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Deep Learning & applications

● Machine Learning Learning automatically from a set of data to perform a 
task without explicit programmation.

● Deep Learning Methods of ML that use neural networks.
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Deep Learning & security

● Adversarial Example A seemingly benign input that fools a neural network.
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Neural Networks

● Forward propagation  I
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● Back propagation  

How information is 
processed.

How a neural network 
is trained.

● Powerful graphs

Weighted / Directed

Layers of neurons with weighted connections.

Acts as an ajustable function f(θ, x)

predictions f(θ, x)
x

 

Loss(θ, x, y)

truth y θ’ = θ -▽θ 
Loss



  

Fast Gradient Sign Method

predictions f(x)

 
Loss(f(x), y)

target y 
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Carlini & Wagner’s adversarial attack (1)

+ =δ

« Hello » « Goodbye »

● Targeted The resulting adversarial example has a desired 
classification.

● White Box Requires full knowledge of the model.

● Minimally 
Perceptible

Trying to minimize the perceptibility of the 
adversarial noise δ.



  

Recurrent Neural Networks
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Connectionist Temporal Classification
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DeepSpeech

RNN praw

CTCLoss( raw, p ) = - log 

X  Y

Pre
Processing

CTC
Decoding



  

Carlini & Wagner’s adversarial attack (2)

+ =δ

« Hello » « Goodbye »

minimize  CTCLoss(raw + δ, p)
such that  dBraw(δ) ≤ τ 

● Targeted The resulting adversarial example has a desired 
classification.

● White Box Requires full knowledge of the model.

● Minimally 
Perceptible

Trying to minimize the perceptibility of the 
adversarial noise δ.



  

PyTorch Implementation

● Methodology Targeting 10 different sentences on 20 audios.



  

Specificities of audio adversarial attacks

● Distortion Metrics L∞ & L2  norms work well for images, not for audio ! 

● Degrees of non
linearity

● RNNs ?

Differenciating through the pre-processing and CTC 
decoding step is not easy.



  

Conclusion

● Neural Networks are not well understood

● Adversarial Attacks are a security and scientific challenge

● Adversarial Attacks are harder on sequence input
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