖f‖ − |f |‖ < ‖f‖.
When Ω = {1, .., n}, this is equivalent to |f(i)| 6= 0 for every i ∈ Ω.
When Ω = N, this is equivalent to 0 not being in the closure of {f(n), n ≥ 0};

(iv) f⊥∞ is a non-zero subspace if and only if |f | =a.e. ‖f‖χA for A ∈ F with µ(AC) > 0.

Proof. All the elements of L∞(Ω) that we will consider here will be associated to a representative
that takes finite values everywhere.
- (i) Let g ∈ f⊥∞ . If g = 0 there is nothing to prove. Suppose that g 6= 0. Since the ∞-
orthogonality is homogeneous, we can divide f and g by their respective norms and suppose
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that ‖f‖ = ‖g‖ = 1. As C is separable, there is A ∈ F with µ(AC) = 0 such that for every
x ∈ A and for every z ∈ C, we have |f(x) + zg(x)| ≤ ‖f + zg‖. We also recall that for x ∈ A and
for any r ≥ 0, we have z ∈ C with |z| = r such that |f(x) + zg(x)| = |f(x)|+ r|g(x)|. Therefore,
for r = 1 we have a z ∈ C such that

|f(x) + zg(x)| = |f(x)|+ |g(x)| ≤ ‖f + zg‖ = max(‖f‖, ‖zg‖) = max(1, 1) = 1.

Hence, we obtain
|g(x)| ≤ 1− |f(x)|, ∀x ∈ A,

which is the condition in the statement when ‖f‖ = ‖g‖ = 1. We now need to prove that for
every g non-zero that satisfies this condition, g lies in f⊥∞ . By homogeneity of both sets, we
can suppose that ‖g‖ = 1. Hence, we need to show that

‖f + zg‖ = max(‖f‖, ‖zg‖) = max(1, |z|), ∀z ∈ C.

Let z ∈ C. For almost every x ∈ Ω, we have

|f(x) + zg(x)| ≤ |f(x)|+ |z||g(x)| = (|f(x)|+ |g(x)|) + (|z| − 1)|g(x)| ≤ 1 + (|z| − 1)|g(x)|

≤ 1 + (|z| − 1) = |z|, if |z| ≥ 1;
1 + 0 = 1, if |z| ≤ 1;

so ‖f + zg‖ ≤a.e. max(1, |z|). Suppose that |z| ≥ 1. The properties of the norm ‖ · ‖∞ imply the
existence of sets An ∈ F such that µ(An) > 0 and α(n) := ‖(‖g‖ − |g|)χAn‖ →n 0. Therefore,
for almost every x ∈ An, the condition on g gives us

|f(x) + zg(x)| ≥ |z||g(x)| − |f(x)| = |z|‖g‖ − |z|(‖g‖ − |g(x)|)− |f(x)|
≥ |z| − |z|α(n)− (1− |g(x)|) ≥ |z| − |z|α(n)− α(n).

Hence we obtain

|z| ≥ ‖f + zg‖ ≥ ‖(f + zg)χAn‖ ≥ |z| − |z|α(n)− α(n)→n |z|,

so ‖f + zg‖ = |z|.
Suppose now that |z| ≤ 1. The properties of the norm ‖ · ‖∞ imply the existence of sets Bn ∈ F
such that µ(Bn) > 0 and β(n) := ‖(‖f‖ − |f |)χBn‖ →n 0. Therefore, for almost every x ∈ Bn,
the condition on g gives us

|f(x) + zg(x)| ≥ |f(x)| − |z||g(x)| = ‖f‖ − (‖f‖ − |f(x)|)− |z||g(x)|
≥ 1− β(n)− |z|(1− |f(x)|) ≥ 1− β(n)− |z|β(n).

Hence we obtain

1 ≥ ‖f + zg‖ ≥ ‖(f + zg)χBn‖ ≥ 1− β(n)− |z|β(n)→n 1,

so ‖f + zg‖ = 1. This proves that f⊥∞g and concludes the proof of item (i).
- (ii) Let Bn ∈ F such that µ(Bn) > 0 and ‖(‖f‖ − |f |)|Bn‖ →n 0 and g ∈ f⊥∞ . Then, for
almost every x ∈ Bn we have

|g(x)| ≤ ‖g‖
‖f‖

(‖f‖ − |f(x)|) ≤ ‖g‖
‖f‖
‖(‖f‖ − |f |)χBn‖,
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so ‖gχBn‖ →n 0.
- (iii) Suppose that we have a vector g in f⊥∞ that is non-zero. Then we have f ∈ g⊥∞ . We
also have An ∈ F such that µ(An) > 0 and ‖(‖g‖ − |g|)χAn‖ →n 0. Since g is non-zero, item
(ii) implies that ‖fχAn‖ →n 0. Therefore, we have

‖f‖ ≥ ‖‖f‖ − |f |‖ ≥ ‖(‖f‖ − |f |)χAn‖ = ‖f‖ − ‖fχAn‖ →n ‖f‖,

so we obtain ‖‖f‖ − |f |‖ = ‖f‖. Conversely, suppose now that ‖‖f‖ − |f |‖ = ‖f‖. Take

g = ‖f‖−|f |
‖f‖ . Then g ∈ L∞(Ω) and ‖g‖ = ‖f‖

‖f‖ = 1. Thus,

|g| =a.e
‖f‖ − |f |
‖f‖

=
‖f‖ − |f |
‖f‖

‖g‖,

so g ∈ f⊥∞ according to item (i), and the set f⊥∞ is not reduced to 0.
The remaining statements of item (iii) for Ω = {1, .., n} and Ω = N are simplifications of the
condition ‖‖f‖ − |f |‖ < ‖f‖ in these cases.
- (iv) When |f | =a.e. ‖f‖χA, item (i) tells us that f⊥∞ = Mχ

AC
(L∞), which is a subspace. Such

a subspace is non-zero if and only if µ(AC) > 0. We now take f such that |f | does not have
the form ‖f‖χA. If ‖‖f‖ − |f |‖ < ‖f‖ then item (iii) tells us that f⊥∞ = {0}, so we can also

suppose that ‖‖f‖ − |f |‖ = ‖f‖. Then, as seen previously, the function g = ‖f‖−|f |
‖f‖ has a norm

of 1 and lies in f⊥∞ . Since |f | is not equal to any ‖f‖χA, we can find ε > 0 and B ∈ F such that

µ(B) > 0 and ε ≤ |f | ≤ ‖f‖ − ε almost everywhere on B. We now take h = ‖f‖−|f |
‖f‖ − ε

‖f‖χB.

As we have |f |+ ε ≤ ‖f‖ a.e. on B, we can see that h ≥ 0 a.e. on Ω. As h coincides with g a.e.
on BC , the properties of g and B also imply that ‖h‖ = ‖g‖ = 1. Hence, for almost every x we
have

|h(x)| = h(x) ≤ ‖f‖ − |f(x)|
‖f‖

=
‖f‖ − |f |
‖f‖

‖h‖,

so h is also in f⊥∞ . However g − h does not lie in f⊥∞ . Indeed, if we had f⊥∞g − h, then f
would belong to (g− h)⊥∞ = L∞(BC), which is not true since f > 0 a.e. on B. Therefore f⊥∞

is not a subspace in this case.

L∞-projections have been totally characterized on certain subspaces of L∞ such as C0(Ω)
(continuous maps on a locally compact and Hausdorff set) [HWW93, Ex.1.4(a)]; L∞(Ω) when Ω
is σ-finite [CER73][HWW93, Thm.1.9]; Lip([0, 1]), AC([0, 1]) or C1([0, 1]) (Lipschitz, absolutely
continuous, or C1 maps over [0, 1]) [BS74]; l∞(N), c0(N), or c(N) [Tor68]. These results either
come from a characterization of Hermitian operators (P ∈ L(X): ‖eiαP ‖ = 1, ∀α ∈ R) on the
said spaces, or from a characterization of surjective isometries (a projection P is Hermitian if
and only if P + λ(I − P ) is an isometry for every λ ∈ ∂D).
The following theorem characterizes L∞-projections on every L∞ space using tools and results
mainly coming from the +∞-orthgonality relationship.

Theorem 4.2.25 (L∞-projections on L∞(Ω)). Let (Ω,F , µ) be a measure space. Then

P∞(L∞(Ω)) = {MχA, A ∈ F}.

Proof. Notice first that any projection of the form MχA , A ∈ F , is a L∞-projection.
Let P ∈ P∞(L∞(Ω)) that is non-trivial. Let f ∈ Ran(P ) and g ∈ Ker(P ) that are non-zero.
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We will first show that f and g have disjoint supports (up to a set of measure zero). Take
A = supp(f) ∩ supp(g) and suppose that µ(A) > 0. Denote f1 = χAf and g1 = χAg. The
L∞-projection Q = PMχA gives

Q(f1) = PMχAMχA(f) = PMχA(f) = MχAP (f) = MχA(f) = f1.

Similarly, we obtain Q(g1) = MχAP (g) = 0. Hence f1 and g1 are ∞-orthogonal and have
a support of A (up to a set of measure zero). Since the ∞-orthogonality is homogeneous and
f1, g1 are non-zero, we can divide them by their respective norm to suppose that ‖f1‖ = ‖g1‖ = 1.
Hence, there exists ε > 0 small enough such that the set

B = {x ∈ A: ε ≤ |f1(x)|}

has a strictly positive measure.
Let us now consider f2 = f1χB and g2 = g1χB. Since A is a support for f1 and g1 and that
B ⊂ A, f2 and g2 are non-zero and the set B is a support of these maps. With the L∞-
projection R = QMχB , a small computation gives R(f2) = f2 and R(g2) = 0, so f2 and g2 are
∞-orthogonal. However, since |f2| ≥ ε almost everywhere on B, we can see that

‖‖f2‖ − |f2|‖L∞(B) ≤ ‖f2‖L∞(B) − ε < ‖f2‖L∞(B).

Considering now L∞(B), we can then apply item (iii) of Proposition 4.2.24 to obtain f⊥∞2 = {0}
in L∞(B), which contradicts the fact that in L∞(B) we have g2 6= 0 and f2⊥∞g2. Thus, we
have µ(A) = 0, so the initial f and g have disjoint supports.
Let us now take f = P (χΩ), and g = (I − P )(χΩ). We now know that the supports of f and g
are disjoint. Since f+g = χΩ and supp(χΩ) = Ω, then supp(f)C is a support for g (up to a set of
measure zero). For every g′ ∈ Ker(P ) the previous argument tells us that supp(g′) is contained
in supp(f)C . For every f ′ ∈ Ran(P ), supp(f ′) is then contained in supp(g)C = (supp(f)C)C =
supp(f). Thus the L∞-projection Mχsupp(f)

coincides with P on Ran(P ) and on Ker(P ), hence
P = Mχsupp(f)

, which concludes the proof.

Remark 4.2.26. The ideas in the proof of this theorem can be used with some extra com-
putations in order to show that for X = c0(N), c(N), or c00(N), we have P∞(X) = {P ∈
P∞(l∞(N)): P (X) ⊂ X}.

Corollary 4.2.27. Let X be a Banach space such that Card(P∞(X)) > 4. Then X does not
satisfy Property 4.2.8 for p = +∞.
This is in particular true for X = l∞({0, .., n− 1}), with n ≥ 3.

Proof. We will show that X possesses a subspace isometrically isomorphic to l∞({0, 1, 2}). As
Card(P∞(X)) > 4, we can find L∞-projections P,Q on X such that P /∈ {0, I} and Q /∈
{0, I, P, (I − P )}. Since P and Q commute, we have Q(Ran(P )) ⊂ Ran(P ) and Q(Ker(P )) ⊂
Ker(P ), so Q|Ker(P ) and Q|Ran(P ) are also L∞-projections, with at least one of them non-trivial.
Hence, we have

X = Ran(P )⊕∞ Ker(P )

= (Q(Ran(P ))⊕∞ (I −Q)(Ran(P )))⊕∞ (Q(Ker(P ))⊕∞ (I −Q)(Ker(P )))

= E1 ⊕∞ E2 ⊕∞ E3 ⊕∞ E4.
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The choice of P and Q implies that at most one Ej is reduced to {0}. Up to reordering, let us
suppose that the subspaces E1, E2, E3 are not reduced to {0}, and take fi ∈ Ei with ‖fi‖ = 1.
Thus, we have

‖af1 + bf2 + cf3‖ = max(‖af1 + bf2‖, ‖cf3‖) = max(max(‖af1‖, ‖bf2‖), |c|)
= max(|a|, |b|, |c|) = ‖(a, b, c)‖∞.

Hence, Span(f1, f2, f3) is isometrically isomorphic to l∞({0, 1, 2}). By using Proposition 4.2.24
for f = (2, 1, 0) on l∞({0, 1, 2}) we can see that f⊥+∞ is not a subspace. Hence Span(f1, f2, f3)
does not satisfy Property 4.2.8 for p = +∞ and Remark 4.2.11 implies that X does not satisfy
this Property too.

Remark 4.2.28. With Corollary 4.2.27 we can see that for p = +∞, the question in Remark
4.2.19 turns out to be false in general. Indeed, we can see that the ∞-orthogonality is trivial
on C but l∞({0, 1, 2}) = C ⊕∞ C ⊕∞ C does not satisfy Property 4.2.8, so it does not satisfy
Property 4.2.7.

Corollary 4.2.27 also allows us to extend the results of Proposition 4.2.10 to the case p = +∞,
as we state below.

Proposition 4.2.29. Let X be a Banach space, and p = +∞. The following are equivalent

(i) X satisfies Property 4.2.7 for p;

(ii) For any subsets E1, E2 of X, such that f⊥pg for every f ∈ E1, g ∈ E2, there exists
P ∈ Pp(X) such that P (E1) = E1 and P (E2) = {0}.

Furthermore, if one of them is true, then there exist closed subspaces X1, X2 satisfying f⊥∞g ⇒
f = 0 or g = 0, such that X = X1 ⊕∞ X2.

Proof. We can see that item (ii) implies Property 4.2.7. Hence, suppose that Property 4.2.7 is
true for X and +∞. Thus, Property 4.2.8 is true for X and +∞, according to Proposition 4.2.9.
Therefore, Card(P∞(X)) ≤ 4, according to Corollary 4.2.27. We then have P∞(X) = {0, I} or
{0, I, P, (I − P )}. If P∞(X) = {0, I}, then f⊥∞g implies that f = 0 or g = 0, which means
that for any set E we have E⊥∞ = {0}. Hence X satisfies item (ii) as every ∞-orthogonality
between sets is trivial, and for X1 = X, X2 = {0} we also have the desired decomposition.
Suppose now that P∞(X) = {0, I, P, (I − P )}. Denote X1 = Ker(P ), X2 = Ran(P ). Let
E1, E2 ⊂ X be such that E1⊥∞E2. If E1 = {0} then E1 and E2 are separated by Q = 0. If
E2 = {0} then E1 and E2 are separated by Q = I. Suppose now that E1 6= {0} and E2 6= {0}.
Let f ∈ E1,g ∈ E2 that are non-zero. We have f⊥∞g. Hence, there exists Q ∈ P∞(X) such
that Q(f) = f and Q(g) = 0. Since f, g are non-zero, we must have Q = P or Q = (I − P ),
that is f ∈ X1,g ∈ X2 or f ∈ X2,g ∈ X1.
Up to reordering, suppose that f ∈ X1 and g ∈ X2. Thus, for any f ′ ∈ E1 we have f ′⊥∞g so
the L∞-projection Q such that Q(f ′) = f ′ and Q(g) = 0 is either 0 or P . Similarly, for any
g′ ∈ E2 we have f⊥∞g′ so the L∞-projection Q such that Q(f) = f and Q(g′) = 0 is either 0
or P . This implies that E1 ⊂ X1 and E2 ⊂ X2 so P (E1) = E1 and P (E2) = {0}. Therefore, X
satisfies item (ii).
We can also notice that the subspaces X1 = Ker(P ) and X2 = Ran(P ) are non-trivial and that
they have no L∞-projection other than 0 and I, as it is stated by item (i) of Proposition 4.2.15.
Thus, similarly to the beginning of the proof, for f, g ∈ X1 (resp X2) that are ∞-orthogonal,
we have f = 0 or g = 0, X = X1 ⊕∞ X2 gives the desired decomposition.
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4.2.D Maximal Lp-projections for a Banach space

In this section we introduce the notion of maximal Lp-projections for a Banach space X, that
is Lp-projections on a subspace of X that cannot be extended to Lp-projections on a larger
subspace. This section will study these projections and focus on upper bounds for their number
in certain situations, especially in the finite dimensional case.
Most of the results are stated for 1 ≤ p ≤ +∞, p 6= 2. The initial results are true for p = 2 (up to
Lemma 4.2.37), but not the later ones who rely on properties of Pp(X). As the previous section
highlighted differences in the case p = +∞, (see Proposition 4.2.24 and Proposition 4.2.29),
some of these later results are also not stated for p = +∞. However equivalent information for
p = +∞ is given with item (ii) of Proposition 4.2.50.

Definition 4.2.30 (Maximal Lp-projections). Let X be a Banach space, and 1 ≤ p ≤ +∞. Let
F be a closed subspace of X, and let P ∈ Pp(F ). The Lp-projection P is said to be maximal
for X if there exists no subspaces G and Lp-projection Q on G such that F ( G and Q|F = P .
We also define

α(F ) := Card({P : P is a maximal Lp-projection for F}),

where Card(·) refers to the cardinality map.

Let us consider P a maximal Lp-projection on X, defined on a subspace G, that is non-trivial.
Then for every x in Ker(P ) (resp. Ran(P )) we have Ran(P ) ⊂ x⊥p (resp. Ker(P ) ⊂ x⊥p). As
G is spanned by Ran(P ) and Ker(P ), we obtain that G is spanned by vectors x of X whose
p-orthogonal is not reduced to {0}. This fact led us to the following definition.

Definition 4.2.31. Let X be a Banach space, and let p be such that 1 ≤ p ≤ +∞. We define
the subspace

X(p) := Span({x ∈ X : x⊥p 6= {0}}).

Hence X(p) is the subspace of X spanned by all the vectors whose p-orthogonal is not reduced
to {0}.

Remark 4.2.32. When F satisfies Property 4.2.7 for p, all Lp-projections that are maximal for
F are an element of Pp(F ) according to Proposition 4.2.10. Thus α(F ) = Card(Pp(F )). In this
case, we also have F(p) = F if Pp(F ) 6= {0, I}, or F(p) = {0} if not. As we saw in Counter-
Example 4.2.21, we can construct a subspace G of F possessing Lp-projections and find some
elements (fi)i∈I that do not ”behave” well regarding the Lp-projections of G. Using these
elements, we can construct a subspace H of F that contains G but that only possesses trivial
Lp-projections. Hence, we focus our study on the Lp-projections that may exist on subspaces of
H. We give below some general results concerning Lp-projections that are maximal for H, and
give an upper bound of α(H) when dim(H) is finite.

The next lemmas and corollaries show how the subspace X(p) appears in the study of maximal
Lp-projections on X.

Lemma 4.2.33. Let X be a Banach space, and 1 ≤ p ≤ +∞.

(i) Let F be a closed subspace of X and let P ∈ Pp(F ). Then, there exists a subspace G and
Q ∈ Pp(G) such that F ⊂ G, Q is a maximal Lp-projection for X, and Q|F = P ;
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(ii) Let x ∈ X such that x⊥p 6= {0}. Then, there exists Q a maximal Lp-projection for X such
that Q(x) = x;

(iii) Let H,F be closed subspaces of X with H ⊂ F and let P ∈ Pp(H) be a maximal Lp-
projection for F . Then, for any subspace G of X containing H and any Q ∈ Pp(G) such
that Q|H = P , we have

Ran(P ) = (F ∩ Ran(Q)) and Ker(P ) = (F ∩Ker(Q));

(iv) Let F be a closed subspace of X. Then α(F ) ≤ α(X).

Proof. (i) Let G1 be a vector subspace included in Ran(P )⊥p , that contains Ker(P ), and that
is maximal for the inclusion of sets. As Ran(P )⊥p is closed, it contains G1, so G1 = G1 by
maximality and G1 is closed.

Similarly, let G2 be a vector subspace included in G
⊥p
1 , that contains Ran(P ), and that is

maximal for the inclusion of sets. As G
⊥p
1 is closed, it contains G2, so G2 = G2 by maximality

and G2 is closed.
Hence, the subspace G = G1 ⊕ G2 admits an Lp-projection Q such that Q(G1) = {0} and
Q(G2) = G2. We also have F ⊂ G and Q|F = P . The maximality of G1 and G2 implies that Q
cannot be extended on a larger subspace, so it is a maximal Lp-projection for X.
- (ii) If x = 0, then choose Q = 0. If not, since x⊥p 6= {0} there is y ∈ X that is non-zero
such that x⊥py, and the subspace Span(x, y) admits a Lp-projection P such that P (x) = x and
P (y) = 0. We then apply item (i) to P in order to get the desired result.
- (iii) As F ∩Ran(Q) is a closed subspace of F , containing Ran(P ), and contained in Ker(P )⊥p∩
F , the maximality of P implies that F ∩ Ran(Q) = Ran(P ). A similar reasoning for Ker(Q)
and Ker(P ) gives F ∩Ker(Q) = Ker(P ).
- (iv) Let P be a maximal Lp-projection for F , defined on the subspace H of F . With item (i)
we have a subspace G and Q a maximal Lp-projection for X such that Q|H = P . Item (iii) gives
us Ran(P ) = (F ∩ Ran(Q)) and Ker(P ) = (F ∩ Ker(Q)). Therefore, for P1, P2 two different
maximal Lp-projections for F , there is no maximal Lp-projection Q for X that extends both P1

and P2. Hence, α(F ) ≤ α(X).

Remark 4.2.34. The construction in the proof of Lemma 4.2.33 does not give every maximal
Lp-projection on a Banach space X. For example let (Ω,F , µ) a measure space that is not
σ-finite such that Ω = Ω1 t Ω2 with Ωi ∈ F that are not σ-finite. Then, for any f ∈ Lp(Ω) the
Lp-projection P that is built with the construction in the proof will be equal to Mχsupp(f)

, and
such an Lp-projection cannot be equal to the Lp-projection MχΩ1

as supp(f) is σ-finite whereas

Ω1 is not. The projection I − P is also not equal to MχΩ1
as Ω2 = ΩC

1 is not σ-finite too.

Corollary 4.2.35. Let X be a Banach space, and 1 ≤ p ≤ +∞. We have the equivalences

(i) The p-orthogonality on X is trivial, that is x⊥py ⇒ x = 0 or y = 0;

(ii) X(p) = {0};

(iii) α(X) = 2 if X 6= {0} or α(X) = 1 if X = {0}.

In such a case, X satisfies Property 4.2.7 for p.
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Proof. The equivalence (i)⇔ (ii) comes immediately from the definition of the subspace X(p).
We can also see that α(X) = 1 can only happen when X = {0}, in which case the equivalences
are immediate. Therefore we suppose that X 6= {0} for the rest of the proof.
- (i) ⇒ (iii) Let P be a maximal Lp-projection for X. Suppose that P is non-trivial. Thus
Ran(P ) and Ker(P ) are not reduced to {0} and we can find x, y that are non-zero such that
P (x) = x and P (y) = 0. This implies that x⊥py, which is not possible. Therefore the maximal
Lp-projections for X are only the trivial ones, and α(X) = 2.
- (iii)⇒ (i) Let x, y ∈ X be such that x⊥py, we can apply item (ii) of Lemma 4.2.33 to obtain
an Lp-projection Q that is maximal for X and such that Q(x) = x, Q(y) = 0. Since α(X) = 2
we either have Q = 0 or Q = I, which is equivalent to x = 0 or y = 0.
In such a case, every p-orthogonality relationship has the form 0⊥py and x⊥p0, so it is extended
by either P = 0 or P = I. Thus X satisfies Property 4.2.7. Lastly, the subspace Y = {0}
possesses 0 as its single Lp-projection, so α(Y ) = 1, which concludes the proof.

Lemma 4.2.36. Let X be a Banach space, and 1 ≤ p ≤ +∞. Let F be a subspace of X.

(i) Let P be a non-trivial Lp-projection that is maximal for F . Then P is maximal for F(p);

(ii) Let Q be a non-trivial Lp-projection that is maximal for F(p). Then Q is maximal for F ;

(iii) If F(p) 6= {0} or F = F(p), then α(F ) = α(F(p)).

Proof. (i) Since P is non-trivial, for any element x in Ran(P ) or Ker(P ) we can see that
x⊥p ∩ F 6= {0}. Hence, such a x lies in F(p). Since F(p) is a subspace, Ran(P )⊕p Ker(P ) lies in
F(p). As we have F(p) ⊂ F , the maximality of P for F implies that P is maximal for F(p).
- (ii) By applying item (i) of Lemma 4.2.33 to Q and F , we obtain a subspace H and R ∈ Pp(H)
such that Ran(Q)⊕pKer(Q) ⊂ H ⊂ F , R|Ran(Q)⊕Ker(Q) = Q, and R is maximal for F . Item (i) of
this Lemma implies that H ⊂ F(p). Since Q is maximal for F(p), we obtain H = Ran(Q)⊕Ker(Q)
and R = H. Thus, Q is maximal for F .
- (iii) The previous items show that the set of Lp-projections that are non-trivial and maximal
for F is equal to the set of Lp-projections that are non-trivial and maximal for F(p). If F(p) 6= {0}
or F = F(p) then F and F(p) have the same amount of trivial Lp-projections (either 2 or 1).
Thus their sets of maximal Lp-projections are in bijection, so α(F ) = α(F(p)).

Lemma 4.2.37 (Maximal Lp-projections on a subspace). Let X be a Banach space, and 1 ≤
p ≤ +∞. Let F be a closed subspace of X. Let G be a closed subspace of X and R ∈ Pp(G).
The following are equivalent

(i) R defines a non-trivial Lp-projection on a subspace H of F ;

(ii) (F ∩R(F )) 6= {0} and (F ∩ (I −R)(F )) 6= {0}.

If X satisfies Property 4.2.7 for p, the non-trivial Lp-projections on a subspace of F can all be
obtained from those on G = X.

Proof. (i) ⇒ (ii) Since R|H is a projection, we have R(H) ⊂ H. As R(H), (I − R)(H) are
included in H and H is included in F , we have R(H) ⊂ (R(F ) ∩ F ) and (I − R)(H) ⊂ ((I −
R)(F ) ∩ F ). Since R|H is non-trivial, both of these subspaces are not reduced to {0}.
- (ii)⇒ (i) Conversely, takeH = (F∩R(F ))⊕p(F∩(I−R)(F )). We haveH ⊂ F and R(H) ⊂ H,
so R|H is an Lp-projection. It is also non-trivial since R(H) 6= {0} and (I −R)(H) 6= {0}.
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When X satisfies Property 4.2.7 for p, every Lp-projection on a subspace G extends to an
Lp-projection on X, so looking at every R ∈ Pp(X) is enough.

Remark 4.2.38. Every maximal Lp-projection for F can be obtained this way. However, even
if (F ∩ R(F )) 6= {0}, (F ∩ (I − R)(F )) 6= {0} and H = (F ∩ R(F )) ⊕p (F ∩ (I − R)(F )), the
projection P |H may not be a maximal Lp-projection for F . For example, take X = `p(C4),
f1 = (0, 0, 0, 1), f2 = (0,−1, 1, 0), f3 = (1, 1, 1, 0) and F = Span(f1, f2, f3). For P = Mχ{2,3}
we can see that H = Span(f2) ⊕p Span(f1), but F = Span(f2, f3) ⊕p Span(f1) so P |H is not a
maximal Lp-projection for F .

Lemma 4.2.39. Let X be a Banach space, and 1 ≤ p ≤ +∞, p 6= 2. Suppose that X satisfies
Property 4.2.7 for p. Let F be a closed subspace of X. Let x, y ∈ F with x⊥py. Let P ∈ Pp(F ).
Then, we have P (x)⊥pP (y).

Proof. Since X satisfies Property 4.2.7 for p, there exist Q,R ∈ Pp(X) such that Q|F = P and
R(x) = x, R(y) = 0. As p 6= 2, the projections Q and R commute. Hence, we have

P (x) = Q(x) = Q(R(x)) = R(Q(x)) = R(P (x)).

Thus, P (x) ∈ Ran(R), so P (x)⊥py. Since Property 4.2.7 implies the linearity of the p-
orthogonality on X according to Proposition 4.2.9 and since P (x)⊥p(I − P )(y), we end up
with P (x)⊥py − (I − P )(y) = P (y).

Remark 4.2.40. Is Lemma 4.2.39 always true if we only suppose that F satisfies Property 4.2.8
for p, or for any F ? This question is analogous to the one in Remark 4.2.19, albeit in a more
general context.

Corollary 4.2.41. Let X be a Banach space, and 1 ≤ p ≤ +∞, p 6= 2. Suppose that X satisfies
Property 4.2.7 for p. Let F be a closed subspace of X. Suppose that F = F1 ⊕p ... ⊕p Fk. Let
x = x1 + ...+ xk ∈ F . Then, we have

x⊥p = {y1 + ..+ yk : yi ∈ x
⊥p
i ∩ Fi} =

k∑
j=1

x
⊥p
j ∩ Fj .

Proof. Let 1 ≤ i ≤ k, and yi ∈ x
⊥p
i ∩ Fi. Then, for any 1 ≤ j ≤ k we have yi⊥pxj . Hence, we

have yi⊥px1 + ..+xk = x. Thus, we have x⊥py1 + ..+yk. For the converse, if we take y ∈ F such
that y⊥px, then by denoting Pi the projection on Fi parallel to ⊕j 6=iFj , Pi is an Lp-projection

on F and Lemma 4.2.39 tells us that yi = Pi(y)⊥pPi(x) = xi. Hence, yi lies in x
⊥p
i ∩ Fi.

Corollary 4.2.42 (Maximal Lp-projections for p-orthogonal sums). Let X be a Banach space,
and 1 ≤ p ≤ +∞, p 6= 2. Suppose that X satisfies Property 4.2.7 for p. Let F be a closed
subspace of X. Suppose that F = F1 ⊕p ...⊕p Fk. Denote Pi the Lp-projection on Fi parallel to
⊕j 6=iFj. Let G ⊂ F and Q ∈ Pp(G). Denote Gi = Pi(G) and Qi = PiQ : G→ Gi. Then

(i) If Q is a maximal Lp-projection for F then G = G1⊕p ..⊕pGk, Q = Q1 + ..+Qk, and all
Qi are maximal Lp-projections for Fi;

(ii) If G = G1⊕p ..⊕pGk and all Qi|Gi are maximal Lp-projections for Fi, then Q is a maximal
Lp-projection for F ;
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(iii) α(F ) = Πk
i=1α(Fi).

Proof. (i) By construction we have Gi ⊂ Fi and IF = P1 + .. + Pk. Suppose first that Q is
maximal for F . Let 1 ≤ i ≤ k. Since X satisfies Property 4.2.7, there are Q̃, P̃i ∈ Pp(X) such

that Q̃|G = Q and P̃i|F = Pi. Let y ∈ Pi(G). There is z ∈ G such that y = Pi(z). We then have

Q̃(y) = Q̃(Pi(z)) = Q̃(P̃i(z)) = P̃i(Q̃(z)) = Pi(Q(z)) ∈ Pi(G).

Denote G′ = P1(G) ⊕p .. ⊕p Pk(G). Thus G ⊂ G′ ⊂ F and Q̃ leaves G′ invariant, so Q̃|G′ ∈
Pp(G′). As we also have Q̃|G = Q, the maximality of Q for F implies that G = G′. Hence,
G = G1 ⊕p ..⊕p Gk and Q = Q1 + ...+Qk.
Suppose now that there is a i such that Qi is not maximal for Fi. Up to reordering, we can
choose i = 1. With item (i) of Lemma 4.2.33 we have a subspace H1 such that G1 ( H1 ⊂ F1,
and R1 ∈ Pp(H1) such that R1|G1 = Q1. Thus, if we now consider H = H1⊕pG2⊕p ..⊕pGk and

define R ∈ L(H) with R(x1+..+xk) = R1(x1)+
∑k

j=2Qj(xj), we can see that H strictly contains
G, that R is an Lp-projection on H, and that R|G = Q, which contradicts the maximality of Q
for F .
- (ii) Suppose that Q is not maximal for F . Then, according to item (i) of Lemma 4.2.33 there
exists a subset H such that G ( H ⊂ F , and R ∈ Pp(H) such that R|G = Q and that R is
maximal for F . Item (i) of this Corollary implies that H = P1(H)⊕p ..⊕p Pk(H). As H strictly
contains G, this decomposition implies that there must be at least one i such that Pi(H) strictly
contains Pi(G). We can then see that Pi(G) ( Pi(H) ⊂ Fi, that R|Pi(H) is an Lp-projection on
Pi(H) and that (R|Pi(H))|Pi(G) = Q|Pi(G) = Qi|Gi . This contradicts the maximality of Qi, so Q
is maximal for F .
- (iii) Items (i) and (ii) give a bijective correspondence between Lp-projections Q that are
maximal for F and k-uplets (Q1, ..., Qk) of Lp-projections such that Qi is maximal for Fi.
Therefore, we get α(F ) = Πk

i=1α(Fi).

Remark 4.2.43. Producing examples using subspaces of an Lp-space as above means that the
statements of Lemma 4.2.39 and Corollary 4.2.41, will always be valid. Hence, these subspaces
seem to only be usable as good models for the behaviour of Lp-projections on subspaces F for a
space X satisfying Property 4.2.7, whereas Lp-projections on subspaces F for a general Banach
space X (like ones that would only satisfy Property 4.2.8) could exhibit different behaviours due
to the additional freedom regarding the structure of the norm on X.

For the following Propositions, we recall that for a subspace F , F(p) denotes the subspace of

F spanned by every vector x whose p-orthogonal x⊥p is not reduced to {0}.

Proposition 4.2.44. Let 1 ≤ p < +∞, p 6= 2, n ≥ 4 and X = `p(Cn). Denote (ei)i the
canonical basis of X. For 1 ≤ i < n, denote fi = ei + ei+1. Take F = Span(fi, 1 ≤ i < n).
Then, we have F = F(p), dim(F ) = n− 1, and

α(F ) = Card({P : P is a maximal Lp-projection for F}) = 2n − 2n.

Thus, for n ≥ 5, there is strictly more than 2dim(F ) Lp-projections that are maximal for F .

Proof. By construction, we have dim(F ) ≤ n− 1. We can see that F + C.e1 contains every ei,
so F + Ce1 = X. Hence dim(F ) = n − 1 and e1 /∈ F . Similarly, we can see that ei /∈ F for
every 1 ≤ i ≤ n. For every 1 ≤ i < j ≤ n, denote gi,j = ei + (−1)j−iej . A computation gives
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gi,j =
∑j−i−1

k=0 (−1)kfi+k, thus gi,j ∈ F .
As n ≥ 4, for any 1 ≤ i < n we have k, l such that k < l and k, l, i, i+ 1 are all distinct. Thus,
fi⊥pgk,l. Since both elements are non-zero and in F , we deduce that fi ∈ F(p) by definition of
F(p). As F(p) is a subspace of F , we get F(p) = F .
Let P ∈ Pp(X), with P 6= 0, I. We then have A ⊂ {1, .., n} such that P = MχA . Write
A as A = {m1, ...,mr} with 1 ≤ r ≤ n − 1 and m1 < m2 < .. < mr. We will prove that
dim(F ∩ P (F )) = r − 1 and

F ∩ P (F ) = F ∩ Ran(P ) = {0} if r = 1,

F ∩ P (F ) = F ∩ Ran(P ) = Span(gm1,m2 , ..., gmr−1,mr) if 2 ≤ r ≤ n.

We recall that F ∩ P (F ) = F ∩ Ran(P ) since P is a projection. If r = 1 we have Ran(P ) =
Span(em1), so F ∩ Ran(P ) = {0} as em1 /∈ F .
Suppose now that r ≥ 2. We have Ran(P ) = Span(em1 , ..., emr), so we obtain

Span(gm1,m2 , ..., gmr−1,mr) ⊂ F ∩ Ran(P ).

We also see that F 6= Ran(P ) as every emi does not belong to F , thus

dim(F ∩ Ran(P )) ≤ dim(Ran(P ))− 1 = r − 1.

We can see that Span(gm1,m2 , ..., gmr−1,mr) + Cem1 contains every emi , so this subspace is equal
to Ran(P ) and dim(Span(gm1,m2 , ..., gmr−1,mr)) ≥ r − 1. Therefore, we have

F ∩ Ran(P ) = Span(gm1,m2 , ..., gmr−1,mr) and dim(F ∩ Ran(P )) = r − 1.

Using this result, we obtain

dim((F ∩ P (F ))⊕ (F ∩ (I − P )(F ))) = (r − 1) + ((n− r)− 1) = n− 2.

Since X satisfies Property 4.2.7 for p, for any non-trivial Lp-projection Q on F there exists a non-
trivial projection R ∈ Pp(X) that extends Q. This implies that F = (F∩P (F ))⊕(F∩(I−P )(F ))
with dim(F ) = n− 1, which contradicts the previous result. Therefore, Pp(F ) = {0, I}.
We now consider P ∈ Pp(X) that is non-trivial, with P = MχA , A = {m1, ...,mr}. If r = 1 or
r = n− 1 then we either have P ∩ P (F ) = {0}, or P ∩ (I − P )(F ) = {0}.
If not, with 2 ≤ r ≤ n− 2 we have P ∩ P (F ) 6= {0} and P ∩ (I − P )(F ) 6= {0}, so P defines a
non-trivial Lp-projection on the subspace

FP := (F ∩ P (F ))⊕p (F ∩ (I − P )(F )).

As dim(FP ) = n− 2 = dim(F )− 1, and as F does not possess any non-trivial Lp-projection, we
can see that P |FP is a maximal Lp-projection for F .
Furthermore, all these Lp-projections P |FP are different. Indeed, since gi,j lies in Ran(MχB ) if
and only if i, j ∈ B, we can see that the only Lp-projection R on X such that F ∩ R(F ) =
Span(gm1,m2 , ..., gmr−1,mr) is R = MχB = P with B = {m1, ...,mr}.
By using Lemma 4.2.37 and Remark 4.2.38 we can conclude that there are as many maximal
Lp-projections that are non-trivial for F as there are subsets A of {1, .., n} with A = {m1, ...,mr}
and 2 ≤ r ≤ n− 2. This quantity is then equal to

2n −
(

0

n

)
−
(
n

n

)
−
(

1

n

)
−
(
n− 1

n

)
= 2n − 2− 2n.

If we add 0 and I, we conclude that there are 2n − 2n maximal Lp-projections for F . When
n = 4 we have 2n − 2n = 8 = 2n−1 but when n ≥ 5 we have 2n < 2n−1 so 2n − 2n > 2n−1.
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Remark 4.2.45. We can generalize the result of Proposition 4.2.44 by replacing `p(Cn) =
Span(e1, ..., en) with Span(h1, ..., hn), with h1, ..., hn vectors of a Banach space Y , such that
hi⊥phj for every i 6= j. As we can build an isometric isomorphism between this space and
`p(Cn) it satisfies Property 4.2.7 for p and. And as the proof of Proposition 4.2.44 only used the
p-orthogonality of the family {e1, ..., en}, it can be mimicked for {h1, ..., hn} to get the desired
result.

Proposition 4.2.46. Let X be a Banach space, and 1 ≤ p < +∞, p 6= 2. Suppose that
X satisfies Property 4.2.7. Let F be a subspace of X with dim(F(p)) ≤ 3. Then, we have

α(F ) ≤ 2max(dim(F(p)),1).

Proof. We recall that item (iii) of Lemma 4.2.36 gives α(F ) = α(F(p)) whenever F(p) 6= {0} and
that Corollary 4.2.35 gives α(F ) = 2 or 1 when F(p) = {0}. Therefore we will focus on F(p) and
discuss cases depending on dim(F(p)).

If F(p) = {0} we have α(F ) ≤ 2 = 2max(0,1).

If F(p) 6= {0} then we have x ∈ F be a vector which is non-zero and such that x⊥p ∩ F 6= {0}.
Let y ∈ F that is non-zero and such that y⊥px. Then, y⊥p ∩ F 6= {0}. Therefore both x and y
lie in F(p). As y cannot be colinear to x, we cannot have dim(F(p)) = 1.
If dim(F(p)) = 2, the vectors x and y chosen previously span the subspace F(p). Hence F(p) =
Span(x, y) = Span(x) ⊕p Span(y) and F(p) is isometrically isomorphic to `p(C2). Item (iii) of
Corollary 4.2.42 then implies

α(F(p)) = α(Span(x))α(Span(y)) = 2.2 = 2max(dim(F(p)),1).

If dim(F(p)) = 3, the vectors x and y chosen previously only form a linearly independant family

in F(p). By definition of F(p), there exists a vector z ∈ F such that z⊥p ∩ F 6= {0} and such
that z /∈ Span(x, y). Thus, {x, y, z} is a basis for F(p). We will discuss cases depending on the

vectors in z⊥p ∩F . For this, take P ∈ Pp(X) an Lp-projection that extends the p-orthogonality
between x and y, with P (x) = x and P (y) = 0.
If z⊥pax, a 6= 0, we then have F(p) = Span(x)⊕p Span(y, z). Item (iii) of Corollary 4.2.42 then
implies

α(F(p)) = α(Span(x))α(Span(y, z)) ≤ 2.2max(2,1) ≤ 23 = 2max(dim(F(p)),1).

If z⊥pby, b 6= 0 we get the same upper bound by symmetry between x and y.
If z⊥pax + by, a, b 6= 0, then Lemma 4.2.39 implies that P (z)⊥paP (x). Since a 6= 0 and since
the p-orthogonality is linear on X, we obtain

x = P (x)⊥pP (z) + (I − P )(z) = z,

which brings us to the case z⊥px and gives us the desired result.
We are then left with the case where z⊥p ∩ Span(x, y) = {0}. Thus, an element in F that is
non-zero and p-orthogonal to z has the form w = ax+ by + cz, with c 6= 0. Up to dividing by c
we can suppose that c = 1. Lemma 4.2.39 then gives

P (z)⊥pP (w) = ax+ P (z) and (I − P )(z)⊥p(I − P )(w) = by + (I − P )(z).

If we have a = 0 we get P (z) = 0, so z = (I −P )(z)⊥px, which is impossible. Similarly, if b = 0
we get (I − P )(z) = 0, so z = P (z)⊥py which is impossible. As a, b 6= 0, up to replacing x by
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ax and y by by we can suppose that a = b = 1, so w = x+ y + z. Take

G = Span(P (z), P (z) + x, (I − P )(z), (I − P )(z) + y).

As in the previous use of Lemma 4.2.39, these vectors form a p-orthogonal family. Denote

h1 = P (z) + x, h2 = −P (z), h3 = −(I − P )(z), h4 = (I − P )(z) + y.

We then have G = Span(h1, h2, h3, h4) and x = h1 + h2,y = h4 + h3 and z = −(h2 + h3), so
G contains F(p) = Span(x, y, z) and F(p) = Span(h1 + h2, h3 + h4, h2 + h3). We can then use
Remark 4.2.45 to apply Proposition 4.2.44 to G and F(p) and get

α(F(p)) = 24 − 2.4 = 8 = 2max(dim(F(p)),1),

which concludes the proof.

Proposition 4.2.47. Let X be a Banach space, and 1 ≤ p ≤ +∞, p 6= 2. Suppose that X
satisfies Property 4.2.7 for p. Let F be a subspace of X of finite dimension. Then, there exists
a subspace H of X such that F ⊂ H, dim(H) ≤ 2max(dim(F )−1,0), and H satisfies Property 4.2.7
for p.

Proof. We will prove the result with an induction on n = dim(F ).
If n = 1 then for any x, y ∈ F such that x⊥py, we must have x = 0 or y = 0 as x and y are
colinear. Thus F satisfies Property 4.2.7 for p and we can take H = F .
Let n ≥ 2. Suppose that the result is true for any subspace of X of dimension less or equal to
n − 1. If all the maximal Lp-projections for F are defined on F , then Corollary 4.2.35 implies
that F satisfies Property 4.2.7 for p and we can take H = F .
If not, let P be a maximal Lp-projection for F that is not defined on F . Such a projection P
is defined on Ran(P ) ⊕ Ker(P ) ( F . Since X satisfies Property 4.2.7, there exists Q ∈ Pp(X)
that extends P . Denote G = Q(F )⊕ (I −Q)(F ). Item (i) of Lemma 4.2.37 gives us

Ker(P ) = F ∩Ker(Q) and Ran(P ) = F ∩ Ran(Q).

By using the rank-nullity Theorem for linear maps Q : F → Q(F ) and (I−Q) : F → (I−Q)(F )
we get

dim(Q(F )) = dim(F )− dim(F ∩Ker(Q)) = dim(F )− dim(Ker(P ))

dim((I −Q)(F )) = dim(F )− dim(F ∩ Ran(Q)) = dim(F )− dim(Ran(P )).

As P is non-trivial we have Ker(P ),Ran(P ) 6= {0}, so dim(Q(F )), dim((I−Q)(F )) ≤ n−1. We
can then apply the induction hypothesis to Q(F ) and (I−Q)(F ) to obtain subspaces H1, H2 such
that Q(F ) ⊂ H1, (I − Q)(F ) ⊂ H2 and H1, H2 satisfy Property 4.2.7. Denote H = H1 ⊕p H2.
We then have F ⊂ Q(F )⊕ (I −Q)(F ) ⊂ H, so we need to show that H satisfies Property 4.2.7.
Let x, y ∈ H be such that x⊥py. Lemma 4.2.39 tells us that

Q(x)⊥pQ(y) and (I −Q)(x)⊥p(I −Q)(y).

Since Q(x), Q(y) are in H1, there is P1 ∈ Pp(H1) such that

P1(Q(x)) = Q(x) and P1(Q(y)) = 0.
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Since (I −Q)(x), (I −Q)(y) are in H2, there is P2 ∈ Pp(H2) such that

P2((I −Q)(x)) = (I −Q)(x) and P1((I −Q)(y)) = 0.

Proposition 4.2.17 gives us R ∈ Pp(H) such that R(h1 +h2) = P1(h1) +P2(h2) for any h1 ∈ H1,
h2 ∈ H2. Therefore, we have

R(x) = R(Q(x) + (I −Q)(x)) = Q(x) + (I −Q)(x) = x,

R(y) = R(Q(y) + (I −Q)(y)) = 0 + 0 = 0,

and H satisfies Property 4.2.7 for p. We also have

dim(H) = dim(H1) + dim(H2) ≤ 2max(dim(Q(F )−1,0) + 2max(dim((I−Q)(F ))−1,0)

≤ 2dim(Q(F ))−1 + 2dim((I−Q)(F ))−1 ≤ 2dim(F )−1−1 + 2dim(F )−1−1 = 2dim(F )−1,

which proves the upper bound on dim(H) and concludes the proof.

Remark 4.2.48. Proposition 4.2.47 gives us a first upper bound for α(F ), that is α(F ) ≤
22max(dim(F )−1,0)

. But its main interest is to allow us to look at F as a subspace ofG, withG satisfy-
ing Property 4.2.7 and of finite dimension. Therefore we can apply Proposition 4.2.18 and Corol-
lary 4.2.42 to write G as G = G1 ⊕p ..⊕p Gm, with α(Gi) = 2 and α(G) = Card(Pp(G)) = 2m.
Then, F as a subspace of G is generated by elements of the form f = fi1 + ..+fir with 1 ≤ r ≤ n,
1 ≤ i1 < .. < ir ≤ n, and fik ∈ Gik . This is similar to Propositions 4.2.44 and 4.2.46, where we
can count the maximal Lp-projections for F by looking at the behaviour of all Lp-projections of
G with respect to F .

The previous results and examples motivate the following conjecture.

Conjecture 4.2.49. Let X be a Banach space, and 1 ≤ p < +∞, p 6= 2. Suppose that X
satisfies Property 4.2.7. Let F be a subspace of X of finite dimension such that Pp(F(p)) = {0, I}.
Then, we have

α(F ) = Card({P : P is a maximal Lp-projection for F}) ≤ 2dim(F(p))+1.

If this conjecture is true, we can then obtain a better upper bound for α(F ) when F has
finite dimension and F is a subspace of a Banach space X that satisfies Property 4.2.7. We can
also treat the case p = +∞, which gives a simpler result.

Proposition 4.2.50. Let X be a Banach space. Let F be a subspace of X of finite dimension.

(i) Let 1 ≤ p < +∞, p 6= 2. Suppose that X satisfies Property 4.2.7 for p and that Conjecture
4.2.49 is true. For Card(Pp(F(p))) = 2m, we then have

α(F ) ≤ 2min( 5
4
dim(F(p)),dim(F(p))+m).

(ii) Let p = +∞. Suppose that X satisfies Property 4.2.7 for p. For X = X1 ⊕∞ X2, we then
have one of the following

α(F ) = 1 if F = {0};
α(F ) = 2 if F = {0} and (F ∩X1 = {0} or F ∩X2 = {0});
α(F ) = 4 if F ∩X1 6= {0} and F ∩X2 6= {0}.
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Proof. (i) We have α(F ) = α(F(p)), so we only need to prove the result when F = F(p). Since
F has a finite dimension, Card(Pp(F )) is finite and is a power of 2 according to Proposition
4.2.18. Furthermore, for m such that Card(Pp(F(p))) = 2m, we then have subspaces F1, ..., Fm
of F such that

F = F1 ⊕p ..⊕p Fm, Fi 6= {0}, and Pp(Fi) = {0, I}.
Furthermore, Corollary 4.2.42 tells us that

α(F ) = Πm
i=1α(Fi).

Now, if 1 ≤ dim(Fi) ≤ 3, we can apply the result of Proposition 4.2.46 to get

α(Fi) ≤ 2max(dim((Fi)p),1) ≤ 2max(dim(Fi),1) = 2dim(Fi).

If not, with dim(Fi) ≥ 4, Conjecture 4.2.49 can be applied to Fi to obtain

α(Fi) ≤ 2dim((Fi)p)+1 ≤ 2dim(Fi)+1.

Denote
E = {i ∈ {1, ..,m}: dim(Fi) ≥ 4}.

Since dim(F(p)) = dim(F ) =
∑m

i=1 dim(Fi), we have Card(E) ≤ dim(F(p))

4 , so

Card(E) ≤ min(
dim(F(p))

4
,m).

Combining the previous results gives

α(F ) = (Πi∈Eα(Fi))(Πj /∈Eα(Fj)) ≤ (Πi∈E2dim(Fi)+1)(Πj /∈E2dim(Fi))

≤ 2Card(E)+
∑m
k=1 dim(Fk) = 2Card(E)+dim(F(p))

≤ 2dim(F(p))+min(
dim(F(p))

4
,m) = 2min( 5

4
dim(F(p)),dim(F(p))+m),

which concludes the proof.
- (ii) We apply Corollary 4.2.27 to obtain that α(X) = Pp(X) = 1,2 or 4. Since α(F ) ≤ α(X) ≤
4, we have α(F ) = 1,2 or 4. Proposition 4.2.29 allows us to write X as X = X1 ⊕∞ X2, with
α(Xi) = 1 if Xi = {0} or α(Xi) = 2.
If F = {0}, then α(F ) = 1. If F ∩X1 6= {0} and F ∩X2 6= {0}, then F 6= {0} and F has non-zero
elements that are ∞-orthogonal, so it possesses non-trivial maximal Lp-projections. Therefore
α(F ) = 4. If F 6= {0} and F ∩X1 = {0} or F ∩X2 = {0}, then Proposition 4.2.29 tells us that
the ∞-orthogonality is trivial on F , thus α(F ) = 2.

4.3 Lp-Projections on Quotient Spaces and Subspaces of Quo-
tients

The aim of this section is to link p-orthogonality and Lp-projections between a Banach space X
and quotient spaces X/F . We will introduce a third property for X regarding p-orthogonality
between X/F and X. All the results will be valid for 1 < p < +∞, p 6= 2. Unlike Section 4.2,
the case p = 1 does not behave well with respect to quotients (see Counter-example 4.3.7). The
initial results are also true for p = 2 (up to Lemma 4.3.12), but the Hilbertian case is excluded
as soon as properties of the Boolean algebra Pp(X) are required. We quickly drop the case
p = +∞ as the properties that we can add to X,F or P (F ) give very specific behaviours that
require special care (in a similar way to Proposition 4.2.29 or item (ii) of Proposition 4.2.50).
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4.3.A Lp-projections on quotient spaces

Definition 4.3.1 (Representative of minimal norm of a quotient, metric projection on a sub-
space). Let 1 < p < +∞, p 6= 2. Let F be a closed subspace of X such that every element of
X/F admits a unique representative of minimal norm. For x ∈ X/F we define RepF (x) ∈ X the
representative of x of minimal norm. For x ∈ X we denote Proj(x, F ) ∈ F the metric projection
of x onto the closed convex set F .
We then have RepF (x) = x− Proj(x, F ) and

‖RepF (x)‖ = ‖x‖ = inf
a∈F

(‖x− a‖) = ‖x− Proj(x, F )‖.

Also, RepF (X/F ) = {x ∈ X: Proj(x, F ) = 0}.
If there is no ambiguity regarding the quotient space, the map RepF : X/F → X will be
abbreviated as Rep in the rest of the chapter.

Remark 4.3.2. While some results can be applied to subspaces F of a Banach space X with
no condition on the quotient X/F , most of them will require the unicity of any representative
of minimal norm of x ∈ X/F , or equivalently the existence and unicity of a metric projection
of every x ∈ X onto F . Even though Lp-projections give decompositions into p-orthogonal
subspaces, it is not true that for any subspace F and any Lp-projection P , the existence and
uniqueness of the metric projection on F implies the existence and uniqueness of the metric
projection on P (F ). It is however true with additional conditions between P and F (see Lemma
4.3.12).
We also remark that in general the set RepF (X/F ) is not a subspace of X. Further results
will show that in certain conditions the set RepF (X/F ) possesses two subsets A,B such that
A+ B = RepF (X/F ) and B ⊂ A⊥p . The p-orthogonality between A and B ensures that every
element of RepF (X/F ) has a unique decomposition as a sum A+B. Hence, such a decomposition
will be denoted as RepF (X/F ) = A ⊕p B, even though the set A and B are not subspaces, in
order to match the p-orthogonal decompositions that happen on Banach spaces.

Lemma 4.3.3. Let 1 < p ≤ +∞. Let X be a Banach space and let F be a closed subspace of
X. Let x ∈ X, let G be a subspace of X containing F and x, and let P ∈ Pp(G) be such that
P (x) = x. The following are equivalent

(i) infa∈F ‖x− a‖ = ‖x‖;

(ii) infa∈F ‖x− P (a)‖ = ‖x‖.

If the metric projections on F and P (F ) are well-defined, then we also have the equivalence :

(1) Proj(x, F ) = 0;

(2) Proj(x, P (F )) = 0.

Proof.
- (ii)⇒ (i). Suppose first that p < +∞. For any a ∈ F , we have

‖x− a‖p = ‖x− P (a)‖p + ‖(I − P )(a)‖p ≥ ‖x‖p + ‖(I − P )(a)‖p ≥ ‖x‖p.

Thus, ‖x− 0‖p = infa∈F (‖x− a‖p). When p = +∞, we similarly have

‖x− a‖ = max(‖x− P (a)‖, ‖(I − P )(a)‖) ≥ ‖x− P (a)‖ ≥ ‖x‖,
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so we get the same conclusion.
- (i) ⇒ (ii). Suppose first that p < +∞, and that infa∈F ‖x − P (a)‖ < ‖x‖. Hence, we have
a ∈ F non zero such that

‖x− P (a)‖p < ‖x‖p.

We will show by a convexity argument that there exists 0 < λ < 1 such that ‖x− λ.a‖p < ‖x‖p.
In order to do this, we define the following maps

g(λ) := ‖x− λP (a)‖p and h(λ) := ‖x− λa‖p = g(λ) + |λ|p.‖(I − P )(a)‖p

Now, for every b, c ∈ X, the map r ∈ R 7→ ‖b+ cr‖ ∈ [0,+∞[ is convex. The map y ∈ [0,+∞[7→
yp ∈ R is convex with a positive derivative on [0,+∞[. Thus, the composed map r 7→ ‖b+ cr‖p
is convex on R, so g and h are convex on R. It follows that these maps have right derivatives at
every point, denoted by g′r, h

′
r.

As we have
g(1) = ‖x− P (a)‖p < ‖x‖p = g(0),

we must have g′r(0) < 0. Also, since p > 1, the map r 7→ |r|p has a derivative of 0 at 0. Thus
hr(0)′ = gr(0)′ + 0 < 0, which means that h is decreasing on a neighbourhood of 0. This gives
a 0 < λ < 1 such that

‖x− λ.a‖p = h(λ) < h(0) = ‖x‖p,

which proves the equivalence in this case.
When p = +∞, if infa∈F ‖x− P (a)‖ < ‖x‖ we then have a ∈ F non zero such that

‖x− P (a)‖ < ‖x‖.

Since the map s : r ∈ R 7→ ‖x− rP (a)‖ is convex with s(0) > s(1), s is decreasing on an interval
[0, t], for some 0 < t ≤ 1. Let r > 0 be such that r‖(I −P )(a)‖ < ‖x‖ and r < t. Then, we have

‖x− ra‖ = max(‖x− rP (a)‖, r‖(I − P )(a)‖) = max(s(r), r‖(I − P )(a)‖) < ‖x‖,

which proves the equivalence in this case.
- (1)⇔ (2) When the metric projection on a subspace G is well-defined, Proj(x,G) is the unique
g ∈ G such that infa∈G ‖x− a‖ = ‖x− g‖. Since it is the case for F and P (F ), the equivalence
(i)⇔ (ii) concludes the proof.

We can then use Lemma 4.3.3 to transfer some p-orthogonality properties X to X/F .

Corollary 4.3.4. Let 1 < p < +∞. Let X be a Banach space and let F be a closed subspace
of X. Let x, y ∈ X be such that ‖x‖ = ‖x‖, ‖y‖ = ‖y‖ and x⊥py. Suppose that there exists
P ∈ Pp(X) such that P (x) = x and P (y) = 0. Then

(i) We have x⊥py and ‖ax+ by‖ = ‖ax+ by‖ for all a, b ∈ C;

(ii) If the metric projection onto F is well-defined, then we also have Proj(ax+ by, F ) = 0 for
all a, b ∈ C.

Proof. (i) Up to changing x by ax and y by by, we will show that ‖x+ y‖ = ‖x+y‖. Let u ∈ F .
By applying Lemma 4.3.3 we obtain

‖x+ y − u‖p = ‖x− P (u)‖p + ‖y − (I − P )(u)‖p ≥ ‖x‖p + ‖y‖p = ‖x+ y‖p.
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Thus, ‖x+ y − 0‖p = infu∈F (‖x+ y − u‖p), so ‖x+ y‖ = ‖x+ y‖. Therefore, for any z ∈ C, we
get

‖x+ zy‖p = ‖x+ zy‖p = ‖x‖p + ‖zy‖p = ‖x‖p + ‖zy‖p,

so x and y are p-orthogonal.
- (ii) If the metric projection onto F is well-defined, then point (i) implies that Proj(ax+by, F ) =
0.

The next corollary generalizes the second equivalence of Lemma 4.3.3 for a broader use.

Corollary 4.3.5. Let 1 < p < +∞. Let X be a Banach space. Let F be a closed subspace of
X. Let x ∈ X and P ∈ Pp(X) be such that P (x) = x. Suppose that every x ∈ X possesses at
least one metric projection onto F . Then, the following are equivalent :

(i) infa∈F ‖x− a‖ = ‖x− α‖, for α ∈ F ∩ P (F );

(ii) infa∈F ‖x− a‖ = infb∈P (F ) ‖x− b‖;

(iii) infb∈P (F ) ‖x− b‖ = ‖x− β‖, for β ∈ F .

If the metric projections onto F and P (F ) are well-defined, then the following are equivalent :

(1) Proj(x, F ) ∈ P (F );

(2) Proj(x, F ) = Proj(x, P (F )) ∈ (F ∩ P (F ));

(3) Proj(x, P (F )) ∈ F .

Proof. (i)⇒ (ii) Take y = x−α. Since α ∈ F∩P (F ) we have P (y) = y and infa∈F ‖y−a‖ = ‖y‖.
Hence, Lemma 4.3.3 gives

inf
b∈P (F )

‖x− b‖ = inf
b∈P (F )

‖y − b‖ = ‖y‖ = inf
a∈F
‖y − a‖ = inf

a∈F
‖x− a‖.

- (ii)⇒ (iii) Since infa∈F ‖x− a‖ is attained for some β ∈ F , we obtain item (iii).
- (iii)⇒ (i) Since for any a ∈ F we have

‖x− a‖p = ‖x− P (a)‖p + ‖(I − P )(a)‖p ≥ ‖x− P (a)‖p,

we obtain infa∈F ‖x− a‖ ≥ infb∈P (F ) ‖x− b‖. Thus, item (iii) implies

inf
b∈P (F )

‖x− b‖ = ‖x− β‖ = inf
a∈F
‖x− a‖.

Since ‖x − β‖p = ‖x − P (β)‖p + ‖(I − P )(β)‖p ≥ infb∈P (F ) ‖x − b‖p + 0, we must have ‖(I −
P )(β)‖p = 0, that is P (β) = β, which implies that β ∈ F ∩ P (F ) and gives item (i).
We suppose now that the metric projections onto F and P (F ) are well-defined. The implications
(2)⇒ (1) and (2)⇒ (3) are immediate.
- (1)⇒ (2) As Proj(x, F ) ∈ F , we have Proj(x, F ) ∈ F ∩ P (F ). Thus item (2) comes from the
implication (i)⇒ (ii).
- (3)⇒ (2) The implication (iii)⇒ (ii) tells us that Proj(x, P (F )) = Proj(x, F ), so Proj(x, F )
belongs to P (F ) ∩ F , which concludes the proof.
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Remark 4.3.6. The following counter-example shows that Lemma 4.3.3, which is central in this
section, is not true for p = 1.
We also remark that similarly to Lemma 4.3.3, Corollaries 4.3.4 and 4.3.5 are true for p = +∞.
The only difference in the proofs between 1 < p < +∞ and p = +∞ is the fact that ‖a+ b‖p =
‖a‖p + ‖b‖p must be replaced by ‖a+ b‖ = max(‖a‖, ‖b‖).

Counter-Example 4.3.7. Lemma 4.3.3 is not true when p = 1. Indeed, if we take X = l1(C3),
M ≥ 1, a = (0, 1,M), x = (1, 1, 0), F = Span(a), and the L1-projection P = Mχ{1,2} , then we
have

inf
v∈F

(‖x− v‖) = 2 = ‖x‖ but inf
u∈P (F )

(‖x− u‖) = 1 < ‖x‖.

This is because the right derivative of r 7→ |r| at 0 is not zero.

We also give a result that is exclusive to the case p = +∞ before ruling it out for the rest of
the section.

Lemma 4.3.8. Let X be a Banach space and p = +∞. Let F be a closed subspace of X
with F 6= X. Let P ∈ P∞(X) that is non-trivial. Suppose that the metric projection on F is
well-defined and that a metric projection on P (F ) and (I − P )(F ) exists. Then,

(i) If P (F ) 6= {0} and (I − P )(F ) 6= {0}, then metric projections on P (F ) and (I − P )(F )
are not unique.

(ii) If F ∩ Ker(P ) 6= {0}, then P (F ) = P (X) and for every x ∈ Ran(P ) \ (F ∩ Ran(P )), we
have x− Proj(x, F ) /∈ P (X).

(iii) If F∩Ran(P ) 6= {0}, then (I−P )(F ) = (I−P )(X) and for every x ∈ Ker(P )\(F∩Ker(P )),
we have x− Proj(x, F ) /∈ (I − P )(X).

Proof. (i) Since P is non-trivial, Ker(P ) and Ran(P ) are not reduced to {0}. If P (F ) 6= {0}
then metric projections on P (F ) are not unique. Indeed, for x ∈ Ker(P ) we have

inf
f∈P (F )

‖x− f‖ = inf
f∈Ran(P )

max(‖x‖, ‖f‖) = ‖x‖,

but this infimum is also attained for every f ∈ Ran(P ) such that ‖f‖ ≤ ‖x‖. The same argument
shows that if (I − P )(F ) 6= {0} then metric projections on (I − P )(F ) are not unique.
- (ii), (iii) Suppose that F ∩Ker(P ) 6= {0}. Let x ∈ Ran(P ). We then have α ∈ P (F ) such that
infa∈P (F ) ‖x−a‖ = ‖x−α‖. Take y = x−α. Then Lemma 4.3.3 tells us that inff∈F ‖y−f‖ = ‖y‖.
As we saw previously, for any f ∈ F ∩ Ker(P ) such that ‖f‖ ≤ ‖y‖, we have ‖y − f‖ = ‖y‖.
Since F ∩ Ker(P ) 6= {0}, by unicity of the metric projection on F we must have y = 0, that is
x = α ∈ P (F ), so P (X) = P (F ). Now, let x ∈ Ran(P )\(F ∩Ran(P )). If x−Proj(x, F ) ∈ P (X)
then this vector is non-zero. Also, for any f ∈ F ∩Ker(P ) we have

‖x− Proj(x, F )− f‖ = max(‖x− Proj(x, F )‖, ‖f‖) > 0.

Thus there exists f 6= 0 small enough such that ‖x−(Proj(x, F )+f)‖ = ‖x−Proj(x, F )‖, which
contradicts the unicity of Proj(x, F ). Hence x−Proj(x, F ) /∈ P (X) and item (i) is proved. Item
(ii) is obtained by mimicking the proof with (I − P ) instead of P .
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Let X be a Banach space, let F be a closed subspace of X, and let 1 ≤ p ≤ +∞. Similarly to
Property 4.2.7, we introduce a property linking the p-orthogonality between the quotient X/F
and X.

Property 4.3.9 (Extension of p-orthogonality from a quotient). For any x, y ∈ X/F such that
x⊥py, there exists x, y ∈ X representatives of x, y of minimal norm such that x⊥py.

The next proposition shows that Corollary 4.3.4 admits a converse when X = Lp(Ω), which
is obtained through a generalization of the equality case in Clarkson inequalities for quotients
of Lp(Ω).

Proposition 4.3.10 (Clarkson equality case for quotients of Lp). Let 1 < p < +∞, p 6= 2,
and let (Ω,F , µ) be a measure space. Let F be a closed subspace of Lp(Ω). Then Lp(Ω) satisfies
Property 4.3.9 for p and F . Also, for any x, y ∈ Lp such that Proj(x, F ) = 0 and Proj(y, F ) = 0,
the following are equivalent

(i) ‖x+ y‖p + ‖x− y‖p = 2(‖x‖p + ‖y‖p);

(ii) ‖x± y‖p = ‖x‖p + ‖y‖p;

(iii) x⊥py;

(iv) x⊥py;

(v) Proj(ax+ by, F ) = 0, ∀a, b ∈ C and x⊥py.

Proof. Since 1 < p < +∞, every class in Lp(Ω)/F admits a unique representative of minimal
norm and Proj(., F ) is well defined.
- (iii)⇒ (ii)⇒ (i) is immediate.
- (iv)⇔ (v) has already been obtained in Corollary 4.3.5.
- (v) ⇒ (iii) Since Proj(ax + by, F ) = 0, we have ‖ax+ by‖ = ‖ax + by‖ for any a, b ∈ C. As
x⊥py, we obtain

‖x+ zy‖p = ‖x+ zy‖p = ‖x‖p + |z|p‖y‖p = ‖x‖p + |z|p‖y‖p.

- (i)⇒ (iv) We will separate the cases 1 < p < 2 and 2 < p.
Suppose first that 1 < p < 2. Since ‖h‖ ≤ ‖h‖, the Clarkson inequality gives

‖x+ y‖p + ‖x− y‖p ≤ ‖x+ y‖p + ‖x− y‖p ≤ 2(‖x‖p + ‖y‖p).

Since the leftmost and rightmost terms are equal, we are in the equality case of the Clarkson
inequalities. Thus, x and y are p-orthogonal.
Suppose now that 2 < p. Let h, k be the representatives of x+ y, x− y of minimal norm. Then,
h+k

2 , h−k2 are representatives of x̄, ȳ. We will show that they are the ones of minimal norm, i.e.
x and y. We have

2( inf
u∈F
‖h+ k

2
− u‖p + inf

v∈F
‖h− k

2
− v‖p) = 2(‖x̄‖p + ‖ȳ‖p)

= ‖x+ y‖p + ‖x− y‖p = ‖h‖p + ‖k‖p.
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and the Clarkson inequality gives

‖h‖p + ‖k‖p ≥ 2(‖h− k
2
‖p + ‖h+ k

2
‖p).

Thus,

‖h− k
2
‖p + ‖h+ k

2
‖p ≤ inf

u∈F
‖h+ k

2
− u‖p + inf

v∈F
‖h− k

2
− v‖p.

Since we have an equality, this means that h+k
2 , h−k2 are the representatives of x̄, ȳ of minimal

norm, i.e. x and y. Hence, x = h+k
2 and y = h−k

2 , so x + y = h and x − y = k. Therefore we
obtain

‖x+ y‖p + ‖x− y‖p = 2(‖x‖p + ‖y‖p).

And the equality case in the Clarkson inequality implies that x⊥py.

Remark 4.3.11. The equivalences (i) ⇔ (ii) ⇔ (iii) ⇔ (iv) of Proposition 4.3.10 are also true
when p = 2. Indeed, this case amounts to orthogonality in a Hilbert space setting, where such
equivalences can be easily proven using orthogonality and inner products. However, as the
quotient of a Hilbert space is a Hilbert space, these spaces have no significant interest in this
section.
The equivalence (iii)⇔ (iv) proves to be very useful in studying the Lp-projections on Lp(Ω)/F .
It turns out that we can study Pp(X/F ) for broader Banach spaces X as long as they satisfy a
similar property.

Lemma 4.3.12. Let X be a Banach space and 1 < p < +∞. Let F be a closed subspace such
that every element of X/F admits an unique representative of minimal norm. Let P ∈ Pp(X)
be such that P (F ) ⊂ F . Then,

(i) The metric projection on P (F ) is well-defined, so the maps RepP (F ) : X/P (F ) → X and
Proj(., P (F )) : X → P (F ) are well-defined. The same is true for (I − P );

(ii) For any x ∈ X we have Proj(x, P (F )) = Proj(P (x), P (F )) = Proj(P (x), F );

(iii) For any x ∈ X we have Proj(x, F ) = Proj(x, P (F )) + Proj(x, (I − P )(F )).

Proof. Since P (F ) ⊂ F we have F = P (F ) ⊕p (I − P )(F ). We recall that every element of
X/F admits unique representatives of minimal norm if and only if for every element x of X, the
metric projection of x on F is unique.
Let x ∈ X. We then have

‖P (x)− Proj(P (x), F )‖p = inf
f∈F
‖P (x)− f‖p = inf

a+b∈P (F )⊕(I−P )(F )
(‖P (x)− a‖p + ‖b‖p)

= inf
a∈P (F )

‖P (x)− a‖p.

Since we also have

‖P (x)− Proj(P (x), F )‖p = ‖P (x)− P (Proj(P (x), F ))‖p + ‖(I − P )(Proj(P (x), F ))‖p

≥ inf
a∈P (F )

‖P (x)− a‖p + 0,
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we then get (I − P )(Proj(P (x), F )) = 0, that is Proj(P (x), F ) ∈ P (F ). Thus P (x) possesses a
metric projection on P (F ). Therefore,

‖x− Proj(P (x), F )‖p = ‖P (x)− Proj(P (x), F )‖p + ‖(I − P )(x)‖p

= inf
a∈P (F )

‖P (x)− a‖p + ‖(I − P )(x)‖p = inf
a∈P (F )

‖x− a‖p,

so x possesses a metric projection on P (F ).
Now, let f1 ∈ P (F ) be such that ‖x− f1‖ = infa∈P (F ) ‖x− a‖. We can see that

‖P (x)− f1‖p = ‖x− f1‖p − ‖(I − P )(x)‖p = ‖x− Proj(P (x), F )‖p − ‖(I − P )(x)‖p

= ‖P (x)− Proj(P (x), F )‖p,

So f1 = Proj(P (x), F ) by unicity of the metric projection on F . Thus, the metric projection of
x on P (F ) is unique. As we also obtained Proj(x, P (F )) = Proj(P (x), F ) = Proj(P (x), P (F )),
item (ii) is proved. Since we have (I − P )(F ) ⊂ F , we can mimic the proof for (I − P ) to
prove that the metric projection on (I − P )(F ) is well-defined, and that Proj(x, (I − P )(F )) =
Proj((I − P )(x), F ) = Proj((I − P )(x), (I − P )(F )). Thus item (i) is proved.
- (iii) As the metric projections on P (F ) and (I − P )(F ) are well-defined, we obtain

‖x− Proj(x, F )‖p = inf
a∈F
‖x− a‖p = inf

a∈P (F )⊕(I−P )(F )
‖(P (x) + (I − P )(x))

− (P (a) + (I − P )(a))‖p

= inf
b∈P (F )

‖P (x)− b‖p + inf
c∈(I−P )(F )

‖(I − P )(x)− c‖p

= ‖P (x)− Proj(P (x), P (F ))‖p + ‖(I − P )(x)

− Proj((I − P )(x), (I − P )(F ))‖p

= ‖x− (Proj(P (x), P (F )) + Proj((I − P )(x), (I − P )(F )))‖p.

Hence, by unicity of the metric projection on F , we get

Proj(x, F ) = Proj(P (x), P (F )) + Proj((I − P )(x), (I − P )(F ))

= Proj(x, P (F )) + Proj(x, (I − P )(F )).

The proof is now complete.

The following proposition gives, for a subspace F , the form of some Lp-projections on X/F .

Proposition 4.3.13. Let X be a Banach space and let 1 < p < +∞, p 6= 2. Let F be a closed
subspace of X, and let P ∈ Pp(X) be such that P (F ) ⊂ F . Then,

(i) X/F ' P (X)/P (F )⊕p (I − P )(X)/(I − P )(F );
If the metric projection on F is well-defined, then

Rep(X/F ) = Rep(P (X)/P (F ))⊕p Rep((I − P )(X)/(I − P )(F )).

(ii) There exists an Lp-projection P ′ on X/F such that P ′(x) = P (x);

(iii) P ′ is non-trivial if and only if P (F ) 6= P (X) and (I − P )(F ) 6= (I − P )(X);



4.3. Lp-Projections on Quotient Spaces and Subspaces of Quotients 147

(iv) Let PF ∈ Pp(X) be the maximal Lp-projection such that Ran(PF ) ⊂ F . Then X/F is
isometrically isomorphic to (I − PF )(X)/(I − PF )(F ).

(v) Denote φ : P ∈ {Q ∈ Pp(X): Q(F ) ⊂ F} 7→ P ′ ∈ Pp(X/F ). Then φ is a morphism of
commutative Boolean algebras, and Ker(φ) = Pp(X) ◦ PF . Hence, φ(P1) = φ(P2) if and
only if (I − PF )P1 = (I − PF )P2, and φ is injective if and only if PF = 0.
In general, Ran(φ) = φ({Q ∈ Pp(X): QPF = 0, P (F ) ⊂ F}) and φ is injective on this
set.

Proof. (i) As P (F ) ⊂ F , we also have (I − P )(F ) ⊂ F . Thus F can be decomposed as

F = P (F )⊕p (I − P )(F ).

Since the same is true for X, we have X = P (X) ⊕p (I − P )(X). As P (F ) ⊂ P (X) and
(I − P )(F ) ⊂ (I − P )(X), the p-orthogonal decompositions of X and F imply that

X/F = (P (X)⊕p (I − P )(X))/(P (F )⊕p (I − P )(F ))

' P (X)/P (F )⊕p (I − P )(X)/(I − P )(F ).

Suppose now that the metric projection on F is well-defined. Thus, every element of X/F
admits a representative of minimal norm. With item (i) of Lemma 4.3.12, the same is true for
P (F ) and (I − P )(F ). Let x ∈ Rep(X/F ). Item (iii) of Lemma 4.3.12 gives

0 = Proj(x, F ) = Proj(x, P (F )) + Proj(x, (I − P )(F ))

= Proj(P (x), P (F )) + Proj((I − P )(x), (I − P )(F )).

Hence, Proj(P (x), P (F )) = 0 = Proj((I−P )(x), (I−P )(F )). Thus P (x) and (I−P )(x) belong
to Rep(X/F ) according to Lemma 4.3.3. This implies that

P (Rep(X/F )) ⊂ Rep(X/F ) and (I − P )(Rep(X/F )) ⊂ Rep(X/F ).

Therefore, we get Rep(X/F ) = P (Rep(X/F )) + (I − P )(Rep(X/F )). For x ∈ Rep(X/F ),
the previous computation gave Proj(P (x), P (F )) = 0 so P (x) ∈ Rep(P (X)/P (F )). Hence
P (Rep(X/F )) ⊂ Rep(P (X)/P (F )). Conversely, let y ∈ Rep(P (X)/P (F )). We then have
P (y) = y and Proj(y, P (F )) = 0, so Proj(y, F ) = 0. Thus, y ∈ Ran(P ) and y ∈ Rep(X/F ),
so y ∈ P (Rep(X/F )). The same reasoning can be applied to I − P , in order to prove that
(I − P )(Rep(X/F )) = Rep((I − P )(X)/(I − P )(F )). Combining the relationships gives

Rep(X/F ) = P (Rep(X/F ))⊕p (I − P )(Rep(X/F ))

= Rep(P (X)/P (F ))⊕p Rep((I − P )(X)/(I − P )(F )).

- (ii) Let us define P ′ the projection on P (X)/P (F )⊕{0} parallel to {0}⊕(I−P )(X)/(I−P )(F ).
Then P ′ is an Lp-projection on X/F . Now, let x ∈ X. As we have x = P (x) + (I − P )(x) and
F = P (F )⊕ (I − P )(F ), the class x = (x mod(F )) is equal to the class

P (x) mod(P (F )) + (I − P )(x) mod((I − P )(F ))).

Hence, the class P (x) = (P (x) mod(F )) is equal to P (x) mod(P (F ))+0 mod((I−P )(F )) which
is equal to

P ′[P (x) mod(P (F )) + (I − P )(x) mod((I − P )(F ))] = P ′(x),
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by definition of P ′. Therefore, we have P ′(x) = P (x).
- (iii) The Lp-projection P ′ is non-trivial on X/F if and only if P (X)/P (F )⊕{0} = Ran(P ′) 6=
{0} and {0} ⊕ (I − P )(X)/(I − P )(F ) = Ker(P ′) 6= {0}. This is equivalent to P (F ) 6= P (X)
and (I − P )(F ) 6= (I − P )(X).
- (iv) The set Pp,F (X) := {Q ∈ Pp(X): Ran(Q) ⊂ F} contains 0 so it is non-empty. Let
(Qi)i∈I be net converging to Q in the strong operator topology. Thus, for any x ∈ X, the net
(Qi(x))i∈I converges to Q(x). Since Qi(x) lies in F and F is closed, we get Q(x) ∈ F , therefore
Ran(Q) ⊂ F .
As 1 ≤ p < +∞, p 6= 2, the set Pp,F (X) admits a supremum PF that is unique, according
to Theorem 4.1.8. Since this set is closed for the net convergence with the strong operator
topology, we have PF ∈ Pp,F (X). Since PF (X) ⊂ F we have PF (F ) ⊂ PF (X) ⊂ PF (F ), so
PF (F ) = PF (X) and PF (F ) ⊂ F . Hence, item (i) gives

X/F ' PF (X)/PF (X)⊕p (I − PF )(X)/(I − PF )(F ) ' (I − PF )(X)/(I − PF )(F ).

- (v) The set {Q ∈ Pp(X): Q(F ) ⊂ F} is a Boolean sub-algebra of Pp(X). The linearity of the
quotient map x 7→ x and the relationship of item (ii) between P and φ(P ) ensure that φ(I) = I,
and that φ is invariant for the operations Q 7→ I − Q, (Q,R) 7→ QR, (Q,R) 7→ Q + R − QR.
Thus, φ is a morphism of Boolean algebras.
Let Q ∈ Pp(X) be such that Q(F ) ⊂ F . From the construction of item (ii), φ(Q) identifies
as the projection on Q(X)/Q(F ) ⊕ {0} parallel to {0} ⊕ (I − Q)(X)/(I − Q)(F ). As Q and
PF commute and leave F invariant, and as F = PF (X)⊕p (I − PF )(F ), we can decompose the
spaces Q(X) and Q(F ) as follows :

Q(X) = Q(PF (X)⊕p (I − PF )(X)) = QPF (X)⊕p Q(I − PF )(X),

Q(F ) = Q(PF (X)⊕p (I − PF )(F )) = QPF (X)⊕p Q(I − PF )(F ).

Hence, we get

Ran(φ(Q)) ' Q(X)/Q(F ) ' Q((I − PF )(X))/Q((I − PF )(F )).

Therefore, φ(Q) = 0 if and only if Q((I − PF )(X)) = Q((I − PF )(F )). If this condition is true,
then the projection R = Q+ PF −QPF satisfies

Ran(R) = PF (X) +Q(X) = PF (X) +Q((I − PF )(X)) = PF (F ) +Q((I − PF )(F )) ⊂ F.

Thus R lies in Pp,F (X). As we also have PFR = PF , that is PF ≤ R, this implies that R = PF
by maximality of PF in Pp,F (X). The condition PF +Q−QPF = PF is equivalent Q(I−PF ) = 0,
which is in turn equivalent to Q = SPF for some S ∈ Pp(X).
Therefore, Ker(φ) = Pp(X) ◦ PF . Since φ is a morphism of commutative Boolean algebras, we
then have φ(P1) = φ(P2) if and only if (I−PF )P1 = (I−PF )P2. For any Q such that Q(F ) ⊂ F ,
take S = Q(I − PF ). Then, SPF = 0, S(F ) ⊂ F , and S(I − PF ) = Q(I − PF ), so φ(S) = φ(Q).
Thus,

Ran(φ) = φ({Q ∈ Pp(X): QPF = 0, Q(F ) ⊂ F}).

For P1, P2 in this set such that φ(P1) = φ(P2), we have P1(I − PF ) = P2(I − PF ). Since
P1PF = 0 = P2PF , we get P1 = P1(I − PF ) + P1PF = P2, so φ is injective on this set.
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Remark 4.3.14. The maximality of the Lp-projection PF implies that P(I−PF )(F ) = 0. By
considering (I −PF )(X)/(I −PF )(F ), we can reduce the study to a quotient for which the map
φ is injective.
The set {P ∈ Pp(X): PPF = 0, P (F ) ⊂ F} is the Boolean algebra of Lp-projections that have
a ”disjoint support” with PF . Hence, one can wonder if the map φ is bijective. The answer is
false in general, but it turns out to be true when X satisfies Properties 4.2.7 and 4.3.9 and when
quotients of X have unique representatives of minimal norm, as we will see in Counter-example
4.3.15 and Proposition 4.3.16.

Counter-Example 4.3.15 (Non-surjectivity of the morphism φ). Let 1 < p < +∞, p 6= 2.
In `p(C4), take x = (−1, 1, 0, 0), y = (0, 0,−1, 1), f = (1, 1, 1, 1). Denote G = Span(x, y, f)
and F = Span(f) as in Counter-example 4.2.21. A computation shows that Proj(x, F ) = 0,
Proj(y, F ) = 0. As we have x⊥py, we have Proj(ax + by, F ) = 0, according to Corollary 4.3.4.
Hence, G/F is isometrically isomorphic to Span(x, y), which possesses non-trivial Lp-projections.
However, G has trivial Lp-projections as its only elements who have a non-zero p-orthogonal are
scalar multiples of x and y. Therefore the morphism φ of Boolean algebras of Proposition 4.3.13
is not surjective in this case, even though Properties 4.2.8 and 4.3.9 are satisfied for G,F and p.
Furthermore, since f has a maximal support in `p(C4), we can use item (i) of Proposition 4.3.16
to obtain Pp(`p(C4)/F ) = {0, I}. This implies that `p(C4)/F does not satisfy Property 4.2.7 as
Pp(G/F ) is non-trivial, even though `p(C4) satisfies Property 4.2.7 and 4.3.9.

Proposition 4.3.16. Let 1 < p < +∞, p 6= 2. Let X be a Banach space satisfying Prop-
erty 4.2.7. Let F be a closed subspace of X such that every element of X/F admits a unique
representative of minimal norm. Suppose that Property 4.3.9 is satisfied for X,F and p. Denote

φ : P ∈ {Q ∈ Pp(X): Q(F ) ⊂ F} 7→ φ(P ) ∈ Pp(X/F )

the morphism of commutative Boolean algebras from Proposition 4.3.13, with φ(P ) satisfying
φ(P )(x) = P (x) for every x ∈ X. Then,

(i) The morphism φ is surjective, every Lp-projection of X/F can be associated to an Lp-
projection P on X such that P (F ) ⊂ F ;

(ii) The Boolean algebra Pp(X/F ) is isomorphic to {P ∈ Pp(X): PPF = 0, P (F ) ⊂ F};

(iii) Denote PF the maximal Lp-projection of X such that Ran(PF ) ⊂ F . The space X/F
admits non-trivial Lp-projections if and only if there exist Lp-projections P such that PF <
P < I and P (F ) ⊂ F .

Proof. (i) Let Q ∈ Pp(X/F ). Then X/F = Ran(Q) ⊕p Ker(Q). Denote Rep : X/F → X the
map that sends f to its representative of minimal norm. As Property 4.3.9 is satisfied for X,F
and p, we have RepF (Ran(Q))⊥pRep(Ker(Q)) and Corollary 4.3.4 implies that Rep(X/F ) =
Rep(Ran(Q)) ⊕p Rep(Ker(Q)). Property 4.2.7 and Proposition 4.2.10 imply the existence of
P ∈ Pp(X) such that

P (Rep(Ran(Q))) = Rep(Ran(Q)) and P (Rep(Ker(Q))) = {0}.

We will show that P (F ) ⊂ F and that φ(P ) = Q.
Let x ∈ P (F ). We can write x = g1 +g2 +f , with g1 ∈ Rep(Ran(Q)), g2 ∈ Rep(Ker(Q)), f ∈ F .
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Thus, P (x) = x = g1 + P (f), so g1 = x− P (f) ∈ P (F ). Since P (g1) = g1 and Proj(g1, F ) = 0
we have Proj(g1, P (F )) = 0 according to Lemma 4.3.3. This implies that g1 = 0. Similarly, we
have (I−P )(x) = 0 = g2 +(I−P )(f), so g2 = −(I−P )(f) ∈ (I−P )(F ). Since (I−P )(g2) = g2

and Proj(g2, F ) = 0, we have Proj(g2, (I − P )(F )) = 0. This implies that g2 = 0. Therefore,
x = f ∈ F , hence P (F ) ⊂ F and φ(P ) is well defined.
Now, let x ∈ X. Property 4.3.9 and Corollary 4.3.4 imply that

(x− Proj(x, F )) = Rep(x) = Rep(Q(x) + (I −Q)(x)) = Rep(Q(x)) + Rep((I −Q)(x)).

Therefore P (x−Proj(x, F )) = Rep(Q(x)). Since we have P (Proj(x, F )) ∈ P (F ) ⊂ F , we obtain

Q(x) = Rep(Q(x)) = P (x)− P (Proj(x, F )) = P (x).

As this is true for every x ∈ X, we get φ(P ) = Q, so the morphism φ is surjective.
- (ii) Since φ is surjective, we can use item (v) of Proposition 4.3.13 to see that φ is an isomor-
phism of Boolean algebras between {P ∈ Pp(X): PPF = 0, P (F ) ⊂ F} and Pp(X/F ).
- (iii) A non-trivial Lp-projection on X/F identifies with a non-trivial element

Q ∈ {P ∈ Pp(X): PPF = 0, P (F ) ⊂ F}.

By taking P = Q+PF−QPF = Q+PF , we get PF < P < I and P (F ) ⊂ Q(F )+PF (F ) ⊂ F since
Q is non-trivial and Q(F ) ⊂ F . The converse is obtained by noticing that Q = P (I − PF ).

Example 4.3.17. Let 1 < p < +∞, p 6= 2. LetX be a Banach space. Let F be a closed subspace
of X such that the metric projection on F is well-defined. Let P ∈ Pp(X) be such that P (F ) 6=
P (X) and (I−P )(F ) 6= (I−P )(X). Take x ∈ Ran(P )\P (F ). We then have x−Proj(x, P (F )) ∈
Ran(P ) and Proj(x−Proj(x, P (F )), P (F )) = 0, so Proj(x−Proj(x, P (F )), F ) = 0 according to
Lemma 4.3.3. Thus, Rep(X/F )∩Ran(P ) is not reduced to {0}. Similarly, Rep(X/F )∩Ker(P )
is also not reduced to {0}.
Since for any y ∈ Rep(X/F )∩Ran(P ) and any z ∈ Rep(X/F )∩Ker(P ) we have y⊥pz according
to Corollary 4.3.4, X/F possesses elements that have non-trivial p-orthogonal sets, which also
means that certain subspaces of X/F admit non-trivial Lp-projections.

4.3.B Lp-projections on subspaces of quotients

As we went over Lp-projections on quotients of a Banach space X, we will broaden our field
of view by looking at Lp-projections on subspaces of quotients of X. In the case of Lp(Ω), a
quotient Lp(Ω)/F has an important structure since this quotient and F can recreate the Banach
lattice Lp(Ω). When looking at subspaces of quotients of Lp(Ω), we gain way more variety since
we are only looking at a piece of the whole structure. The following Proposition 4.3.18 gives
a characterization of some subspaces F,G such that G/F possesses non-trivial Lp-projections,
whereas Proposition 4.3.19 gives a converse result when X satisfies Properties 4.2.7 and 4.3.9
and when quotients of X have unique representatives of minimal norm.

Proposition 4.3.18. Let 1 < p < +∞, p 6= 2. Let X be a Banach space. Let F be a closed sub-
space of X. Let P ∈ Pp(X). Suppose that every element of the quotients X/F ,X/P (F ),X/(I −
P )(F ) admits a unique representative of minimal norm. Let G1, G2 be closed subspaces of X,
such that

(F ∩ P (F )) ⊂ G1 ⊂ Rep(P (X)/P (F )) + (F ∩ P (F )),

(F ∩ (I − P )(F )) ⊂ G2 ⊂ Rep((I − P )(X)/(I − P )(F )) + (F ∩ (I − P )(F )).
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Take G = F +G1 +G2 and let Q ∈ Pp(G/F ). Then,

(i) G/F possesses an Lp-projection Q such that P (Rep(Ran(Q))) = Ran(Q)
and P (Rep(Ker(Q))) = {0}.

(ii) Q is non-trivial if and only if G1 6= (F ∩ P (F )) and G2 6= (F ∩ (I − P )(F )).

Proof. (i) We remark that G1 ⊂ Ran(P ) and G2 ⊂ Ker(P ). Let g1 ∈ G1. We have g1 =
x + f1 with x ∈ Rep(P (X)/P (F )) and f1 ∈ (F ∩ P (F )) ⊂ G1. Thus x = g1 − f1 ∈ G1, and
Proj(x, P (F )) = 0. Similarly, for g2 ∈ G2, we have g2 = y+f2 with f2 ∈ F ∩ (I−P )(F ), y ∈ G2

and Proj(y, (I − P )(F )) = 0. For g = f + g1 + g2 with gi ∈ Gi we have g = g1 + g2. With the
previous notations we have g1−x = f1 ∈ F ∩P (F ), so g1 = x, and g2−y = f2 ∈ F ∩ (I−P )(F ),
so g2 = y. Since we have P (x1) = x1 and P (x2) = 0, we can the apply Corollary 4.3.4 to obtain
g1 = x1⊥px2 = g2. Therefore, if we denote π : G→ G/F the canonical projection, then

G/F = π(G1 +G2) = π(G1)⊕p π(G2),

so G/F possesses an Lp-projection Q such that Q(g1 + g2) = g1. We also get from 4.3.1 that
x = Rep(g1) and y = Rep(g2), so Rep(Ran(Q)) ⊂ G1 and Rep(Ker(Q)) ⊂ G2, which gives the
desired results.
- (ii) We have Ran(Q) 6= {0} and Ker(Q) 6= {0} if and only if Rep(Ran(Q)),Rep(Ker(Q)) 6= {0}.
If this is true then the previous argument in the proof of item (ii) implies that G1 6= (F ∩P (F ))
and G2 6= (F ∩ (I − P )(F )).
Conversely, for g1 ∈ G1 we can see from the proof of item (i) that Proj(g1, P (F )) ∈ F ∩ P (F ),
so Proj(g1, F ) = Proj(g1, P (F )). If g1 /∈ (F ∩ P (F )) then Proj(g1, F ) 6= g1 and Rep(g1) 6= 0.
Similarly, for g2 ∈ G2 \ (F ∩ (I − P )(F )) the same reasoning gives us Rep(g2) 6= 0. Therefore
Rep(Ran(Q)) and Rep(Ker(Q)) are non-trivial, which concludes the proof.

Proposition 4.3.19 (Characterization of Lp-projections on subspaces of quotients). Let 1 <
p < +∞, p 6= 2. Let X be a Banach space. Let F ⊂ G be closed subspaces of X. Suppose that
for every subspace Y , every element of X/Y admits a unique representative of minimal norm.
Suppose that X satisfies Property 4.2.7 for p and Property 4.3.9 for F and p. Let Q ∈ Pp(G/F ).
We then have Rep(G/F ) = Rep(Ran(Q))⊕p Rep(Ker(Q)). Let P ∈ Pp(X) be an Lp-projection
such that Rep(Ran(Q)) ⊂ Ran(P ) and Rep(Ker(Q)) ⊂ Ker(P ). Then

(i) For all g1, g2 ∈ P (Rep(G/F )), Proj(g1 + g2, F ) lies in (F ∩ P (F )). A similar result holds
for I − P .

(ii) G ∩ P (G) = Rep(Ran(Q)) + (F ∩ P (F )),
Rep(Ran(Q)) = Rep(P (G)/P (F )) = Rep((G ∩ P (G))/(F ∩ P (F ))).
A similar result holds for I −Q and I − P .

(iii) G = F + (G ∩ P (G)) + (G ∩ (I − P )(G)), with

(F ∩ P (F )) ⊂ (G ∩ P (G)) ⊂ Rep(P (X)/P (F )) + (F ∩ P (F ))

(F ∩ (I − P )(F )) ⊂ (G ∩ (I − P )(G)) ⊂ Rep((I − P )(X)/(I − P )(F ))

+ (F ∩ (I − P )(F )).

Thus G has the same relationship with F and P as in Proposition 4.3.18.
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(iv) G/F ' P (G)/P (F )⊕p (I − P )(G)/(I − P )(F ),
G/F ' (G ∩ P (G))/(F ∩ P (F ))⊕p (G ∩ (I − P )(G))/(F ∩ (I − P )(F )).

Proof. (i) Let g1, g2 ∈ P (Rep(G/F )). Since P (Rep(G/F )) = Rep(Ran(Q)), we have g1 + g2 ∈
Ran(Q), so

Rep(g1 + g2) = (g1 + g2)− Proj(g1 + g2, F ) ∈ P (Rep(G/F )).

As g1, g2 ∈ Ran(P ) we have Proj(g1 + g2, F ) ∈ Ran(P ). Since Proj(g1 + g2, F ) ∈ F , we
end up with Proj(g1 + g2, F ) ∈ (F ∩ P (F )). (I − Q) is an Lp-projection on G/F and as
(I −P )(Rep(G/F )) = Rep(Ran(I −Q)), we can now mimick the proof with I −P instead of P
to get a similar result for I − P .
- (ii) Let g ∈ Rep(Ran(Q)), f ∈ F ∩ P (F ). Since F ⊂ P (F ), we have f ∈ G ∩ P (G). We have
g ∈ G and g ∈ Ran(P ), so g ∈ G ∩ P (G). Therefore, g + f ∈ G ∩ P (G).
Conversely, let x ∈ G ∩ P (G). Since G = Rep(G/F ) + F , we have x = (g1 + g2) + f , with
g1 ∈ Rep(Ran(Q)),g2 ∈ Rep(Ker(Q)), f ∈ F . This implies that

0 = (I − P )(x) = g2 + (I − P )(f).

As Proj(g2, F ) = 0, Lemma 4.3.3 also gives Proj(g2, (I −P )(F )) = 0. Since g2 = −(I −P )(f) ∈
(I − P )(F ) we must have g2 = 0 = (I − Q)(f). Therefore, f = P (f) and x = g1 + f , so
x ∈ Rep(Ran(Q)) + (F ∩ P (F )).
Let g ∈ Rep(Ran(Q)). As F ∩ P (F ) ⊂ F , the condition Proj(g, F ) = 0 implies Proj(g, F ∩
P (F )) = 0. Since g ∈ G ∩ P (G), we have g ∈ Rep((G ∩ P (G))/(F ∩ P (F ))). As we also have
g ∈ P (G) and Proj(g, P (F )) = 0, we have g ∈ Rep(P (G)/P (F )).
Conversely, let h ∈ Rep((G∩P (G))/(F ∩P (F ))). Since h ∈ G∩P (G), we can write h = g′+ f ′,
g′ ∈ Rep(Ran(Q)), f ′ ∈ (F ∩ P (F )). This implies that

0 = Proj(h, F ∩ P (F )) = Proj(g′ + f ′, F ∩ P (F )) = Proj(g′, F ∩ P (F )) + f ′ = f ′.

Thus h = g′ ∈ Rep(Ran(Q)). Let k ∈ Rep(P (G)/P (F )). Since G = Rep(G/F ) + F , we
get P (G) = P (Rep(G/F )) + P (F ) = Rep(Ran(Q)) + P (F ). Thus, k = g” + f” with g” ∈
Rep(Ran(Q)), f” ∈ P (F ). This implies that

0 = Proj(k, P (F )) = Proj(g” + f”, P (F )) = Proj(g”, P (F )) + f” = f”.

Therefore k = g” ∈ Rep(Ran(Q)). We can then mimick the proof of this item with I − Q and
I − P instead of Q and P to get similar results for I − P .
- (iii) By using item (ii) we have

G =F + Rep(G/F ) = (F + (F ∩ P (F )) + (F ∩ (I − P )(F )) + (Rep(Ran(Q)) + Rep(Ker(Q)))

=F + (G ∩ P (G)) + (G ∩ (I − P )(G)).

Since this item also implies

Rep(Ran(Q)) ⊂ Rep(P (X)/P (F )),

Rep(Ker(Q)) =Rep(Ran(I −Q)) ⊂ Rep((I − P )(X)/(I − P )(F ),

we can obtain the desired inclusions for (G ∩ P (G)) and (G ∩ (I − P )(G)).
- (iv) Denote

G1 = (P (G)⊕p (I − P )(G)), F1 = (P (F )⊕p (I − P )(F )),

G2 = ((G ∩ P (G))⊕p (G ∩ (I − P )(G))), F2 = ((F ∩ P (F ))⊕p (F ∩ (I − P )(F ))).
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Since P (F1) ⊂ F1 and P (G1) ⊂ G1, we can apply item (i) of Proposition 4.3.13 to get

Rep(G1/F1) = Rep(P (G1)/P (F1)) + Rep((I − P )(G1)/(I − P )(F1)),

Rep(G2/F2) = Rep(P (G2)/P (F2)) + Rep((I − P )(G2)/(I − P )(F2)).

The results of item (ii) then imply that Rep(G/F ) = Rep(G1/F1) = Rep(G2/F2). Denote
π1 : X → X/F1 and π2 : X → X/F2 the quotient maps to X/F1 and X/F2. We define the maps
ψ1 := π1 ◦RepF and ψ2 := π2 ◦RepF . As RepF : G/F → Rep(G/F ), π1 : Rep(G1/F1)→ G1/F1

and π2 : Rep(G2/F2) → G2/F2 are bijections, the previous result implies that the maps ψ1 :
G/F → G1/F1 and ψ2 : G/F → G2/F2 are bijections. We can also see that for any g ∈ G/F
we have

‖g‖ = ‖RepF (g)‖ = ‖π1(RepF (g))‖ = ‖π2(RepF (g))‖,

so ψ1,ψ2 are isometries. We will show that they are linear maps in order to obtain isometric
isomorphisms between the spaces. As the maps RepF and π1 are homogeneous, ψ1 is homo-
geneous. Let g1, g2 ∈ G/F . We saw in the proof item (i) that for g1, g2 ∈ Rep(Ran(Q)) we
have

Rep(g1 + g2)− (Rep(g1) + Rep(g2)) = Rep(g1 + g2)− (g1 + g2)

= Proj(g1 + g2, F ) ∈ F ∩ P (F ).

Similarly, for h1, h2 ∈ Rep(Ker(Q)), we have

Rep(h1 + h2)− (Rep(h1) + Rep(h2)) = Rep(h1 + h2)− (h1 + h2)

= Proj(h1 + h2, F ) ∈ F ∩ (I − P )(F ).

Since Rep(G/F ) = Rep(Ran(Q))⊕ Rep(Ker(Q)), for any a, b ∈ Rep(G/F ) we then have

Rep(a+ b)− (Rep(a) + Rep(b)) = Rep(a+ b)− (a+ b) ∈ (F ∩ P (F )) + (F ∩ (I − P )(F )).

Therefore, a+ b = Rep(a+ b) mod(F1) and a+ b = Rep(a+ b) mod(F2), so

ψ1(a) + ψ1(b) = ψ1(a+ b) ψ2(a) + ψ2(b) = ψ2(a+ b).

This proves that ψ1, ψ2 are linear, bijective, and isometric, which concludes the proof.

4.4 Generalizations for Lp(Ω, X) and Lq-projections in Lp-spaces

4.4.A Generalizations for Lp(Ω, X)

In sections 4.2 and 4.3 we obtained several results for some classes of Banach spaces sharing
common properties with Lp-spaces, mainly Properties 4.2.7 and 4.3.9. In this section we exhibit
conditions on a Banach space X that allow us to generalize previous results to the spaces
Lp(Ω, X).

Proposition 4.4.1. Let 1 ≤ p < +∞, p 6= 2. Let X be a Banach space that satisfies the
conditions

(i) ‖f + g‖pp + ‖f − g‖pp ≤ 2(‖f‖pp + ‖g‖pp), ∀f, g ∈ X if 1 ≤ p < 2
and there is equality if and only if f = 0 or g = 0;
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(ii) ‖f + g‖pp + ‖f − g‖pp ≥ 2(‖f‖pp + ‖g‖pp), ∀f, g ∈ X if 2 < p
and there is equality if and only if f = 0 or g = 0.

Then all the results regarding Lp-projections on subspaces or quotients of Lp(Ω) are true for
Lp(Ω, X).

Proof. The space X satisfies the same Clarkson inequality and the same equality case as the
scalar field C. We can thus prove a version of Lemma 4.1.12 for Lp(X) by mimicking on with an
analogue proof as the classical one [Roy88, Ch15-7,Lem 22,p.416] while changing C by X and
|.| by ‖ · ‖X .
Then, all proofs regarding Lp-projections on subspaces or quotients of Lp(Ω) in this chapter
or in [BDE+77], [Li79] can be mimicked for Lp(Ω, X) as it possesses a similar Banach lattice
structure and the same Clarkson inequalities.

Remark 4.4.2. Let 1 ≤ p < +∞, p 6= 2. Let X be a Banach space that is non-zero.

(i) Recall that X is said to be a strictly convex Banach space if it satisfies the property

‖x+ y‖ = ‖x‖+ ‖y‖ ⇒ x = αy or y = αx for some α ≥ 0.

If p = 1 and X is strictly convex, then the condition of Proposition 4.4.1 is satisfied, as a
short computation shows.

(ii) If X is a subspace, quotient, or subspace of quotient of Lp(Ω), then X satisfies Clarkson
inequalities from either Lemma 4.1.12 or Proposition 4.3.10. Both lemmas also say that

x⊥py ⇔ ‖x+ y‖p + ‖x− y‖p = 2(‖x‖p + ‖y‖p).

Thus, X satisfies the equality condition of Proposition 4.4.1 if and only if the p-ortho-
gonality relationship is trivial on X, which is in turn equivalent to X = {0} or α(X) = 2,
according to Corollary 4.2.35.

(iii) It was proved in [KT97] that a Banach space satisfies Clarkson’s inequalities if and only
if its “type or cotype constant” is 1. We refer to [KT97] for more information.

4.4.B Lq-projections in Lp-spaces

When a Banach space X possesses non-trivial Lp-projections, it cannot have non-trivial Lq-
projections. However, when X is a subspace or quotient of an Lp-space that has trivial Lp-
projections, it is not known if X can possess non-trivial Lq-projections. The following lemma
gives a partial answer to this question.

Lemma 4.4.3. Let 1 ≤ p < +∞. Let (Ω,F , µ) be a measure space. Let X be a subspace,
quotient, or subspace of a quotient of Lp(Ω). Suppose that X possesses a non-trivial Lq-projection
P , for some 1 ≤ q < +∞.

(i) If p = 2 then q = 2;

(ii) If all Hermitian projections on X have the form MχA, then q = p;

(iii) If 1 ≤ p < 2, then p ≤ q;
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(iv) If 2 < p, then 1 < q ≤ p.

Proof.
- (i) Suppose that p = 2. Since a Lq-projection is of norm 1, P is a norm 1 projection on a
Hilbert space, so P is an orthogonal projection and q = 2.
- (ii) Since a Lq-projection is a Hermitian projection, if X is a subspace of Lp(Ω) where all
Hermitian projections have the form MχA , then P = MχB for some B ⊂ Ω and thus q = p.
- (iii) If p 6= 1, we cannot have q = 1 as the strict convexity of the Lp norm on X implies that

‖x+ y‖ = ‖x‖+ ‖y‖ ⇒ x = αy or y = αx, for some α ≥ 0

This property implies that a L1-projection on X must be trivial.
- (iv) Since P is non-trivial, let x ∈ Ran(P ), y ∈ Ker(P ), with x, y 6= 0. We have ‖x ± y‖q =
‖x‖q + ‖y‖q. Denote

a = (
‖y‖
‖x‖

)p > 0.

Thus,

‖x± y‖p = (‖x‖q + ‖y‖q)p/q = ‖x‖p(1 + (
‖y‖
‖x‖

)q)p/q = ‖x‖p(1 + aq/p)p/q,

and ‖x‖p + ‖y‖p = ‖x‖p(1 + a).
If 1 ≤ p < 2, we will have

(1 + aq/p)p/q ≤ (1 + a) ⇒ 1 + aq/p ≤ (1 + a)q/p.

If 2 < p, we will have

(1 + aq/p)p/q ≥ (1 + a) ⇒ 1 + aq/p ≥ (1 + a)q/p.

Let us study the map h : r ∈ R+ 7→ (1 + a)r − (1 + ar). We can see that h(0) = −1, h(1) = 0, h
is continuous, limr→+∞(h(r)) = +∞, and for r > 0,

h′(r) = log(1 + a).(1 + a)r − log(a)ar.

Since we have log(a) < log(1 + a) and 0 < ar < (1 + a)r, then h′(r) > 0 for all r > 0, so h is
strictly increasing on R+. Thus, h(r) ≤ 0 on [0, 1] and h(r) ≥ 0 on [1,+∞[. Hence, if 1 ≤ p < 2,
we must have h(q/p) ≥ 0, so p ≤ q, and if 2 < p we must have h(q/p) ≤ 0, so q ≤ p.

We do not have for now a better result on the values of q, as we would think that q = p is the
only possible choice. The argument in the proof also tells us that for all x ∈ Ran(P ),y ∈ Ker(P )
with x, y 6= 0, we have

‖x+ y‖p < ‖x‖p + ‖y‖p if 1 ≤ p < 2,

and that
‖x+ y‖p > ‖x‖p + ‖y‖p if p > 2.

This also means that we are always in the strict case of the Clarkson inequalities for x ∈ Ran(P ),
y ∈ Ker(P ) unless x = 0 or y = 0. This fact could be exploited to bring out an example or to
rule out the cases q 6= p. This thesis ends here. I sincerely thank you, the reader, for taking

time to read this work.
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