
PyTorch implementation of Carlini & Wagner’s
adversarial attack in the space of audio

Student : LEMESLE Yoann
École Normale Supérieure, Rennes

yoann.lemesle@ens-rennes.fr

Supervisor : AMSALEG Laurent
LINKMEDIA team, IRISA, Rennes

Laurent.Amsaleg@irisa.fr

I. INTRODUCTION

The last decade has seen impressive leaps in Machine
Learning research thanks to the rise of neural-network-based
algorithms. A neural network (NN) is a weighted, directed
and acyclical graph whose weights θ can be ajusted to learn
any function f(x) mapping between an input space (images,
audios...) and output space (classifications, decisions...). To
learn such a mapping is to find a particular set of weights
θ∗ that makes the network perform as expected (recognizing
faces, playing a videogame...). In the typical case of super-
vised learning, θ∗ is found by minimizing a loss function
l(f(X), Y) that outputs how far the network’s predictions
f(X) are to the expected outputs Y on an (X,Y) training set.

Neural-based techniques are able to achieve incredible re-
sults on tasks like speech transcription or image recognition,
leading to an increasing number of real world applications
such as Alexa or self driving cars. However, such applications
raise security concerns as it has been discovered that neural
networks are vulnerable to adversarial examples, inputs that
look normal to humans while being strongly misclassified.

Figure 1 : Illustration of the FGSM adversarial attack [2].

When discovered by [1], adversarial examples were first
believed to lie in small ”pockets” of the input space. However,
[2] showed it was possible to make images adversarial by
differenciating the loss function with respect to the pixels
values then taking a single (small) step towards the direction
of the gradient. This attack, known as the Fast Gradient Sign
Method (FGSM) shows how adversarial examples span across
huge subspaces instead of ”pockets” and supports the authors
Linearity Hypothesis. This hypothesis explains the existence
of those broad adversarial subspaces by the locally linear
behavior of neural networks : when adding tiny perturbations
over an entire input, its high dimensionality allows those
small changes to add up and have a significant impact on the
neurons activations. Since then, other concurrent hypothesis

have been explored but no consensus on the exact explanation
of adversarial examples exists.

The Linearity Hypothesis, as well as attack and defense
methods in general, have been mostly explored in the space of
images. However, understanding the adversarial phenomenon
requires investigations in other domains such as audio classi-
fication. This is what motivates the goals of this internship
which were to implement an important audio adversarial
attack in PyTorch as well as investigating the specificities of
adversarial attacks in the audio space.

II. ADVERSARIAL ATTACKS ON AUDIO INPUTS

Let x be a benign input (correctly classified), an adversar-
ial attack is the process of computing a perturbation δ such
that x′ = x+ δ is misclassified by a neural network.

As research on adversarial attacks were initially focused
on images, recent works have been made in the audio space.
Early works were focusing on synthesizing unrecognizable
audio that contains hidden and inaudible voice commands
[4]–[6] as other works focused on untargeted attacks by
computing a perturbation over a benign audio input [7], [8].
Later, [9] were the first to perform a targeted (meaning that
the adversarial audio is classified as a target sentence) and
nearly imperceptible adversarial attack in the space of audio
by optimizing a minimally perceptible perturbation according
to the same measurement metrics as used for images (lp norms,
specifically the l∞ norm that measures the maximum amount
any pixel has been changed).

The attack described in [9] acts as a baseline for most of the
following works which focused on fixing several issues : (1)
this attack is very slow (several hours), (2) the perturbations
is still perceptible and (3) the resulting adversarial audios
are not robust to the distortions implied by being played
over-the-air. [11] adressed (3) by making use of Expectation
Over Transforms (EOT) [12], meaning that transformations are
applied to the perturbation during the optimization process
to mimic the distortions of room-environments. Later, [10]
adressed (2) by making use of the psychoacoustic principles
in order to add perturbations to parts of the audio that are
inaudible to humans. These two techniques were combined
by [13] to make an imperceptible and robust targeted attack.
Complementary to EOT, [14] proposed to increase the ro-
bustness of adversarial examples by reducing the number of
perturbed points on the original audios (Sampling Perturbation

Technology). They also adressed (1) by adjusting the weights
of the perturbation in order to focus optimization work on
”key points”, parts of the original audio that have the most
effect on the neural network’s outputs (Weighted Perturbation
Technology).

All these optimization-based attacks only work in a white-
box setting (meaning that a full access to the neural network’s
informations is needed) as they require computing gradients
through the model. In concrete scenarios this constraint is
unrealistic as an attacker might have no knowledge about the
model, making black-box attacks necessary. To perform a fully
black-box and targeted attack [16] used a Genetic Algorithm
that creates populations of mutated audios and selects the best
one to craft the next generations, making the audios evolve
until a good adversarial example can be found.

Despite a lot of progress, optimization and genetic based
attacks still require a full observation of the entire input
before generating the perturbation, making them impractical
in concrete scenarios where real time attacks would be more
useful. The problem was adressed by [17] using a Generative
Model, which means using a neural network to directly gener-
ate adversarial examples by only taking the target transcription
as an input.

III. CARLINI & WAGNER’S ATTACK

As mentioned in the previous section, [9] were the first
to demonstrate the feasibility of targeted and nearly imper-
ceptible adversarial attack on audio inputs. This white-box,
optimization-based attack is applied to Mozilla’s implementa-
tion of DeepSpeech [18], a speech-to-text system that uses a
Recurrent Neural Network.

A. Recurrent Neural Networks and Connectionist Temporal
Classification

Let xi be an element/frame from a sequence and si an
internal state, a Recurrent Neural Network (RNN) is
a function f(si, xi) that outputs (si+1, yi) where yi is an
element/frame classification and si+1 is the new interal state
used for the classification of the next element. This way, an
RNN is able to process an input sequence of any length by
using an internal state (memory) to take into account temporal
correlation between the elements.

Figure 2 : Illustration of a Recurrent Neural Network.

When the task is to map an input sequence to an output
sequence of unknown length (like transcription of speech from
an audio clip), an RNN can use Connectionist Temporal
Classification (CTC). Let π be a sequence/alignment of
tokens (a-z, space and the special token ε) and p a sentence.
As defined in Carlini & Wagner’s article [9] : We say that a

sequence π reduces to p if starting with π and making the
following two operations (in order) yields p :

• Remove all sequentially duplicated tokens.
• Remove all ε tokens.

For example, the alignement HHHεEEεLεεLεOO reduces to
the sentence HELLO.

When given a raw audio input, DeepSpeech will pre-process
it into an input sequence of frame x given to an RNN
that outputs a sequence of probability distribution y. Each
probability distribution yi gives the probability of each token
(a-z, space and ε) for the frame xi. If an alignment π has the
same lenght as a sequence of probability distributions y, the
probability of π under y is the product of the likelihood of
each of its elements :

Pr(π|y) =
∏
i

yiπi

The probability of a sentence p under y is the sum of the
probability of each π that reduces to p :

Pr(p|y) =
∑

π∈Π(p,y)

Pr(π|y)

The loss function used to train an RNN under CTC is the
negative log likelihood of the target sentence :

CTCLoss(f(x),p) = −logPr(p|f(x))

To decode a transcription sentence from a sequence of
probability distribution y is to find the sentence p that has the
maximum probability under y. Because of the exponentially-
increasing complexity of this task, decoding is usually done
in one of two ways :

• Greedy Decoding : Takes the tokens corresponding to
the maximum probability of each distribution to form an
alignment π that is reduced to the final sentence p.

• Beam Search Decoding : Simultaneously evaluates the
probability of several alignments in order to find the most
probable sentence [19].

B. Initial Attack Formulation

Let x be an audio input, the first objective of this adversarial
attack is to find a perturbation δ such that x+δ is classified as
any desired transcription p by DeepSpeech. This means find-
ing a perturbation δ that minimizes CTCLoss(f(x + δ),p).
The second objective if for the perturbation to be as less
perceptible as possible which means that we also need to
minimize a measurment of the distortion’s loudness. The
distortion is measured in Decibels (dB) using the l∞ metrics,
a norm that measures the maximum amount any value has
been changed in a vector. Using this metric, the loudness of
an audio is :

dB(x) = max
i

20 · log10(xi)

While the loudness of the distortion relative to the original
audio (the smaller the better) is :

dBx(δ) = dB(δ)− dB(x)

Let t be the target sentence, the initial formulation of the
optimization problem could intuitively be formulated as so :

minimize
δ

dBx(δ) + c · CTCLoss(x+ δ, t)

Where c express the relative importance of being adversarial
versus being imperceptible. However, the article describes that
when using a l∞ distortion metric, this optimization process
will often oscillate around a solution without converging [20].
To adress this the actual initial formulation is :

minimize
δ

|δ|22 + c · CTCLoss(x+ δ, t)

such that dBx(θ) ≤ τ

Where τ is an initially large loudness l∞ threshold that
is decreased everytime a solution is found before resuming
minimization. Note that the l2 loundess is also minimized.

C. Improved Loss Function

The authors describe the problem of using CTC Loss as so :
In order to minimize CTC Loss, an optimizer will make every
aspect of the transcribed phrase more similar to the target
phrase. That is, if the target phrase is ’ABCD’ and we are
already decoding to ’ABCX’, minimizing CTC loss will still
cause the ’A’ to be more ’A’-like, despite the fact that the
only important change we require is for the ’X’ to be turned
into a ’D’.

This led to the definition of a loss function that outputs the
loss of a token wrt its probability distribution in such a way
that the loss is zero if it has the maximum likelihood :

TokenLoss(y, c) = max
yi∈y

yi − yc

We can now define an alignment loss function that won’t be
optimized on parts that are already correct :

ImprovedLoss(f(x), π) =
∑
i

TokenLoss(f(x)i, πi))

As some characters are more difficult to target than others,
it would be better to place a different emphasis on each by
assigning a different weight ci to each token πi. We now have
the improved formulation :

minimize |δ|22 +
∑
i

ci · TokenLoss(f(x)i, πi))

such that dBx(θ) ≤ τ

However, this forces the attack to target an alignment π
instead of a sentence which means that we first have to find
such a sequence that reduces to the desired transcription.
As finding the best possible sequence is too computationally
expensive, the authors describe a two-step attack :

1) Find an adversarial example with the initial formulation
and extract the corresponding sequence π with the
Greedy Decoder.

2) Use this sequence π as a target for the improved
formulation, using the initial adversarial example as a
starting point.

Finally, it’s possible to use a modified version of the
improved loss function to efficiently target silence by targeting
an arbitrary sequence of space characters (a sequence of space-
or-blank tokens) :

SilenceLoss(x) =
∑
i

max

(
max

t6∈{””,ε}
f(x)it′ − max

t∈{””,ε}
f(x)it, 0

)
D. Error in the article

In the article, the token loss function is defined as so :

TokenLoss(y, c) = max

(
yc −max

c′ 6=c
yc′ , 0

)
The problem is that this formulation actually does the

opposite of the desired behavior :
• When yc is not the most probable item, yc − max yc′

is negative, therefore the loss is zero when it should be
positive

• When yc is the most probable item, yc − max yc′ is
positive, therefore the loss is positive when it should be
zero.

A note will be sent to the authors to notify them of the error.

IV. PYTORCH IMPLEMENTATION

The main objective of the internship was to implement the
attack (initialy implementend in TensorFlow) in PyTorch.

A. PyTorch vs TensorFlow

TensorFlow (Google) and Pytorch (Facebook) are two
open-source Machine Learning frameworks optimized for
neural-based algorithm implementation. The first main differ-
ence between the two is that TensorFlow only supports static
computational graphs as PyTorch supports dynamic graph.
This means that in TensorFlow you first have to define an
entire computation graph before running it, as PyTorch allows
to modify it at any time. The second difference is the learning
curve : Pytorch is way more intuitive than TensorFlow, where
tasks will often requires many more lines of difficult-to-read
code. This results in a PyTorch implementation that actually
do more with almost half the number of lines required in the
TensorFlow implementation.

B. Implementation details

The attack has been implementend in PyTorch 1.4.0 using
the PyTorch implementation of DeepSpeech2 by [22]. In
opposition with Carlini & Wagner’s implementation, this one
has the following characteristics :
• Fully functional attacks on batch of audios where the

original implementation requires individual fine-tuning of
adversarial examples after the attack.

• Implementation of the silence loss function and im-
proved attack formulation, both of which were not
implemented in the original available implementation.

However, the following properties were not implemented :
• The ci weights : no details could be found about how

to determine their value and the improved loss function
is not implemented in their code.

• Robustness to MP3 compression.

V. RESULTS

A. Methodology

In the original article, the attack has been evaluated by the
authors by targeting 10 different incorrect transcriptions on
100 different audio clips, using a learning rate of 10 and 5000
iterations. The audio clips are the first 100 test instances of
the Mozilla Common Voice dataset, a multilingual and open
source vocal clips dataset. Those instances can directly be
found using a link provided by the authors [23].

The PyTorch implementation has been evaluated by target-
ing 10 different incorrect transcriptions on the first 20 test
instances of the Mozilla Common Voice dataset, using the
same learning rate of 10 and 5000 iterations. Is is important
to note that, as the authors did not precise which target tran-
criptions lengths they used, it is hard to interpret the difference
in the means of distortions between this implementation and
the original. The reasons behind such a long execution time
are explored in the next section. The results were generated
on IGRIDA, IRISA’s computing grid made of 29 computing
nodes (576 cores), 9 GPUs (Nvidia) as well as a shared space
of 33 TB for temporarily storing inputs/outputs. For long
tasks, it is possible to schedule the launch of ”jobs” that will
run automatically without requiring to be connected to the
platform. It also supports the loading of countless software
environments and modules which is especially useful when
using a framework that requires specific versions of librairies
/ drivers.

B. Carlini & Wagner’s Results

The main results of the original implementation are the
following :

Initial Formulation : 100% success rate, mean perturbation
of -31 dB, 95% interval ranged from -15 dB to -45 dB. A
longer target phrase causes a bigger distortion with approxi-
mately +0.1 dB/characters. Conversely, a longer initial audio
results in a lower distortion. Generating a single adversarial
examples requires ∼1 hour but thanks to the parallel nature of
GPUs it is possible to generate 10 examples simultaneously
during that time.

Improved Formulation : 100% success rate, mean pertur-
bation of -38 dB.

Targeting Silence : Any phrase can be turned into silence
with a mean distortion inferior than -45dB. As told by the
authors : ”This partially explains why it is easier to construct
adversarial examples when starting with longer audio wave-
forms than shorter ones: because the longer phrase contains
more sounds, the adversary can silence the ones that are not
required and obtain a subsequence that nearly matches the
target. In contrast, for a shorter phrase, the adversary must
synthesize new characters that did not exist previously.”

C. Pytorch Implementation’s Results

Initial Formulation : The mean distortion is -42.6 dB. We
observe the same trends as described in the previous section.
When comparing the distortions with the lengths of the target
transcriptions, we get a similar result of +0.11 dB/characters
and conversely the distortion level seems to decrease when the
length of the original audio increases (Figure 3).

Figure 3 : Results for the Initial Formulation.

Improved Formulation : The distortion is lower as ex-
pected, with a mean of -44.4 dB. We observe the same
trends with a slighty faster increasing distortion of +0.14
dB/characters (Figure 4). However, we don’t have enough data
to conclude that there is an actual difference with the initial
formulation.

Figure 4 : Results for the Improved Formulation.

Targeting Silence : When using the silence loss function
we obtain a mean perturbation of -49.9 dB, less than previous
results as expected. We also observe an inversed trend :
distortion increases with audio lengths as there is more sound
to hide (Figure 5).

Figure 5 : Results for the Silence Formulation.

VI. SPECIFICITIES OF ADVERSARIAL ATTACKS ON RNNS

Adversarial attacks in the space of audio have been proven
more difficult than with images. Simple optimisation-based
methods can perform really fast targeted attacks on images
where similar techniques usually take hours to achieve the
same task on audios. It’s also harder to produce imperceptible
audio adversarial perturbations. Studying the reasons behind
such a difference in difficulty could be useful in better under-
standing the adversarial problem in neural networks.

A. Specificities of audio inputs

To understand the specificities of adversarial attacks on
RNNs, we first need to isolate the difficulties introduced by
working with audios.

Distortion Metric. It is usually desired for an adversarial
distortion to be imperceptible. This is done by trying to
minimize a measurement of perceptibility, which means that
the choice of metrics should have a big effect on both the final
result and optimisation process. While using lp norms like l2 or
l∞ works well for images, Carlini & Wagner’s results show
it is not the case with audios. Later works like [10] show
how reducing the perceptibility of audio distortions requires
the use of more complex metrics like the one based on the
psychoacoustic principles, which shows how distortions that
are high in numerical value can still be imperceptible.

Several degrees of non-linearity. One of the main dif-
ferences between images and audios is the need for a pre-
processing step to divide the audio into frames, which intro-
duces a first degree of non-linearity when attacking raw audios,
while directly attacking the processed audio is shown to be
easier [21]. A second degree of non-linearity is introduced by
the need for decoding (computing the probability of a sentence
given an alignement of probability distributions) which forces
an attacker to minimize a non-linear function like the CTC
Loss of a target sentence. The fact that the improved loss
function in Carlini & Wagner’s article yields better results
shows the difficulty of differenciating through the decoding
step.

B. Investigating specificities of RNNs

In order to be easily trainable, neural networks are specif-
ically designed to have linear properties, allowing efficient
computing of gradients. According to the Linearity Hypothe-
sis, these linear properties are enough to explain the existence
of broad adversarial subspaces in the input-output space [2].
Using the Fast Gradient Sign Method, [2] demonstrated the
linear properties of Convolutional Neural Networks (CNNs,
used in the space of images). By removing the difficulties
introduced by the distortion constraint, pre-processing and
decoding, the same could be done on RNNs.

In the image space, a CNN will output a single probability
distribution for a given input, where the output’s class is sim-
ply the index of maximum probability within the distribution.
In the audio space, an input is divided into a sequence of
frames for which an RNN will output a sequence of probability
distributions. To each distribution can be associated a class (in

this case : a-z, space, ε) corresponding to the most likely token.
To test the Linearity Hypothesis on RNNs, we can use the
FGSM to perform adversarial attacks on pre-processed audio
in order to directly modify the class of the outputed probability
distributions :

x′ = x+ α ∗ sign(OxL({f(x)i}
i∈T

, {yi}
i∈T

))

Where T is a set of indexes, f(x)i the ith distribution
(associated with the ith frame of x), yi the target class of
the ith distribution and L the Cross-Entropy Loss function.

C. Experiments

Untargeted FGSM on alignements. Setting α to a positive
value results in a maximization of the loss function, allowing
untargeted attacks. When performing such an attack on the
whole alignment (= trying to misclassify the class of each
distribution), a single-step FGSM with an α of 0.1 is enough
to misclassify any frame with a mean confidence of 95%. This
shows how the adversarial subspace is still huge with RNNs.

Targeted FGSM on single frames. Setting α to a negative
value results in a minimization of the loss function, allowing
targeted attacks. When performing such an attack on a single
frame, a 10/20-step FGSM with an α of -0.025 is enough
to target any class. Furthermore, performing this attack with
a random target class on frames that are distant from the
beginning of the audio doesn’t seem to increase the mean
number of required iterations:

DeepSpeech uses LSTMs (Long Short Time Memory), a type
of RNN that is capable of conserving a relatively long-term
memory. As memory is important for the classification of a
frame, this result shows that long-term memory in LSTMs
may not introduce any level of non linearity.

Targeted FGSM of several frames. Performing targeted
attacks on more the one frame shows that (1) difficulty
increases with the number of targeted frames and (2), for the
same number of targeted frames, difficulty decreases for longer
audios :

These characteristics may be caused by the effect of mem-
ory on the size of adversarial subspaces. As an RNN takes a
frame as well as an internal state (memory vector) as inputs,
the classification is affected by the values of previous frames.
Targeting the classification of many frames constraints their
values which has the effect of constraining the space of possi-
ble memory inputs for later frames. The more targeted frame
there is, the more constrained is the memory space which
could explain it would be harder to target the classification of
later frame. However, for the same number of targeted frames,
a longer audio implies more ”free” frames and thus a less
constrained memory space, resulting in easier attack.

VII. CONCLUSION

Recent works show how adversarial attacks in the space
of audio are harder than with images. This difference in
difficulty can be explained by both the specificities of audio
(perceptibility metrics, pre-processing, sequence decoding)
and RNNs (effect of memory on the adversarial subspaces of
frames). State-of-the art attacks then require the use of creative
methods to achieve imperceptibility (psychoacoustic princi-
ples), fast execution time (generative models, Weighted Pertur-
bation Technology...) and robustness (Sampling Perturbation
Technology, Expectation Over Transforms with over-the-air
distortions...) but remain fundamentally close to the methods
used in the space of images, as the Linearity Hypothesis seems
to hold with RNNs. However, more investigations need to be
done on the specificities of adversarial subspaces with RNNs
and how it should affect attack and defense strategies as well
as our comprehension of those intriguing properties of neural
networks.

REFERENCES

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus. Intriguing properties of neural networks. arXiv preprint
arXiv:1312.6199, 2013.

[2] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572, 2014

[3] Serban, Alexandru & Poll, Erik. (2018). Adversarial Examples - A
Complete Characterisation of the Phenomenon.

[4] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D.
Wagner, and W. Zhou. Hidden voice commands. In 25th USENIX
Security Symposium (USENIX Security 16), Austin, TX, 2016.

[5] L. Song and P. Mittal. Inaudible voice commands. arXiv preprint
arXiv:1708.07238, 2017.

[6] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu. Dolphinatack:
Inaudible voice commands. CCS, 2017.

[7] Y. Gong and C. Poellabauer. Crafting adversarial examples for speech
paralinguistics applications. arXiv preprint arXiv:1711.03280, 2017

[8] C. Kereliuk, B. L. Sturm, and J. Larsen. Deep learning and music
adversaries. IEEE Transactions on Multimedia, 17(11):2059–2071, 2015

[9] Carlini, N. and Wagner, D. A. Audio adversarial examples: Targeted
attacks on speech-to-text. 2018 IEEE Security and Privacy Workshops
(SPW), pp. 1–7, 2018.

[10] L. Schonherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Ad- versarial
attacks against automatic speech recognition systems via psychoacoustic
hiding,” in 26th Annual Network and Distributed System Security Sym-
posium (NDSS). The Internet Society, 2019.

[11] Yakura, H., and Sakuma, J. 2018. Robust audio adversarial example for
a physical attack. arXiv preprint arXiv:1810.11793.

[12] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust
adversarial examples. arXiv preprint arXiv:1707.07397, 2017

[13] Y. Qin, N. Carlini, I. Goodfellow, G. Cottrell, and C. Raffel, “Imper-
ceptible, robust, and targeted adversarial examples for automatic speech
recognition,” in 36th International Conference on Machine Learning
(ICML). PMLR, 2019, pp. 5231–5240.

[14] Liu, Xiao-lei et al. “Weighted-Sampling Audio Adversarial Example
Attack.” AAAI (2020).

[15] Liu, Yanpei et al. “Delving into Transferable Adversarial Examples and
Black-box Attacks.” ArXiv abs/1611.02770 (2017): n. pag.

[16] Taori, Rohan et al. “Targeted Adversarial Examples for Black Box Audio
Systems.” 2019 IEEE Security and Privacy Workshops (SPW) (2019): 15-
20.

[17] Xie, Yi et al. “Enabling Fast and Universal Audio Adversarial Attack
Using Generative Model.” ArXiv abs/2004.12261 (2020): n. pag.

[18] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R.
Prenger, S. Satheesh, S. Sengupta, A. Coates, et al. Deep speech: Scaling
up end-to-end speech recognition. arXiv preprint arXiv:1412.5567, 2014.

[19] A. Graves, S. Fernandez, F. Gomez, and J. Schmidhuber. Connection-
ist temporal classification: labelling unsegmented sequence data with
recurrent neural networks. In Proceedings of the 23rd international
conference on Machine learning, pages 369–376. ACM, 2006

[20] N. Carlini and D. Wagner. Towards evaluating the robustness of neural
networks. In Security and Privacy (SP), 2017 IEEE Symposium on, pages
39–57. IEEE, 2017.

[21] Hu, Shengshan & Shang, Xingcan & Qin, Zhan & Li, Minghui & Wang,
Qian & Wang, Cong. (2019). Adversarial Examples for Automatic Speech
Recognition: Attacks and Countermeasures. IEEE Communications Mag-
azine. PP. 1-7. 10.1109/MCOM.2019.1900006.

[22] https://github.com/SeanNaren/deepspeech.pytorch
[23] https://nicholas.carlini.com/code/audio adversarial examples/commonvoice subset.tgz

