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Abstract
This report investigates the connections between
the problem of detecting adversarial examples
for neural networks and that of improving their
robustness. We first explore state-of-the-art detec-
tion techniques and we find out that one of their
key component is that they enforce regularized
representations to ease outlier detection. We con-
nect this idea with another line of work in this
field which is concerned with improving adversar-
ial robustness.

1. Introduction
Adversarial examples have been identified early as an im-
portant breach in the robustness of deep neural networks
(Szegedy et al., 2013; Goodfellow et al., 2014). These inputs
can be crafted by more or less knowledgeable adversaries
to fool the classifier while being visually (nearly) identical
to images in the training set. There has been huge efforts
spent in attempting to improve the robustness of the existing
architectures, especially via new training methods called
adversarial training (Madry et al., 2019) that aim at regular-
izing the classification borders to prevent networks from the
existence of artifacts. Indeed, most of these methods come
at either higher computational cost, or a loss in accuracy, or
both.

Comparatively, the problem of detecting adversarial inputs
is less well understood. Nonetheless, it arises from a simple
intuition. The way adversarial examples are crafted is via
gradient ascent whereby a natural training image is slowly
transformed into a wrongly labeled sample which lies on the
other side of, but close to, the classification border. Thus,
one can conjecture that the representation of these sam-
ples are outliers in the manifold of their predicted class.
Most previous methods rely on estimating the uncertainty
of the network at that point, either via a Kernel Density
Estimate (KDE) or other uncertainty estimates (Feinman
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et al., 2017b). Nevertheless, Carlini & Wagner (2017) show
that for multiple reasons, and using a variety of techniques,
these detectors can be byassed.

In this work we investigate the connections between state-
of-the-art detection techniques (Pang et al., 2017) and adver-
sarial robustness. We show that regularized representations
are at the heart of both problems, but both objectives re-
main incompatible. In particular, we find out that more
adversarially robust networks tend to have worse detection
scores.

This report presents the background, the methods and the
results of our investigations. We begin by providing the
necessary background on adversarial robustness and detec-
tion. Our methodology is presented in Section 3 and our
experimental results are described in details in Section 4.

2. Background
2.1. Neural Networks

A neural network, or deep learning model, is a mapping
function F (x, θ) : Rd → RN where x ∈ Rd is the input and
θ is the model’s parameters. Such a function is differentiable
with respect to θ, meaning that its parameters can be updated
through gradient descent in order to learn a specific mapping.
These models have been shown to have great empirical
performance in tasks like image classification or natural
language processing (Goodfellow et al., 2016).

In the case of supervised learning, neural networks can
learn a specific mapping by minimizing a loss function
J(F (X, θ), Y ) that outputs how close the model’s predic-
tions F (X, θ) are to the expected outputs Y on an (X,Y )
training dataset containing pairs of input-label examples.
Learning then corresponds to finding the parameters θ∗ that
minimize such a loss function. We will now refer to F (x, θ)
as F (x) for simplicity. Whenever we talk about optimizing
a loss function, optimizing J with respect to θ is implied.

For classification tasks where inputs must be discriminated
between N classes, a model outputs a probability vector
F (x) ∈ RN giving the estimated confidence for each class.
These probabilities F (x) = S(Z(x)) are obtained by pass-
ing the outputs Z(x) ∈ RN of the model, denoted as the
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Figure 1: Illustration of the FGSM attack (Goodfellow et al., 2014)

logits, in the softmax function :

S(x)i =
exp(xi)∑N
j=1 exp(xj)

where x ∈ RN

An input x is then classified as the label that has the largest
probability, such a label is : ŷ = arg maxi F (x)i.

The loss function that is the most commonly used for classi-
fication tasks is the Cross-Entropy loss function :

CE(x, y) = −logF (x)y (1)

2.2. Adversarial Examples

It has been shown that neural networks are susceptible to
adversarial perturbations, small modifications to an input
that are able to fool a model and completely modify its
outputs (Szegedy et al., 2013). Namely, for some small ε >
0 and some input x, there exists xadv such that ‖x−xadv‖ <
ε1 but ŷ(x) 6= ŷ(xadv). Such modified inputs are called
adversarial examples and we call adversarial robustness the
stability of the outputs of a neural network with respect to
these adversarial perturbations. We call adversarial attacks
the process of crafting adversarial examples.

Most adversarial attacks rely on the gradients ∆x of the loss
function with respect to the input’s values, as illustrated by
the Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2014), a simple single-step method where :

xadv = x+ ε ∗ sign(∇xJ(F (x, θ), y))

Reviewing the entire literature on that problem is beyond
the scope of this report but we focus on providing the key
references that our work builds upon.

Many works have attempted to improve the adversarial ro-
bustness of neural networks by regularizing the loss func-
tion during training. Adversarial training (Goodfellow et al.,
2014; Madry et al., 2019) is a method that involves the use
of adversarial attacks on inputs during training. By learn-
ing on adversarial examples instead of normal inputs, the

1The choice of norm differ across papers, most common
choices are l2, l∞ or l1 norm.

model can be made more robust to the attacks that are used
during training. However, using adversarial attacks dur-
ing training comes with a high computational cost. Indeed,
performing an adversarial attack at every training iteration
implies to differentiate the entire model with respect to the
input’s values. Single-iteration methods like FGSM are not
especially costly, however one needs to use more powerful
multi-iterations methods in order to achieve robustness for
a bigger range of attacks, thus dramatically increasing the
computational cost of training.

In order to mimic the effects of adversarial training with
a computationally efficient method, (Shafahi et al., 2019)
make use of two previously known method : label smooth-
ing and logit squeezing. Label smoothing (Szegedy et al.,
2015) minimizes the variance in the model’s probability
outputs while logit squeezing (Kannan et al., 2018) mini-
mizes the norm of the logits. Combined with the addition of
Gaussian Noise on the training inputs, these regularization
methods allows for models that are even more robust than
with adversarial training, without its computational cost.
We describe these methods in greater details in the next
sections.

However, the issue of adverarial robustness in deep learn-
ing models is still an open problem. Indeed, as the exact
origin of adversarial examples is still not well understood
(Serban et al., 2019), researching methods of defenses has
been proven to be especially challenging. As of today, full
robustness to adversarial attacks has yet to be achieved.

3. Methodology
3.1. Reverse Cross Entropy

Because of how difficult it is to improve the adversarial ro-
bustness of neural networks, some have instead investigated
adversarial detection as an alternative. Instead of making
a model resistant to adversarial examples, the idea behind
these works is to detect when inputs have been modified
by an adversary. Several methods have been proposed like
training networks for detection (Metzen et al., 2017), reduc-
ing the dimensionality of the inputs (Bhagoji et al., 2017)
or detecting representations that lie far from the natural
activations manifold (Feinman et al., 2017a).
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Figure 2: t-SNE representation of the activations in the last hidden layer of models trained
using label smoothing regularization with λ = 0 (left), λ = 1 (center) and λ =∞ (right).

However, all these methods can easily be bypassed with
appropriate defenses (Carlini & Wagner, 2017). Indeed,
these detection methodsD(x) are differentiable with respect
to the input’s values. It is therefore possible to compute
∆xD(x) which means that the value of D(x), like J(x, y),
can easily be manipulated with an adversarial attack that is
adapted to the specific detection term. This highlights the
problem of the robustness of detection itself.

In order to achieve more robust detection of adversarial
examples, (Pang et al., 2017) propose an alternative to the
Cross-Entropy loss function : the Reverse Cross-Entropy
(RCE) loss. This method builds on the label smoothing
(Szegedy et al., 2015) regularization method :

JλCE(x, y) = CE(x, y)− λ ·R>y log F (x)

where Ryy = 0 and Ri 6=yy =
1

N − 1

where CE is the cross-entropy defined in Eq 1 and F is the
network function.

Optimizing the regularization term maximizes the probabil-
ity of the wrong classes while still requiring the confidence
of the true class to be maximal, thus reducing the variance
in the model’s output values. On the other hand, training
a model with Reverse Cross-Entropy only maximizes the
probability of the wrong classes, thus being equivalent to
training with J∞CE :

RCE(x, y) = −R>y log F (x)

Training with such a loss function yields a model with re-
verse classification : the true class has the minimal probabil-
ity while the other classes are equiprobable.

By using t-SNE visualization, a probabilistic method of vi-
sualizing high-dimensional data (van der Maaten & Hinton,
2008), on models trained with label smoothing (Figure 2),
we can see how an increase in λ is correlated with a con-
straint on the distribution of the models activations. The
authors explain how this constraint, maximized with RCE,
increases the robustness of KDE-based adversarial detection
on these activations.

Kernel Density Estimation (KDE) (Rosenblatt, 1956;
Parzen, 1962) is a method to estimate the probability of
a point x to belong in a distribution given a set X of sam-
ples from that distribution. Using a parameter σ known as

the bandwidth, such a probability is defined as follows :

f̂σ(x) =
1

|X|
∑
xi∈Xt

exp(−||xi − x||2/σ2) (2)

As the distributions of the models activations are less spread
out in the representation space, bypassing the detector in-
volves to carefully craft an adversarial perturbation such
that the input’s representation in the last hidden layer is
close enough to the dense distributions. The increase in the
required precision of the attacks makes bypassing the detec-
tion harder, requiring the use of perturbations with higher
norms.

3.2. Output Variance Minimization (OVM)

Building on the correlation between constrained representa-
tions and the robustness of detection, our initial motivation
was to explicitly constraint the activations of a model in
order to achieve robust detection.

To do so, we propose to minimize the variance in the model’s
outputs for each class of inputs by adding a regularization
term to the Cross-Entropy loss function. For an (X,Y) batch
of input-label pairs of data with N possible labels, we use
the following loss function :

OVM(X,Y ) = CE(F (X), Y )

+ λ · 1

|X|

N−1∑
i=0

∑
x∈Xi

||log F (x)− log F (Xi)||2

where Xi = {x | (x, i) ∈ X}

However, an easy way to minimize the regularization term :∑
x∈Xi

||log F (x)− log F (Xi)||2

would be to mostly minimize :∑
x∈Xi

||log F (Xi)||2

by preventing values in F (x) to be too close to zero, a value
that causes the l2 norm of a logF (x)i output to be infinite.
Such a constraint is easier to optimize with respect to mini-
mizing the Cross-Entropy loss function than minimizing the
variance in the model’s outputs.
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Figure 3: t-SNE representation of the activations in the last hidden layer for the CE (left), RCE
(center) and OVM (right) models.

Constraining the values of F (x) to be far away from zero
encourages a smaller difference between the maximal and
non-maximal values of the logits. This has the effect of
minimizing the relative differences between the class prob-
abilities, which is related with label smoothing, while also
minimizing the l2 norm of the logits. The latter effect is
known as logit squeezing (Kannan et al., 2018), a regular-
ization method that constraints a model to output logits with
low l2 norms.

Because of the known relationship between label smoothing,
logit squeezing and adversarial robustness, our detection-
oriented method is actually closely related with adversarial
robustness. This also sparks the question of the relationship
between adversarial detection and robustness. All these
questions are further explored in the next section.

4. Experiments

Optimizer SGD
Momentum 0.9

Weight Decay 5e-4
Initial LR 0.1

LR Scheduler Cosine Annealing
Epochs 200

Batch Size 256

Data Augmentation
Random Horizontal Flips

Random Cropping
Pixel Values Range [-0.5,0.5]

Relu Leakiness 0.1

Table 1: Training Hyperparameters

Method Accuracy
CE 93.13

RCE 92.94
OVM 91.5

Table 2: Classification accuracy (%) on the CIFAR-10 test
set

4.1. Setup

In order to evaluate the properties of a model trained with
our method, we trained three Resnet-32 models on the
CIFAR-10 dataset (Krizhevsky, 2009) using the Cross-
Entropy (CE), Reverse-Cross-Entropy (RCE) and Output
Variance Minimization (OVM) training procedures. We
used a balancing parameter λ = 1 for OVM. The full train-
ing setup is described in Table 1 while the resulting models
classification accuracies are shown in Table 2. While being
lower than the others, the classification accuracy does not
seem to have been significantly affected by our method.

4.2. Adversarial Detection

FGSM BIM PGD
CE 88.4 99.9 99.9

RCE 85.7 99.6 98.4
OVM 73.1 83.9 77.2

Table 3: AUC-scores of detection for the different models
using different adversarial attacks.

In (Pang et al., 2017) the authors show the t-SNE represen-
tations of the activations of the last hidden layer for the CE
and RCE models in order to illustrate how the distributions
of these outputs differ between the two models. In the case
of RCE, more compact distributions were correlated with
better and more robust detection of adversarial examples
using KDE on the last hidden layer. Because of this correla-
tion, we started by measuring these t-SNE representations
for the three models in order to see how our method affects
the activations distributions. Results shown in Figure 3
show how OVM seems to effectively constrains the repre-
sentations in the last hidden layer to be more compact in
their distributions, hinting a better robustness in adversarial
detection.

To measure the adversarial detection capacities of the mod-
els, we measured the AUC-scores of detection using KDE
(see Eq 2) on the last hidden layer, with a bandwidth
σ = 1/0.26 for CE and σ = 0.1/0.26 for RCE/OVM.
Adversarial examples are generated by using three different
adversarial attacks, detailed in Section 4.3. While the com-
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Figure 4: Adversarial robustness of the CE, RCE and OVM models with respect to ε
using FGSM (left), BIM (center) and PGD (right).

pact distributions of the OVM model suggest that detection
could be better than with CE, the results of Table 3 actually
show the opposite : the model trained with our regulariza-
tion method has the worst detection performance of all three
models.

This shows how the correlation between the distributions
of the activations in the last hidden layer and the detection
performance by using KDE on these outputs may not be as
valid as suggested in (Pang et al., 2017).

4.3. Adversarial Robustness

We then evaluated the adversarial robustness of the models
using the following adversarial attacks with different values
of ε :

Fast Gradient Sign Method (FGSM) (Goodfellow et al.,
2014). x′ = x+ ε · sign(∇xJ(x, y)) where x′ is the result-
ing adversarial example, x is the original input, J is the loss
function and y is the correct label.

Basic Iterative Method (BIM) (Kurakin et al., 2017).
x′i = x′i−1−+ ε

n ·sign(∇xJ(x, y)) where x′0 is the original
input and n is the number of iterations. We used this attack
with n = 10 iterations.

Projected Gradient Descent (PGD) (Madry et al., 2019).
Similar to BIM, except that the adversarial perturbation
x′ − x is constrained to be under a certain lp-norm2 Dtotal,
while each gradient step is constrained to have a fixed lp-
norm, Dstep. We used this attack with n = 10 iterations,
Dtotal = ε and Dstep = ε

10 .

The adversarial robustness of the three models for each
attack are shown in Figure 4. While the OVM model does
not seem to be better in terms of detection, it is significantly
more robust than the other methods for all three attacks,
especially for the most powerful PGD attack.

These results support the idea, described in Section 2, that
OVM is actually closely related with the label smoothing
and logit squeezing regularization methods.

2Again, the choice of norm differs across papers and is often
p = 1, 2,∞.

4.4. Additional Experiments

As we’ve seen, the encouraging results of our methods may
only be due to its close relation with logit squeezing and
label smoothing, two regularization methods already known
to have positive effects on adversarial robustness.

However, our methods seems to yield bad results in term
of detection, which sparks the question of the relationship
between adversarial robustness, adversarial detection, and
regularized models.

In order to explore possible correlations between these dif-
ferent properties, we trained several Resnet-32 models on
the MNIST dataset (Deng, 2012) using both logit squeez-
ing and label smoothing regularizations. Each regulariza-
tion term is multiplied by its respective balancing param-
eter (see Eq 3). The values used for both parameters are
[0,0.1,0.2,0.4,0.8,1].

Jλ1,λ2(x, y) = (3)

CE(x, y)− λ1 ·R>y log F (x) + λ2 · ||Z(x)||2

We then measured the adversarial robustness and detection
results of the 36 models under the PGD attack, using the
same parameters as in section 4.3. The results shown in
Figure 5 seem to show an inverse correlation between ad-
versarial robustness and adversarial detection.

Figure 5: Adversarial robustness (left) and AUC-scores of
detection (right) of the regularized MNIST models with

respect to λ1 (label smoothing) and λ2 (logit squeezing).
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5. Conclusion
In this report, we investigated the connections between the
detection of adversarial examples and adversarial robustness.
Inspired by the Reverse Cross-Entropy training procedure,
we proposed a regularization method aimed at constrain-
ing the activations distributions of a model in the hope of
improving adversarial detection. In doing so, we actually
achieved a regularization method that is closely related with
label smoothing and logits squeezing, two regularization
methods that improve adversarial robustness. These results
motivated an investigation of the relationship between ad-
versarial robustness and adversarial detection, whose results
hint that there may exist an inverse correlation between the
two. However, these results are still too preliminary and
more research needs to be done on this topic.
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